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Introduction

Adverse events due to medical errors remain a major threat 
to patient safety globally (Makary & Daniel, 2016). Adverse 
events are unintended injuries or complications caused by 
delivery of care, rather than by the patient’s underlying dis-
ease. Adverse events can prolong the patient’s hospitaliza-
tion, result in escalation of care or additional treatments, or 
produce injury or a disability at the time of discharge (Sari et 
al., 2007). Approximately 4 to 17 % of patients experience 
adverse events across the world (Rafter et al., 2015). Experts 
estimate that as many as 251,454 patients die annually due to 
adverse events in the United States (Makary & Daniel, 2016). 
The annual cost of adverse events in the United States has 
been estimated at $17.1 billion (Van Den Bos et al., 2011).

Patient safety event (PSE) reports play a vital role in 
allowing healthcare organizations to learn from adverse 
events and develop measures to improve patient safety 
(Puthumana et al., 2021). A PSE is an event or circumstance 
which could have resulted or did result in harm to a patient. 
PSE report consists of structured data (i.e., event types, 

patient harm level, location of the event) and unstructured 
data (i.e., free text section for describing the event, patient 
outcome, and so on) (Fong et al., 2021). PSEs can be reported 
by any hospital staff member in the hospital’s PSE reporting 
system. The reporter describes the event and completes fields 
regarding the date, time, location, and potential causes. Once 
the report is submitted, the event may be reviewed by the 
hospital’s patient safety and risk teams as well as relevant 
managers and quality supervisors. PSE reports often drive 
patient safety and quality improvement efforts at a hospital 
(Puthumana et al., 2021).
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The use of PSE reports to examine specific patient safety 
issues is highly dependent on classifying PSEs into their cor-
rect event types (Wang et al., 2017). An event type is a 
descriptive term for a class of events with a common nature. 
PSE reporting systems can have upwards of 20 event types 
(Evans et al., 2020). Healthcare personnel often struggle 
with classifying PSEs (Mahajan, 2010). The reporter has to 
make a subjective decision about the most appropriate event 
type based on their interpretation of the event (i.e., did the 
reporter witness the event) and level of understanding of the 
PSE reporting system’s taxonomy (i.e., experience with 
classification taxonomy). The consistency of classification 
results tends to vary depending on the event reporter’s pro-
fession (i.e., nurse, physician, technician) (Lee et al., 2020). 
As a result, many PSE reports are misclassified. 
Misclassification limits the PSE reporting system’s learning 
functionality, requires reclassification of PSEs, and poten-
tially confounds the database during pattern searches for 
developing solutions (Puthumana et al., 2021). Additionally, 
PSE reports were frequently classified as “miscellaneous”, 
which requires a substantial amount of effort to reclassify 
into appropriate event types (Fong et al., 2021). In order to 
secure the most value from PSE reports, hospitals need to 
ensure the events reported are classified accurately.

To more efficiently and accurately classify PSE reports, 
various recent studies have utilized static natural language 
processing (NLP) and machine learning (ML) techniques to 
automate PSE report classification (Fong et al., 2021; Evans 
et al., 2020; Wang et al., 2022). The performance of these 
classifiers is promising and has proven its efficacy in classi-
fying PSE reports. However, previous studies used the text 
representation produced from static NLP algorithms, which 
does not differentiate the meaning of the word in disparate 
contexts (Fong et al., 2021, Evans et al., 2020). This can lead 
to inferior classification results. Neural NLP algorithms have 
improved the representation of text documents by using con-
textual text representation generated from deep learning 
(DL) language models. These models are usually trained on 
large amounts of unstructured text in a self-supervised fash-
ion (Liu et al., 2019). The neural NLP algorithms assign each 
word’s representation based on its context, thus enabling 
capturing of more accurate meanings of words across varied 
contexts (Liu et al., 2020).

Therefore, the primary objective of this study is to exam-
ine the efficacy of contextual text representation coupled 
with ML classifiers in classifying PSE reports. First, various 
ML classifiers, including softmax regression, support vector 
machine, random forests, K-nearest neighbors, extreme gra-
dient boosting, and light gradient boosting, were trained with 
different static text representations. These ML classifiers 
were then trained with various contextual text representa-
tions. The performance of ML classifiers trained on both 
static and contextual text representation was compared based 
on various multi-class classification metrics. Furthermore, 
we also analyzed the confusion matrix of the top-performing 

classifier to understand its performance and identify areas of 
improvement. This work can reveal meaningful insight for 
improving the reliability of PSE classification in the event 
reporting system.

Methods

Data Collection

The dataset used to train classifiers was obtained from a large 
academic hospital in the Southeastern United States. A total 
of 861 PSE reports from January 1st, 2019, to December 31st, 
2020, were extracted from the event reporting system for the 
labor and delivery (L&D) and mother-baby (MB) units as 
part of a larger study examining adverse events in maternal 
care. The study was approved by the hospital’s institutional 
review board (Pro00105892).

Following data extraction, all PSE reports were anony-
mized for privacy regulation. There were 25 event types in 
the PSE reporting system including complications of sur-
gery, falls, medication-related, environmental issues, and so 
on. Only the free-text section was used for classifying PSE 
reports. The PSE reports from seven frequent event types 
were selected for training classifiers. The decision was made 
to avoid sampling bias. The included PSE reports’ event 
types and associated frequencies were care coordination/
communication (186), laboratory test (122), medication-
related (89), omission/errors in diagnosis, monitoring (67), 
maternal (58), equipment/devices (56), and supplies (49). 
The selected PSE reports accounted for 73% of the reported 
events.

Data Preparation

The free text section of PSE reports was preprocessed before 
being used as input for training classifiers. The preprocess-
ing procedures include data cleaning, feature extraction, data 
splitting, and data augmentation.

Data cleaning.  Two types of features, including static text 
representation and contextual text representation, were 
extracted from the free text section of PSE reports using 
static NLP algorithm and neural NLP algorithm, respectively. 
The static NLP algorithm requires the text to be normalized 
so that the algorithm can recognize the same word in a differ-
ent format (i.e., plural vs. singular).

The following text normalization procedures were com-
pleted for obtaining static text representation from the static 
NLP algorithm: changing the case of the word to lowercase, 
removing non-alphabetical characters, and names, and stem-
ming. Stemming reduces words into their base form, so that 
algorithm can recognize the same word in different formats. 
The normalized text allowed the static NLP algorithm to pro-
duce a consistent representation of the same word in a differ-
ent format. The contextual text representation does not 
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require text normalization because the neural NLP algorithm 
was trained on the raw text that has not been normalized. 
Neural NLP algorithms are more robust to anomalies such as 
spelling mistakes, word tenses, and plurality (Devlin et al., 
2019; Liu et al., 2019).

Feature extraction.  A total of three static text representations 
were extracted. The normalized text was converted into the 
bag of words (BOW) format, term frequency-inverse docu-
ment frequency (TF-IDF) format, and global vectors (Glove) 
format. BOW is a vector format representation of a text doc-
ument where the total occurrence of each word in the docu-
ment is used as a feature for training an ML classifier. TF-IDF 
is a vector format representation of a text document that 
reflects how relevant a word is to a text document in the 
entire dataset. The static text representation produced from 
BOW and TF-IDF in this study all used n-grams ranging 
from 1 to 3. The n-gram refers to how we tokenize text into 
different parts. which is necessary to represent text in a way 
that the computer can read. Glove algorithms represent each 
word with a vector that captures the semantic relationship 
between words. The representation of the entire text docu-
ment is then obtained by aggregating each word’s vector.

A total of six contextual text representations were 
extracted by passing the event description into neural NLP 
algorithms, including Bert-cased, Bert-uncased, xlm-
Roberta-base, Roberta-large, Roberta-base, and PubMed-
Bert. Each word is represented with a vector that captures 
the contextual and positional information of itself within 
the text document. The text document’s representation is 
obtained by aggregating words’ vectors and dividing by the 
number of words in that text document. The difference 
between the six contextual text representations in this study 
is coming from the domain of text on which the neural NLP 
algorithm is trained.

Data splitting.  For both static text representations and con-
textual text representations of PSE reports, data was splitted 
with stratified sampling with respect to the frequency of 
event types; 80% of the data was used for training and 20% 
was used for testing. The classifiers were trained with the 
training data and evaluated with the testing data, which is a 
standard approach in the ML field. This was done to avoid 
overfitting. Additionally, splitting in a stratified fashion 
allows the data in the training set and testing set to preserve 
the original class’s distribution and ensures both the training 
and testing dataset remain representative of real-world sce-
narios. We did not create a validation set, instead, the five-
fold cross-validation was implemented during hyperparameter 
tuning to provide classifiers with more access to data during 
training.

Data augmentation.  The data used in this study was imbal-
anced, and this has the potential to compromise the perfor-
mance of classifiers. For instance, a previous study noted 

that imbalanced data can cause K-Nearest Neighbor classi-
fiers to be biased toward the majority class (Kumar et al., 
2021). In this study, we used the synthetic minority oversam-
pling technique (SMOTE) to address the problem of imbal-
anced data. SMOTE is an oversampling technique where the 
synthetic data are created for the minority class to achieve a 
balanced distribution of classes, thus improving classifiers’ 
sensitivity to the minority class (Chawla et al., 2002). Only 
the training data set was augmented with SMOTE, the test-
ing set maintained its original distribution.

Classifier Development

The ML classifiers used to classify PSE reports include 
logistic regression (LR), support vector machine (SVM), 
extreme gradient boosting (XGB), light gradient boosting 
(LGB), random forest (RF), and K-nearest neighbor (KNN). 
Although SVM is a binary classifier, it can be used to per-
form multi-class classification with a one vs one strategy, 
which treats multi-class classification problem as a series of 
binary classification problems, taking the number of classes 
(N), and building N*(N-1)/2 binary classifiers for each pair 
of classes. The final classification is based on the majority 
vote of all the binary classifiers. The XGB, LGB, and RF are 
all tree-based ensemble algorithms that are frequently used 
for text classification problems (Evans et al., 2020). KNN 
classifiers predict with a majority voting principle, where the 
data is classified based on its nearest neighbors’ classes.

Hyperparameter tuning.  For ML classifiers, the hyperparam-
eters were tuned using the 5-fold cross-validation grid search 
technique. During this process, a range of values for impor-
tant hyperparameters are evaluated using 5-fold cross-vali-
dation, and the final hyperparameter setting is selected based 
on the cross-validation performance.

Evaluation of classifier performance.  We evaluated the perfor-
mance of the trained classifiers on the testing set based on the 
following evaluation metrics: accuracy, F1 score, and area 
under the receiver operating characteristic curve (AUCROC). 
Accuracy measures the overall percentage of PSE reports 
that a classifier correctly classifies; F1 score is the harmonic 
mean of the precision and recall, which gives a whole picture 
of a classifier’s performance on both precision and recall; 
precision answers how many PSE reports are classified as 
one specific class belong to that class; recall represents the 
proportion of PSE reports that are correctly classified as its 
true class; AUCROC measures classifies’ ability to distin-
guish between classes. Each of these metrics provides a dif-
ferent perspective on classifiers’ performance, and together 
they give a complete picture of how well the classifier is 
working.

The performance metrics are computed in a macro aver-
age way. For instance, the macro F1 score is computed by 
summing every class’s F1 score and dividing by the number 
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of classes. Macro average is preferred over micro and 
weighed average because it treats each class with equal 
importance, and ensures the classifiers’ generalizability 
across all event types.

To examine the efficacy of different text representations 
on classifiers’ performance. The mean and 95% confidence 
interval of the classifier’s performance across different text 
representations on F1 and AUCROC were also computed. 
The confidence interval was computed with the mean and 
standard deviation of a specific classifier’s performance 
across different text representations. Furthermore, we used a 
confusion matrix to analyze the performance of the top-per-
forming classifier, aiming to identify specific mistakes made 
by the classifier and the potential causes of these mistakes.

Results

The ML classifiers’ performance metrics on static and con-
textual text representations are reported in Tables 1 (accu-
racy), 2 (F1 score), and 3 (AUCROC). Overall, the SVM 
classifier trained with the Roberta-base representation dem-
onstrated exceptional performance, achieving the highest 
accuracy, F1, and AUCROC among all classifiers with scores 
of 0.75, 0.75, and 0.94, respectively.

The performance of each ML classifiers’ F1 score and 
AUCROC across static and contextual text representation 
is shown in Figure 1. The mean of each classifier’s 

performance metrics on various text representations is 
demonstrated with the bar chart, and the 95% confidence 
interval around the mean is represented with an error bar. 
SVM trained with Roberta-base was the most promising 
ML classifier in terms of F1 score (0.75) and accuracy 
(0.75), and the KNN classifier trained with BOW has the 
lowest F1 (0.39) and accuracy (0.37) among all ML classi-
fiers. In terms of the AUCROC score, all classifiers had 
similar performance (0.83-0.94), however, the KNN clas-
sifiers have shown a comparatively lower performance 
(0.76-0.83).

The performance of each text representation across dif-
ferent classifiers is presented in Figure 2. In terms of F1 
score, two contextual text representations, xlm-Roberta-
base (highest F1 = 0.71) and Roberta-base (highest F1 = 
0.75), showed superior performance when compared to 
other text representations. The rest of the text representa-
tions did not differ much except the Bert-cased text repre-
sentation (highest F1 = 0.57), which performed poorly. The 
confusion matrix for the best-performing classifier, SVM 
trained with Roberta-base, evaluated on the test set has been 
shown in Figure 3. The diagonal values represent the PSE 
reports that have been classified as the actual class, whereas 
the off-diagonal values are the number of PSE reports that 
have been wrongly classified. While the classifier was able 
to classify the majority of PSE reports correctly (95 out of 
126), two classes of PSE reports including omission/errors 

Table 1.  The accuracy of different classifiers on the test set.

Accuracy LR SVM XGB RF KNN LGB

BOW 0.55 0.56 0.62 0.64 0.37 0.56
TF-IDF 0.67 0.65 0.64 0.59 0.48 0.64
Glove 0.53 0.63 0.54 0.60 0.57 0.55
Bert-cased 0.63 0.61 0.52 0.52 0.43 0.56
Bert-uncased 0.68 0.70 0.71 0.64 0.54 0.70
xlm-Roberta-base 0.67 0.75 0.67 0.66 0.50 0.70
Roberta-base 0.70 0.60 0.60 0.57 0.44 0.56
Roberta-large 0.56 0.66 0.60 0.62 0.52 0.62
PubMed-Bert 0.68 0.70 0.71 0.64 0.54 0.69

Table 2.  The F1 score of different classifiers on the test set.

F1 score LR SVM XGB RF KNN LGB

BOW 0.59 0.57 0.63 0.63 0.39 0.57
TF-IDF 0.63 0.62 0.61 0.56 0.40 0.58
Glove 0.55 0.64 0.52 0.58 0.55 0.58
Bert-cased 0.52 0.51 0.46 0.57 0.46 0.50
Bert-uncased 0.62 0.62 0.50 0.63 0.48 0.59
xlm-Roberta-base 0.68 0.69 0.71 0.64 0.54 0.68
Roberta-base 0.68 0.75 0.66 0.65 0.48 0.69
Roberta-large 0.70 0.60 0.53 0.51 0.48 0.60
PubMed-Bert 0.59 0.63 0.55 0.53 0.56 0.60
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in diagnosis, monitoring, and medication-related events 
were frequently misclassified.

Discussion

Ensuring PSE reports are correctly classified increases the 
overall utility of the event reporting system. Incorrect clas-
sifications are common and patient safety analysts often 
have to reclassify incorrectly classified PSE reports and 
reports classified as miscellaneous (Fong et al., 2021). To 
improve the efficiency of the process, prior research has 
sought to automate PSE reports classification using ML clas-
sifiers and static text representation (Fong et al., 2021; Evans 
et al., 2020). This work builds on these methods by utilizing 
contextual text representation instead of static text represen-
tation to enhance the accuracy of PSE report classification.

The best-performing classifier trained with the static text 
representation (SVM trained with Glove) was able to achieve 
an accuracy of 0.67, significantly outperforming the baseline 
accuracy of 0.30 (the accuracy that would have been achieved 
by classifying every PSE reports as the majority PSE report’s 
event type, 37 out of 125). However, we found the usage of 
contextual text representation yielded better classification 
results. The SVM trained with contextual text representation 
(Roberta-base) was able to achieve an accuracy of 0.75, 

reflecting an 8% enhancement in accuracy compared to the 
best-performing classifier trained with the static text repre-
sentation. The improvement observed in the performance 
can be attributed to the ability of the contextual text repre-
sentation to capture the complex and subtle ways in which 
words interact with each other in different contexts (Liu  
et al., 2019), thus providing classifiers with a richer and more 
comprehensive understanding of the text.

Although the classifier was able to differentiate five out 
of seven event types correctly most of the time, our analysis 
found two specific events omission/errors in diagnosis, 
monitoring, and medication-related events were the most 
commonly misclassified event types. There are two poten-
tial reasons for the misclassification of these PSE reports. 
First, an individual PSE can be related to multiple event 
types. For instance, medication-related events can originate 
from insufficient care coordination/communication between 
healthcare personnel, and the inclusion of both causes (care 
coordination/communication) and outcomes (medication-
related error) in the event report system’s taxonomy likely 
contributes to confusion in selecting the most appropriate 
event type. Secondly, certain event types are more conceptu-
ally related than others. Our confusion matrix showed that 
omission/errors in diagnosis, monitoring, and care coordi-
nation/communication PSE reports were frequently 

Table 3.  The AUCROC score of different classifiers on the test set.

AUCROC score LR SVM XGB RF KNN LGB

BOW 0.84 0.81 0.86 0.88 0.76 0.86
TF-IDF 0.91 0.91 0.87 0.89 0.79 0.89
Glove 0.86 0.91 0.86 0.89 0.78 0.86
Bert-cased 0.83 0.84 0.81 0.86 0.74 0.83
Bert-uncased 0.90 0.90 0.84 0.87 0.80 0.86
xlm-Roberta-base 0.91 0.92 0.91 0.89 0.83 0.91
Roberta-base 0.92 0.94 0.92 0.91 0.82 0.93
Roberta-large 0.91 0.91 0.89 0.86 0.78 0.87
PubMed-Bert 0.90 0.84 0.88 0.87 0.83 0.89

Figure 1.  Bar chart of ML classifiers’ performance across various text representations.
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misclassified as one another. Within hospitals, these events 
likely co-occur. For example, failure to document the 
removal of a patient’s epidural (omission/errors in diagno-
sis, monitoring), prevents the pharmacy from releasing a 
medication ordered by the physician due to a drug interac-
tion (care coordination/communication). However, labora-
tory test PSEs were a more distinct event type compared 
with other event types, thus the classifier was able to cor-
rectly classify the majority of these PSE reports. The obser-
vation obtained from the confusion matrix implies that the 
omission/errors in diagnosis, monitoring, and care coordi-
nation/communication PSE event types’ taxonomy defini-
tion might be hard to distinguish.

Event reporting systems can have upwards of 20 event 
types, and healthcare personnel reporting PSEs may not be 
familiar with event types (Evans et al., 2020). One potential 
solution could be to modify the taxonomy to make individual 
event types more conceptually distinct and provide reporters 
with definitions and examples. Alternatively, the PSE report-
ing system could be adjusted to allow PSE reports to possess 
multiple event types. Implementing an ML classifier that 
prompts top probable event types and allows users to select 
the most appropriate event type could also facilitate the PSE 
report classification process.

While our study found promising results, the ML classi-
fiers were trained on PSE reports from a single US hospital. 
Future research should evaluate the performance of utilizing 
contextual text representation for training ML classifiers on 
a more diverse dataset to ensure generalizability. Furthermore, 
to ensure the reliability of PSE report classification results, 
explainability techniques should be incorporated to help PSE 
reporters and patient safety analysts understand the ML clas-
sifiers’ decisions. As training the ML classifier is just a first 
step, future research will need to identify and evaluate vari-
ous strategies for integrating the ML classifier into the 

workflow of PSE report classifications to support correct 
classification during reporting and reduce the need for 
reclassification.

Conclusion

The findings of this study can help advance the development 
of classification tools for PSE reports. We have demonstrated 
that the SVM trained with contextual text representation 
(Roberta-base) provides superior classification results  
compared with other text representations. Having a PSE 
reporting system equipped with a built-in feature that can 

Figure 2.  Bar chart of different text representations’ performance across various classifiers.

Figure 3.  Confusion matrix for testing set evaluation with SVM 
classifier trained on Roberta-base text representation.
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automatically classify the event reports or provide recom-
mendations to reporters can help relieve healthcare person-
nel’s burden on memorizing complicated classification 
taxonomy and reduce the time spent on reclassifying PSE 
reports. Additionally, patient safety analysts will spend less 
time reviewing miscellaneous PSE reports. Based on the 
findings from the confusion matrix, meaningful insight can 
be utilized to improve the event type taxonomy. Our next 
steps include testing the classifiers on a larger PSE report 
dataset and investigating integration opportunities with an 
event reporting system. Overall, this work will contribute to 
establishing a more user-friendly event reporting system and 
ultimately optimizing organizational learning within health 
systems.

Acknowledgments

This research was funded by the Agency for Healthcare Research 
and Quality (AHQR) [Grant no. 1R03HS027680]. The authors 
declare no conflict of interest.

ORCID iDs

Hongbo Chen  https://orcid.org/0009-0005-5823-9406

Eldan Cohen  https://orcid.org/0000-0001-5767-6683

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. 
P. (2002). SMOTE: Synthetic Minority Over-sampling 
Technique. Journal of Artificial Intelligence Research, 16, 
321–357. https://doi.org/10.1613/jair.953

Evans, H. P., Anastasiou, A., Edwards, A., Hibbert, P., Makeham, 
M., Luz, S., Sheikh, A., Donaldson, L., & Carson-Stevens, A. 
(2020). Automated classification of primary care patient safety 
incident report content and severity using supervised machine 
learning (ML) approaches. Health Informatics Journal, 26(4), 
3123–3139. https://doi.org/10.1177/1460458219833102

Fong, A., Behzad, S., Pruitt, Z., & Ratwani, R. M. (2021). A 
Machine Learning Approach to Reclassifying Miscellaneous 
Patient Safety Event Reports. Journal of Patient Safety, 17(8), 
e829–e833. https://doi.org/10.1097/PTS.0000000000000731

Kumar, P., Bhatnagar, R., Gaur, K., & Bhatnagar, A. (2021). 
Classification of Imbalanced Data:Review of Methods and 
Applications. IOP Conference Series: Materials Science and 
Engineering, 1099(1), 012077. https://doi.org/10.1088/1757-
899X/1099/1/012077

Lee, K., Yoon, K., Yoon, B., & Shin, E. (2020). Differences in the 
perception of harm assessment among nurses in the patient 
safety classification system. PLoS ONE, 15(12), e0243583. 
https://doi.org/10.1371/journal.pone.0243583

Liu, Q., Kusner, M. J., & Blunsom, P. (2020). A Survey on 
Contextual Embeddings (arXiv:2003.07278). arXiv. https://
doi.org/10.48550/arXiv.2003.07278

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,  
Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa:  
A Robustly Optimized BERT Pretraining Approach (arXiv: 
1907.11692). arXiv. https://doi.org/10.48550/arXiv.1907.11692

Makary, M. A., & Daniel, M. (2016). Medical error-the third lead-
ing cause of death in the US. BMJ (Clinical Research Ed.), 
353, i2139. https://doi.org/10.1136/bmj.i2139

Puthumana, J. S., Fong, A., Blumenthal, J., & Ratwani, R. M. (2021). 
Making Patient Safety Event Data Actionable: Understanding 
Patient Safety Analyst Needs. Journal of Patient Safety, 17(6), 
e509–e514. https://doi.org/10.1097/PTS.0000000000000400

Sari, A. B.-A., Sheldon, T. A., Cracknell, A., Turnbull, A., Dobson, 
Y., Grant, C., Gray, W., & Richardson, A. (2007). Extent, 
nature and consequences of adverse events: Results of a ret-
rospective casenote review in a large NHS hospital. BMJ 
Quality & Safety, 16(6), 434–439. https://doi.org/10.1136/
qshc.2006.021154

Rafter, N., Hickey, A., Condell, S., Conroy, R., O’Connor, P., 
Vaughan, D., & Williams, D. (2015). 2. Adverse events in 
healthcare: Learning from mistakes. https://doi.org/10.1093/
qjmed/hcu145

Van Den Bos, J., Rustagi, K., Gray, T., Halford, M., Ziemkiewicz, E., 
& Shreve, J. (2011). 3. The $17.1 billion problem: The annual 
cost of measurable medical errors. Health Affairs (Project Hope), 
30(4), 596–603. https://doi.org/10.1377/hlthaff.2011.0084

Wang, L., Zhang, Y., Chignell, M., Shan, B., Sheehan, K. A., Razak, 
F., & Verma, A. (2022). Boosting Delirium Identification 
Accuracy With Sentiment-Based Natural Language Processing: 
Mixed Methods Study. JMIR Medical Informatics, 10(12), 
e38161. https://doi.org/10.2196/38161

https://orcid.org/0009-0005-5823-9406
https://orcid.org/0000-0001-5767-6683
https://doi.org/10.1613/jair.953
https://doi.org/10.1177/1460458219833102
https://doi.org/10.1097/PTS.0000000000000731
https://doi.org/10.1088/1757-899X/1099/1/012077
https://doi.org/10.1088/1757-899X/1099/1/012077
https://doi.org/10.1371/journal.pone.0243583
https://doi.org/10.48550/arXiv.2003.07278
https://doi.org/10.48550/arXiv.2003.07278
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.1136/bmj.i2139
https://doi.org/10.1097/PTS.0000000000000400
https://doi.org/10.1136/qshc.2006.021154
https://doi.org/10.1136/qshc.2006.021154
https://doi.org/10.1093/qjmed/hcu145
https://doi.org/10.1093/qjmed/hcu145
https://doi.org/10.1377/hlthaff.2011.0084
https://doi.org/10.2196/38161

