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Abstract

Background: K-Ras mutations are characteristic of human lung adenocarcinomas and occur almost exclusively in smokers.
In preclinical models, K-Ras mutations are necessary for tobacco carcinogen-driven lung tumorigenesis and are sufficient to
cause lung adenocarcinomas in transgenic mice. Because these mutations confer resistance to commonly used cytotoxic
chemotherapies and targeted agents, effective therapies that target K-Ras are needed. Inhibitors of mTOR such as
rapamycin can prevent K-Ras-driven lung tumorigenesis and alter the proportion of cytotoxic and Foxp3+ regulatory T cells,
suggesting that lung-associated T cells might be important for tumorigenesis.

Methods: Lung tumorigenesis was studied in three murine models that depend on mutant K-Ras; a tobacco carcinogen-
driven model, a syngeneic inoculation model, and a transgenic model. Splenic and lung-associated T cells were studied
using flow cytometry and immunohistochemistry. Foxp3+ cells were depleted using rapamycin, an antibody, or genetic
ablation.

Results: Exposure of A/J mice to a tobacco carcinogen tripled lung-associated Foxp3+ cells prior to tumor development. At
clinically relevant concentrations, rapamycin prevented this induction and reduced lung tumors by 90%. In A/J mice
inoculated with lung adenocarcinoma cells resistant to rapamycin, antibody-mediated depletion of Foxp3+ cells reduced
lung tumorigenesis by 80%. Likewise, mutant K-Ras transgenic mice lacking Foxp3+ cells developed 75% fewer lung tumors
than littermates with Foxp3+ cells.

Conclusions: Foxp3+ regulatory T cells are required for K-Ras-mediated lung tumorigenesis in mice. These studies support
clinical testing of rapamycin or other agents that target Treg in K-Ras driven human lung cancer.
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Introduction

Lung cancer has been the leading cause of cancer deaths in

American men since 1954 and in American women since 1987 [1],

which reflects historical differences in smoking habits. Lung cancer

remains a daunting problem that is mostly related to smoking, with

over 215,000 new cases and 160,000 deaths expected in the US in

2008 [1]. Smoking is associated with resistance to cytotoxic

chemotherapies and targeted therapies in lung cancer patients,

and over 90 million current or former smokers in the United States

are at permanent increased risk to develop lung cancer [2]. Thus,

there is great need to understand and mitigate the effects of smoking

as it relates to the development and treatment of lung cancer.

Activating mutations in K-Ras have been identified in approx-

imately 25% of human lung adenocarcinomas that are primarily

associated with smoking [3–5]. In preclinical models, K-Ras

mutations are observed in over 90% of lung tumors induced by

the tobacco-specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-

1-butanone (NNK). Oncogenic K-Ras stimulates activation of the

Akt/mTOR pathway, which contributes to the development of lung

tumors [6,7]. The FDA-approved immunosuppressant, rapamycin,

as well as its analogues, are mTOR inhibitors, and this class of drugs

decreases K-Ras induced lung tumorigenesis in mice. We recently

reported that rapamycin, when administered to achieve physiolog-

ically relevant trough levels, reduced NNK-induced lung tumori-

genesis in A/J mice by 90% [8]. These results are consistent with

studies of transgenic models of prostate, breast and lung cancer,

where treatment with rapamycin or rapamycin analogues prevented

or reversed premalignant lesions [7,9,10]. Thus, early steps of

tumorigenesis in many mouse models of cancer are reliant on
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mTOR activation. Despite the promise of mTOR inhibition as a

preventive approach, little is known about the mechanisms

underlying its efficacy.

Activation of K-Ras in the mouse lung generates an

inflammatory process. In A/J mice, inflammation is highly

associated with susceptibility to NNK-induced lung tumorigenesis.

In mice genetically engineered to express mutant K-Ras, mTOR

inhibition has been shown to reduce inflammatory processes in the

lung [7]. The immunosuppressive properties of mTOR inhibitors,

coupled with their efficacy for tumor prevention in mouse models,

suggested that modulation of the immune system is important for

mutant K-Ras mediated lung tumorigenesis. Regulatory T cells

(Treg) suppress autoreactive T cells, and thus prevent autoimmu-

nity [11]. Treg are a subset of CD4+ T cells and express the

transcription factor, Foxp3 [12]. Preclinical studies suggest that

Treg may play an important role in limiting the development of an

effective immune response against cancer [13]. Tumor-associated

Treg have been observed in lymphomas and human cancers of the

lung, ovary, breast, prostate, and colon [14,15]. In lung cancer,

Treg are increased in tumor tissue relative to surrounding normal

lung tissue and are associated with an increased risk of recurrence

[15]. Treg also regulate the ability of inhibitors of cyclooxygenase-

II to decrease lung tumorigenesis in xenograft and viral models of

lung tumorigenesis [16]. Because rapamycin can alter T cell

function and prevent the development of NNK-induced lung

tumors that are associated with K-Ras mutations, we hypothesized

that modulation of immune function might be an important

determinant of lung tumorigenesis. Our studies show that

rapamycin unexpectedly counteracts an increase in lung-associat-

ed Treg by NNK that precedes the detection of tumors. Depletion

of Treg using an antibody or genetic deletion also greatly

diminished lung tumorigenesis in other K-Ras driven mouse

models, suggesting a new strategy that might have utility for lung

cancers characterized by mutations in K-Ras.

Methods

Mice
A/J and Foxp3sf/+ mice were obtained from Jackson Labora-

tories (Bar Harbor, ME) at 5 weeks of age and housed according to

the guidelines of the Animal Care and Use Committee of the

National Institutes of Health (NIH). K-RasLA2 mice were obtained

from the Mouse Models of Human Cancer Consortium and

housed according to the same guidelines. For the NNK study, 10

6-week old female A/J mice per group were given three 100 mg/

kg doses of NNK or saline (EaglePicher Phamaceuticals, Lenexa,

KS) as previously described [8]. IO33 cells were a generous gift of

Dr. Steven Belinsky (U. of New Mexico Cancer Center) and

16105 cells were injected via tail vein in 100 ml of normal saline

into 6-week old A/J females. Genetically modified mice were

genotyped by polymerase chain reaction as described previously

according to published protocols (http://mouse.ncifcrf.gov for

KrasLA2 and JAX.org for Scurfy).

Rapamycin was obtained from LC Laboratories (Woburn, MA)

and injected at 1.5 mg/kg every other day following a 4.5 mg/kg

loading dose as previously described. For IO33 studies, mice were

treated for 2 weeks with rapamycin following the same dosing

schedule, or anti-CD25 antibody (Harlan Biosciences) or rat non-

immune IgG1 (Sigma) (0.5 mg 26/wk for week 1, followed by

0.5 mg/wk) that was begun one week prior to IO33 injection.

Enumeration of Splenic Cells
Cells were analyzed by three-color flow cytometry on a

FACSCalibur (BD Biosciences, San Jose, CA) instrument using

CellQuest software (BD Biosciences). Intracellular flow cytometry

using the APC anti-mouse/rat Foxp3 staining set from eBioscience

(San Diego, CA) was used according to manufacturers instructions.

Five to ten thousand live events were acquired for analysis, with

propidium iodide exclusion of dead cells.

Immunohistochemical and immunoblotting analyses
Detection of Foxp3 and CD3 cells by IHC was performed using

the FJK-16s anti-mouse/rat Foxp3 antibody from eBioscience

(San Diego, CA) and the anti-human CD3 antibody from DAKO

(Carpinteria, CA) using the manufacturer’s instructions. IHC

analysis of lung tissues from mice treated with rat IgG or anti-

CD25 antibodies was performed using a biotinylated anti-mouse/

rat Foxp3 antibody (eBioscience, clone FJK-16s). Numbers of lung

infiltrating cells were assessed on a single lung section from 5

mice/group. Immunoblotting for Foxp3 expression in human and

murine lung cell lines was performed using the eBio7979 anti-

mouse/human Foxp3 antibody from eBiosciences (San Diego,

CA) using the manufacturer’s recommendation.

Statistical Analyses
Comparisons between two groups were performed using a

Wilcoxon rank sum test. A Jonckheere-Terpstra trend test was

used to determine the association of Foxp3 expressing cells with

the number of tumors. All p-values are two-tailed and have not

been adjusted for multiple comparisons.

Results

Tobacco carcinogen exposure increases lung associated
Foxp3+ cells

A/J mice were treated with NNK, and immune cell number

and function were characterized in splenocytes and lung tissues.

One week after completion of three weekly doses of NNK, NNK

decreased splenocyte number but not function (data not

shown), and caused a 21% relative increase in splenic

CD4+CD25+Foxp3+ regulatory T cells (Fig. 1a, left panel).

Because regulatory T cells are associated with tumor tolerance, we

hypothesized that a similar increase in Foxp3+ regulatory T cells

in lung tissues may be associated with tobacco carcinogen-induced

tumorigenesis. Immunohistochemistry was used to assess Foxp3+
cells and CD3+ cells in lung tissues from NNK-treated mice.

One week after administration of either a single dose or three

doses of NNK (and prior to the development of tumors), the

fraction of lung associated Foxp3+/CD3+ cells increased 2- and

4-fold, respectively (Fig. 1a, right panel). Lung-associated

Foxp3+ cells correlated with NNK-induced lung tumorigenesis,

because 16 weeks after administration of NNK, there was a trend

between the number of tumors per lung and the number of

Foxp3+ cells in surrounding lung tissues (Fig. 1b). Induction of

lung tumors and tumor-associated Foxp3+ cells by NNK was

also dose-dependent. A single dose of NNK induced twice as

many tumors and Foxp3+ cells as spontaneous tumors (data not

shown). Mice that received three doses of NNK had nearly three

times as many tumors and infiltrating Foxp3+ cells as mice that

received one dose of NNK (Fig. 1c-d). Because expression of

Foxp3 has been reported in lung epithelial cells and some tumor

cell lines [17–19], we co-stained lung tissues or lymph nodes for

Foxp3 and CD3 expression, and confirmed that expression of

Foxp3 was observed in CD3+ cells but not epithelial cells (Fig.

S1a–e). In addition, Foxp3 protein was not expressed in human

lung cancer cell lines or cell lines derived from murine lung

tumors (Fig. S1f).

Treg, K-Ras, and Lung Cancer
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Agents that decrease Foxp3+ cells in lung tissues
decrease lung tumorigenesis

Rapamycin inhibits lung tumorigenesis more effectively when it

is administered prior to the detection of tumors. To assess whether

this observation is related to lung-associated Foxp3+ cells, A/J

mice were treated with NNK, and lungs and spleens were

harvested at various time points after administration of rapamycin

or vehicle. Consistent with earlier studies, rapamycin markedly

decreased the size and multiplicity of NNK-induced lung tumors

(Fig. 2a). mTOR was inhibited in tumor cells and normal airway

epithelium (Fig. S2a), and steady state rapamycin levels were

constant throughout the study. Rapamycin rapidly reversed the

induction of lung-associated Foxp3+ cells by NNK, and

maintained depletion of Foxp3+ cells throughout the study

(Fig. 2c–d), even though splenic CD4+CD25+Foxp3+ cells were

increased at 12 wk by rapamycin (Fig. S2b), consistent with

previous results [20]. The depletion of lung-associated Foxp3+
cells preceded tumor development because the number of Foxp3-

expressing cells was decreased by 84% after 1 week of treatment

(when tumors were not visible). Although rapamycin also reduced

the overall number of CD3+ T cells (data not shown), the Foxp3+/

CD3+ ratio was depleted to levels observed in non-NNK exposed

mice (Fig. 2c). Tumors that did arise in the presence of rapamycin

had fewer infiltrating Foxp3+ cells than controls, even after

accounting for their smaller size (Fig. 2d). Thus, NNK and

rapamycin reciprocally regulate Foxp3+ cells in lung tissues prior

to tumor development, suggesting that lung-associated Foxp3+
cells contribute to tumorigenesis.

To test this hypothesis, an antibody against CD25 that can

deplete Treg was administered to A/J mice after exposure to

NNK, and lung tumorigenesis was assessed after 16 wk (data not

shown). Although splenic CD25+ cells were rapidly decreased by

90% and maintained for the length of the study, lung associated

Foxp3+ cells were only decreased transiently. After 16 wk, there

was no inhibition of lung tumorigenesis and no decrease in lung

associated Foxp3+ cells. Because long-term depletion of lung-

associated Foxp3+ cells by anti-CD25 antibodies was not

achievable, we developed a short-term assay, and performed a

series of studies using syngeneic lung adenocarcinoma cell lines

Figure 1. NNK increases Foxp3+ cells. (a) Assessment of Foxp3+ cells in splenic and lung tissues. One week after NNK exposure, Foxp3+ T cell
subsets were assessed in spleens (left) as a fraction of total CD4+ splenocytes and in lungs (right) as a fraction of total CD3+ cells. (b) Correlation of
number of NNK-induced lung tumors with number of Foxp3+ cells in surrounding lung tissues. Tumors were counted in mice 16 wk after NNK
administration, and scoring for Foxp3+ cells was performed using IHC. A trend for the number of Foxp3+ cells in surrounding normal lung with the
number of tumors per lung is shown. (c–d) Dose-dependent induction of lung tumors (c) and Foxp3+ cells (d) by NNK. For (a, b, and d), boxes
indicate interquartile range, lines indicate median, and whiskers indicate minimal and maximal values. For (a and c), each point represents a mouse
and the line represents the median. A high-powered field (HPF) indicates a field under 1006magnification.
doi:10.1371/journal.pone.0005061.g001

Treg, K-Ras, and Lung Cancer
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derived from NNK-induced tumors in A/J mice [20]. Relative to

the other lung adenocarcinoma cell lines tested, IO33 cells were

most resistant to inhibition of proliferation by rapamycin in vitro

(Fig. S3a) despite inhibition of mTOR (Fig. S3b). When injected

via tail vein, IO33 cells rapidly formed highly invasive lung

adenocarcinomas in A/J mice (Fig. S3c). Treatment of IO33-

injected mice with rapamycin had no effect on tumorigenesis

(Fig. 3a) and did not affect the number of tumor-associated

Foxp3+ cells (Fig. 3b), despite inhibition of mTOR in normal

bronchial epithelium and IO33 tumors (Fig. S3d). Varying the

sequence of rapamycin administration and cell injection did not

increase responsiveness of the IO33 cells (data not shown). Because

the anti-CD25 antibody decreased lung-associated Foxp3+ cells

with short term-treatment, inoculation studies with IO33 cells

were repeated, and A/J mice were treated with the anti-CD25

antibody prior to injection of IO33 cells. Treatment with anti-

CD25 antibody decreased splenic Foxp3+CD25+ cells by 95%

(Fig. 3c, left panel), decreased lung-associated Foxp3+ cells by 65%

(Fig. 3c, right panel) and decreased the multiplicity of IO33

adenocarcinomas by 80% (Fig. 3d). These results are similar to the

results observed with rapamycin in the studies using NNK.

Genetic ablation of Foxp3+ cells decreases K-Ras
mediated tumorigenesis

A comparison of tumor-associated Treg in the KRasLA2 model of

lung cancer was performed to assess whether the induction of

Foxp3+ cells was a general feature of K-Ras driven lung

tumorigenesis or specific for NNK-induced tumors. K-RasLA2 mice

develop early-onset lung adenocarcinomas [22]. Foxp3+ and CD3+
cells were detected in each tumor type, and the overall number of

Foxp3+ and CD3+ cells was lower in K-RasLA2 mice than in mice

treated with NNK (Fig. 4a). However, the fraction of Foxp3+/CD3+
cells was not statistically different between NNK-induced tumors

and tumors from KRasLA2 mice (Fig. 4b). To confirm the role of

Figure 2. Rapamycin prevents NNK-induced tumorigenesis and depletes lung-associated Foxp3+ cells in NNK-treated mice. (a)
Tumor multiplicity (left) and tumor size (right) after 12 wk of rapamycin or vehicle. (b) Representative staining for Foxp3+ cells in tumors (TU) and
normal airway epithelium (NL). (c) The fraction of Foxp3+/total CD3+ cells in normal lung tissues from saline or NNK-exposed mice treated with
rapamycin or vehicle for 1, 4 or 12 weeks was calculated after IHC was performed. The red and white dots at week 0 indicate the percentages of
Foxp3+/CD3+ cells in the lungs of A/J mice prior to and after NNK administration, respectively. (d) The number of Foxp3+ cells in tumors arising 16
weeks after NNK exposure in the presence or absence of rapamycin was determined using IHC. For (a, c, and d), boxes indicate interquartile range,
lines indicate median, and whiskers indicate minimal and maximal values. A high-powered field (HPF) indicates a field under 1006magnification.
doi:10.1371/journal.pone.0005061.g002

Treg, K-Ras, and Lung Cancer
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Foxp3+ cells in this system, K-RasLA2 mice were crossed to scurfy

mice. Scurfy mice bear a loss-of-function mutation in the Foxp3

transcription factor (Foxp3sf/+). Hemizygous males lack Foxp3+ cells

and develop lethal autoimmunity that phenocopies the human IPEX

syndrome [23,24]. Because Foxp3 is x-linked, lung tumorigenesis was

assessed in 3-week-old K-RasLA2Foxp3sf/Y males. Scurfy males were

distinguishable from their wildtype littermates by their small size and

scaly skin, but were not moribund at the time of sacrifice.

Lymphocytic infiltrates were observed in lungs from scurfy males,

although the severity varied widely (data not shown). Compared to

K-RasLA2Foxp3+/Y males, K-RasLA2Foxp3sf/Y males developed 75%

fewer tumors (Fig. 4c). These data confirm in a third model system

that depletion of Foxp3+ cells inhibits K-Ras driven lung

tumorigenesis.

Discussion

Using carcinogen, allograft and transgenic models of lung

cancer driven by K-Ras, we have shown that Foxp3+ cells are

essential for lung tumorigenesis. The tissue specific induction of

Foxp3+ cells in lung tissues prior to tumor development suggests

that NNK-induced Foxp3+ T cells provide a permissive

environment for the development of K-Ras-driven lung tumors.

Such an environment may also be important for the development

of lung metastasis, because smoking can double the metastatic

burden in lungs in preclinical models [25].

A common feature linking smoking induced K-Ras mutations

in human lung cancer and preclinical models driven by tobacco

carcinogens that cause K-Ras mutations is inflammation. In both

cases, the presence of Foxp3+ cells is likely important for limiting

the extent of inflammation and tissue damage, albeit at a

potential cost of promoting tumorigenesis. Smoking causes

chronic obstructive pulmonary disease (COPD), which is an

independent risk factor for lung cancer [26]. Bronchoalveolar

lavage (BAL) fluid from patients with COPD or smokers contains

increased Treg compared to BAL fluid from healthy never

smokers [27]. Similarly, smoking is also associated with

squamous cell carcinoma (SCC) of the oral cavity, and increased

Figure 3. Depletion of Foxp3+ cells using an anti-CD25 antibody decreases the ability of rapamycin-resistant lung adenocarcinoma
cells to form tumors. (a–b) Effect of rapamycin on IO33 tumor multiplicity (a) or tumor-associated percent of Foxp3+/CD3+ cells (b). (c) Effect of rat
IgG or anti-CD25 antibodies on the number of splenic Foxp3+CD25+/CD4+ cells (left) and IO33 tumor-associated %Foxp3+/CD3+ cells (right). (d)
Effect of anti-CD25 antibody or rat IgG on IO33 lung tumor multiplicity. For (a) and (d), boxes indicate interquartile range, lines indicate median, and
whiskers indicate minimal and maximal values. For (b–c), each point represents a mouse and the line represents the median. n.s., not significant.
doi:10.1371/journal.pone.0005061.g003
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Foxp3+ cells have been observed in SCC compared to non-

cancerous epithelial tissues [28]. NNK, the most prevalent

tobacco carcinogen, alters many components of inflammation,

including cytokine expression and cellular immunity, and the

susceptibility of different mouse strains to NNK-induced lung

tumorigenesis has been linked to differences in lung immunity

[22]. One important alteration caused by NNK is induction of

cyclooxygenase II (COX-2) activity. Inhibitors of COX-2 can

decrease NNK-induced lung tumorigenesis [29], and Sharma et

al. have shown that the ability of COX-2 inhibitors to decrease

lung tumorigenesis (in models not related to tobacco) is

dependent upon decreasing Foxp3+ cells [16].

Inflammation is also associated with lung tumorigenesis in

transgenic mice that express mutant K-Ras in lung tissues. Our

studies showed that the ratio of Foxp3+/CD3+ cells was not

statistically different between the NNK model and the K-RasLA2

model, but the total numbers of each cell type was increased in

the tobacco carcinogen model. Eliminating Foxp3+ cells by

crossing K-RasLA2 mice to scurfy mice nonetheless decreased

lung tumorigenesis, which shows that even though fewer tumor

infiltrating lymphocytes were induced in the K-RasLA2 model,

Foxp3+ cells still played a critical role. The increased

inflammatory response in lungs from scurfy mice that occurred

as a result of loss of Foxp3+ cells may have decreased tumor

growth through elimination of nascent tumors. Wislez et al.

previously showed an important role for alveolar macrophages in

mediating inhibition of tumor growth by high doses of a

rapamycin analogue in a transgenic model of lung cancer similar

to K-RasLA2 (K-RasLA1). However, alterations in Foxp3+ cells

were not reported in this study. Because activated macrophages

and tumor cells can recruit Foxp3+ cells [30,31], it is possible

that the role attributed to alveolar macrophages was mediated

through activation of Foxp3+ cells. Together, these studies show

that Foxp3+ cells provide a critical link between inflammation

Figure 4. Genetically engineered mice that lack Foxp3+ cells develop fewer K-Ras driven lung tumors. (a) Representative IHC of tumor-
associated Foxp3+ and CD3+ cells in tobacco-carcinogen (NNK) and K-rasLA2 transgenic mouse models of lung tumorigenesis. (b) Quantification of
IHC analysis in (a) for tumor-associated percent of Foxp3+/CD3+ cells. Each point represents a mouse and the line represents the median; n.s., not
significant. (c) Tumor multiplicity in K-RASLA2/wt/Foxp32/Y or K-RASLA2/wt/Foxp3+/Y offspring. Boxes indicate interquartile range, lines indicate
median, and whiskers indicate minimal and maximal values.
doi:10.1371/journal.pone.0005061.g004
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and cancer in multiple models of lung tumorigenesis driven by

mutant K-Ras, and highlight the possibility that careful titration

of lung- associated Foxp3+ cells might allow effective anti-tumor

immunity without tissue damage from unabated inflammation.

Although these studies provide rationale to target Foxp3+ cells

for the prevention or treatment of K-Ras-driven lung tumors, the

responsiveness of Foxp3+ cells may depend on the agent utilized

to target Foxp3+ cells and the transformation status of the cells

that bear K-Ras mutations. For example, rapamycin selectively

reduced the number of Foxp3+ cells induced by NNK in lung

tissues prior to tumor development, thereby providing a

reciprocal relationship with NNK, but had no effect when fully

transformed IO33 adenocarcinoma cells were injected. Similar

results were observed when rapamycin was administered after

NNK-induced lung tumors were allowed to develop in A/J mice

for 26 wk [8]. When administered from week 26 to week 32,

rapamycin decreased tumor size by 50% but did not affect tumor

multiplicity, and the number of tumor infiltrating Foxp3+ cells

was not decreased (data not shown). The clinical experience with

analogues of rapamycin that have been tested as cancer

therapeutics is consistent with these preclinical observations, in

that mTOR inhibitors only have modest activity as single agents

in patients with advanced lung cancer [32,33]. Taken together,

these data suggest that rapamycin, which is an FDA-approved

oral agent with a high therapeutic index, might be most effective

as a preventative strategy primarily for smokers with premalig-

nant lesions or carcinomas in situ that bear occult K-Ras

mutations.

Aggressive and invasive K-Ras-induced adenocarcinomas

(IO33 and K-RasLA2) remained sensitive to more direct targeting

of Foxp3+ cells through a neutralizing anti-CD25 antibody or

genetic deletion. This indicates that direct Treg cell depletion

strategies that are being evaluated clinically [34] could have

therapeutic value in more advanced stages of K-Ras driven lung

cancer. However, the fact that long-term administration of an

anti-CD25 antibody was effective in splenocytes but not in lung

tissues suggests that there may be tissue specificity for the ability

of antibodies to deplete Foxp3+ cells and/or that compensatory

mechanisms such as increases in CD25-/Foxp3+ cells occur with

long-term use. Therefore, other therapeutic approaches may

need to be developed to selectively deplete Foxp3+ cells in

advanced K-Ras driven lung cancers. The development of

multiple therapies that deplete Foxp3+ cells at different stages of

K-Ras induced tumorigenesis might eventually provide new

options for lung cancer treatment and prevention.

Supporting Information

Figure S1 Foxp3 is expressed in CD3+ lymphocytes, but is not

detectable in murine lung epithelium or lung epithelium-derived

cultured cell lines. (a–e) Representative immunohistochemical

co-staining of Foxp3 and CD3 in cells from NNK-induced A/J

mice lung adenomas (a–c) and lung-associated lymph nodes (d–

e). Foxp3 is blue/gray and CD3 is brown. (f) Immunoblotting

analysis for Foxp3 expression in human and murine lung cell

lines. Cells were treated with 100 nM rapamycin or vehicle for

24 hr to confirm lack of expression of Foxp3 in these cell lines

and lack of inhibition of Foxp3 expression by rapamycin. H157

and A549 are human lung adenocarcinoma cell lines; HBEC are

human bronchial epithelial cell lines immortalized with CDK4

and h-TERT with or without K-Ras mutations (KTR and KTC,

respectively); hPBMCs are human peripheral blood mononucle-

ar cells that were used as a positive control; IO33, CL13, CL25,

and CL30 are lung adenocarcinoma cell lines derived from

NNK-induced tumors in A/J mice.

Found at: doi:10.1371/journal.pone.0005061.s001 (2.43 MB TIF)

Figure S2 Rapamycin inhibits mTOR in lung tissues and

increases the fraction of Foxp3+/CD4+ splenocytes. (a) Repre-

sentative IHC of phospho-S6 in normal lung (NL) and lung

tumors (TU) 16 hours after the last dose of rapamycin in A/J

mice. (b) During the tumorigenesis study, the effects of

rapamycin versus vehicle on percent of splenocytes that were

Foxp3+/CD4+ cells was assessed using FACS after 1, 4, and 12

weeks of treatment. The red and white dots at week 0 indicate

the basal percent of splenic Foxp3+/CD4+ cells prior to and

after NNK administration, respectively. Boxes indicate inter-

quartile range, lines indicate median, and whiskers indicate

minimal and maximal values.

Found at: doi:10.1371/journal.pone.0005061.s002 (1.21 MB TIF)

Figure S3 IO33 cells are resistant to growth inhibition by

rapamycin and form invasive lung tumors in A/J mice. (a) Dose-

dependent inhibition of proliferation of murine and human lung

cancer cell lines by rapamycin. In vitro, rapamycin only

modestly inhibits proliferation of IO33 cells relative to other

A/J-derived lung adenocarcinoma cell lines (CL30, CL25, and

CL13) and human lung cancer cells (H1155). (b) Rapamycin

inhibits mTOR in IO33 cells in vitro. mTOR inhibition was

evaluated by immunoblotting analysis of cells treated with

rapamycin for 2 h using antibodies specific for mTOR

substrates, phospho-S6 and total 4E-BP1. (c) Syngeneic IO33

cells form invasive lung tumors in A/J mice when injected via tail

vein. A representative whole mount of A/J lungs and heart 2 wk

after tail vein injection with 106 IO33 cells is shown. Note multi-

focal lung tumors and invasion into the ventricular wall. (d)

Rapamycin inhibits mTOR in vivo, as assessed by IHC analysis

of phospho-S6 in normal lung (NL) and IO33 lung tumors (TU)

in A/J mice.

Found at: doi:10.1371/journal.pone.0005061.s003 (3.21 MB TIF)
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