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Abstract: As a typical application of indirect-time-of-flight (ToF) technology, photonic mixer device
(PMD) solid-state array Lidar has gained rapid development in recent years. With the advantages
of high resolution, frame rate and accuracy, the equipment is widely used in target recognition,
simultaneous localization and mapping (SLAM), industrial inspection, etc. The PMD Lidar is
vulnerable to several factors such as ambient light, temperature and the target feature. To eliminate
the impact of such factors, a proper calibration is needed. However, the conventional calibration
methods need to change several distances in large areas, which result in low efficiency and low
accuracy. To address the problems, this paper presents an improved calibration method based
on electrical analog delay. The method firstly eliminates the lens distortion using a self-adaptive
interpolation algorithm, meanwhile it calibrates the grayscale image using an integral time simulating
based method. Then, the grayscale image is used to estimate the parameters of ambient light
compensation in depth calibration. Finally, by combining four types of compensation, the method
effectively improves the performance of depth calibration. Through several experiments, the proposed
method is more adaptive to multiscenes with targets of different reflectivities, which significantly
improves the ranging accuracy and adaptability of PMD Lidar.

Keywords: photonic mixer device; PMD solid-state array Lidar; electrical analog delay;
joint calibration algorithm; self-adaptive grayscale correlation; depth calibration method

1. Introduction

Three-dimensional information acquisition has gained extensive attention in the field of computer
vision, robot navigation, human–computer interaction, automatic driving, etc. [1]. Generally,
the methods to obtain three-dimensional information mainly include stereo vision [2,3], structural
light [4], single-pixel 3D imaging [5] and time-of-flight (ToF) [6]. Stereo vision needs advanced matching
algorithm to obtain accurate depth information, which is vulnerable to ambient light. Structural
light needs projection optimization compensation, which requires high performance of the processing
system. Compared with the two methods above, the ToF sensor system utilizes active infrared laser to
achieve depth information acquisition, which has the advantages of low cost, high frame frequency
and high reliability [7,8].

Photonic mixer device (PMD) solid-state array Lidar, as one typical kind of the ToF sensor system,
is widely used in computer vision [9,10]. However, there inevitably exist several errors sources (such as
ambient light, integration time, temperature drift and reflectivity), which reduce the performance of
the ToF sensor significantly. Hence, the equipment needs to be properly calibrated to achieve reliable
depth information acquisition [11].

Sensors 2020, 20, 7329; doi:10.3390/s20247329 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1868-6517
http://dx.doi.org/10.3390/s20247329
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/24/7329?type=check_update&version=2


Sensors 2020, 20, 7329 2 of 22

Several works have been done on PMD Lidar calibration. Lindner [11–14] put forward a
calibration approach, which combined the overall intrinsic, distance and reflectivity related error
calibration. Compared with the other approaches, the calibration provided significant contribution
to the reduction of calibration data. Kahlman [15,16] presented a parameter based calibration
approach, which considered multiple error sources including integration time, reflectivity, distance and
temperature. The accuracy was improved to 10 mm at the distance of 2.5 m after calibration. Steiger [17]
discussed the influence of internal factors and environmental factors. Then the effect of these factors
was compensated by experiments. However, the errors were above the uncertainties specified by
the manufacturer even after calibration. Swadzba [18] put forward a calibration algorithm based on
stepwise optimization and the particle filter framework. The experimental results showed the accuracy
of the method was higher than the traditional calibration method, while the efficiency was decreased.
Schiller [19] discussed a joint calibration method based on PMD camera and standard 2D CCD
camera. Results showed the internal camera parameters were estimated more precisely. In addition,
the limitations of the small field-of-view were overcome by the method. Fuchs [20,21] presented a
calibration process for the ToF camera with respect to the intrinsic parameters, the depth measurement
distortion and the pose of the camera relative to a robot’s end effector. Chiabrando [22] performed
two aspects of the calibration: distance calibration and photogrammetric calibration. For distance
calibration, they reduced the distance error to ±15 mm in the range of 1.5–4 m. For photogrammetric
calibration, they verified the stability of the estimated camera internal parameters. Christian [23]
presented a calibration approach based on the depth and reflectance image of a planar checkerboard.
The method improved the efficiency and the accuracy for the calibration of the focal length and 3D pose
of the camera. However, the depth accuracy was not improved. Kuhnert [24] raised a joint calibration
method based on two types of 3D cameras, PMD camera and stereo camera system, to improve the
range accuracy by using one camera to compensate the other one. Schmidt [25] proposed a dynamic
calibration method, which can be executed on systems with limited resources. Huang [26] raised an
integration time auto adaptation method based on amplitude data, which makes each pixel obtain the
depth information under the best conditions. Meanwhile the Gaussian process regression model was
utilized to calibrate the depth errors. He [27] analyzed the influence of several external distractions
(including material, color, distance, lighting, etc.) and proposed an error correction method based on
the particle filter-support vector machine (PF-SVM).

To sum up, most research on the ToF camera calibration focus on the parameters related with
measurement accuracy, such as integration time, pixel related error or depth data distortion [28–35].
These methods generally need to place the calibration plate in different distances to acquire depth
compensation look-up table (LUT), which require a significant amount of work. In addition,
the calibration plate needs to be placed manually. Even a slight change of the angle or the location will
introduce extra measuring error of several millimeters. Thus, the process is vulnerable to the human
factor. Others [36–41] obtain depth compensation data by changing the attitude of ToF camera with
external devices, which need complex algorithms to fuse the multisource information. Consequently,
there still exist unresolved issues such as a heavy workload, complex calculation requirement and
serious human disturbance. A simpler calibration method is needed to improve the applicability,
accuracy and convenience of ToF cameras.

To deal with the abovementioned challenges, we [42] proposed a calibration method for PMD
solid-state array Lidar based on a black-box calibration device and an electrical analog delay method
in the previous work. The method solved part of the problems in traditional calibration methods,
such as low efficiency, low accuracy and serious human disturbance. However, some factors still have
not taken into account, such as temperature drift, targets with different reflectivity and disturbance of
ambient light, which could bring extra errors during the application of PMD solid-state array Lidar.

For this reason, this paper improved the calibration setting and the method, and the main
contributions are as follows:
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(1). This paper proposed a self-adaptive grayscale correlation based depth calibration method
(SA-GCDCM) for PMD solid-state array Lidar. Due to its special structure, the PMD Lidar has the
ability to obtain a grayscale image and depth image simultaneously. Meanwhile, the amplitude
of grayscale image has a close relationship with ambient light. Based on this, the grayscale image
was used to estimate the parameters of ambient light compensation in depth calibration in this
method. Through SA-GCDCM, the disturbance of ambient light could be effectively eliminated.
Traditional joint calibration methods always need an extra RGB camera to cooperate with the ToF
camera. The inconformity of the parameters of the two cameras, such as the image resolution and
the field of view, can introduce extra errors to the system, leading to low calibration accuracy and
efficiency. Compared with the traditional methods, this method has no requirement of coordinate
transformation and feature matching, leading to better data consistency and self-adaptability.

(2). This paper proposed a grayscale calibration method based on integration time simulating. Firstly,
the raw grayscale images were acquired under multiple ambient light levels through setting the
integration time in several values. Then the spatial variances were calculated from the images to
estimate the dark signal non-uniformity (DSNU) and photo response non-uniformity (PRNU).
At last the influence of DSNU and PRNU were eliminated by a correction algorithm.

(3). Based on the electrical analog delay method, a comprehensive, multiscene adaptive multifactor
calibration model was established through combining the SA-GCDCM with raw distance
demodulation compensation, distance response non-uniformity (DRNU) compensation and
temperature drift compensation. Compared with the prior methods, the established model is
more adaptive to multiscenes with targets of different reflectivities, which significantly improves
the ranging accuracy and adaptability of PMD Lidar.

The article is structured as follows: an introduction of working principle of PMD Lidar given
in Section 2, along with a discussion of known error sources such as integration time, temperature
and DRNU. The combined calibration method is presented in Section 3. Section 4 introduces the
experiments and performs the discussion. Finally, a short summary is given in Section 5.

2. System Introduction

2.1. Principle of PMD Solid-State Array Lidar

The PMD solid-state array Lidar mainly includes three parts: the emitting unit, the receiving unit
and the processing unit. The emitting unit is composed of four vertical-cavity surface-emitting laser
(VCSEL), the driver, the delay-locked loop (DLL) and the modulator. Compared with the light emitting
diode (LED), VCSEL has attracted attention in recent ToF lidar research [43–45] because of its lower
power consumption, higher speed and higher reliability [46]. The receiving unit is composed of the
lens, the sensor, the demodulator, the A/D converter and the sequence controller. The processing unit
is a digital signal processing (DSP) controller.

The fundamental principle [47,48] of PMD solid-state array Lidar is illustrated in Figure 1.
The continuous modulated near infrared (NIR) laser is generated and emitted by the emitting unit.
After reflecting at the surface of the objects, the laser is received by the receiving unit. The optical signal
is converted into an electrical signal in the receiving unit. Then the electrical signal is transmitted to
the processing unit, which calculates the distance data by demodulating the phase delay between
the emitted and the detected signal. Finally, three types of images, point cloud, grayscale and depth
images, can be output from the DSP controller through data processing.
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Figure 1. The fundamental principle of the photonic mixer device (PMD) solid-state array Lidar. 

Signal demodulation is the key step during the working process of the PMD solid-state array 
Lidar, which is shown in Figure 2. Two different capacitors (CA and CB) with two phase windows (0° 
and 180°) are set under each pixel of the ToF chip. The differential correlation sampling (DCS) 
method was used to demodulate the received signal. In general, the sampling number determined 
the accuracy of the demodulation, while the efficiency could be accordingly influenced. In this 
paper, the four-step phase-shift method was adopted for sampling. In other words, the process of 
demodulation was to sample the received signal at four different phases (0°, 90°, 180° and 270°) 
respectively by using the capacitors of two phase windows, and then suppresses the noise by 
obtaining the difference between these capacitors. The phase shift of the modulated light was 
calculated according to the sampling amplitude. At last the target distance was calculated from the 
phase shift. 
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Figure 2. Signal demodulation method. 

The specific process of the four-step phase-shift method was performed as follows. The emitted 
light signal can be presented as ( ) Acos( )E t tω= , while the received signal can be presented as 

( ) Acos( )R t B k tω ϕ= + +Δ . Where ω  is the modulation frequency, A is the amplitude of the emitted 
signal, ϕΔ  means the phase shift between the emitted signal and received signal, B is the noise 

Figure 1. The fundamental principle of the photonic mixer device (PMD) solid-state array Lidar.

Signal demodulation is the key step during the working process of the PMD solid-state array Lidar,
which is shown in Figure 2. Two different capacitors (CA and CB) with two phase windows (0◦ and 180◦)
are set under each pixel of the ToF chip. The differential correlation sampling (DCS) method was
used to demodulate the received signal. In general, the sampling number determined the accuracy of
the demodulation, while the efficiency could be accordingly influenced. In this paper, the four-step
phase-shift method was adopted for sampling. In other words, the process of demodulation was to
sample the received signal at four different phases (0◦, 90◦, 180◦ and 270◦) respectively by using the
capacitors of two phase windows, and then suppresses the noise by obtaining the difference between
these capacitors. The phase shift of the modulated light was calculated according to the sampling
amplitude. At last the target distance was calculated from the phase shift.
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Figure 2. Signal demodulation method.

The specific process of the four-step phase-shift method was performed as follows. The emitted
light signal can be presented as E(t) = kAcos(ωt), while the received signal can be presented as
R(t) = B + kAcos(ωt + ∆ϕ). Where ω is the modulation frequency, A is the amplitude of the emitted
signal, ∆ϕ means the phase shift between the emitted signal and received signal, B is the noise signal
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generated during the transmission of light and k means the signal attenuation coefficient. The sampling
process can be expressed in Equation (1):

QDC0
1 =

∫ π
ω

0 [B + kAcos(ωt + ∆ϕ)]dt QDC0
2 =

∫ 2π
ω
π
ω

[B + kAcos(ωt + ∆ϕ)]dt

QDC1
1 =

∫ 3π
2ω
π

2ω
[B + kAcos(ωt + ∆ϕ)]dt QDC1

2 =
∫ 5π

2ω
3π
2ω

[B + kAcos(ωt + ∆ϕ)]dt

QDC2
1 =

∫ 2π
ω
π
ω

[B + kAcos(ωt + ∆ϕ)]dt QDC2
2 =

∫ 3π
ω

2π
ω

[B + kAcos(ωt + ∆ϕ)]dt

QDC3
1 =

∫ 5π
2ω

3π
2ω

[B + kAcos(ωt + ∆ϕ)]dt QDC3
2 =

∫ 7π
2ω

5π
2ω

[B + kAcos(ωt + ∆ϕ)]dt

(1)

where QDCi
1 and QDCi

2 , are the integral values of capacitors CA and CB at sampling point i, respectively.

DC0 = QDC0
1 −QDC0

2 DC1 = QDC1
1 −QDC1

2

DC2 = QDC2
1 −QDC2

2 DC3 = QDC3
1 −QDC3

2

(2)

The distance is calculated by Equation (3):

Draw(x, y) =
c
2
×

1
2π f

× atan2
(

DC3(x, y) −DC1(x, y)
DC2(x, y) −DC0(x, y)

)
(3)

2.2. Analysis of Error Sources of PMD Solid-State Array Lidar

The PMD Lidar is vulnerable to several factors such as internal non-uniformity of the ToF sensor,
demodulation process, temperature drift, ambient light, etc. Some of the factors have been discussed
in our previous work [42], which will not be mentioned in this paper. However, factors like integration
time, temperature drift and DRNU still need to be considered. The analysis of these factors and the
qualitative study are described in detail as follows.

2.2.1. Integration Time

Integration time is the time span to output individual data. In general, the integration time can
be set from tens to thousands of microseconds. Too short integration time brings the loss of local
information, as shown in Figure 3a. While too long integration time will exceed the ToF sensor’s
receiving range, leading to a local saturation, as shown in Figure 3c. A proper value is needed to
capture a sufficient number of photoelectrons without saturation, as shown in Figure 3b.
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Figure 3. Depth images under different integration time. (a) under 50 µs; (b) under 300 µs and (c) under
650 µs. The images were captured with a flat board.

2.2.2. Temperature Drift

The ToF sensor is susceptible to environment temperature and the heat generated by itself during
its working, leading to an uneven temperature distribution. However, the electron mobility in the
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sensor is temperature dependent. The higher the temperature, the lower the electron mobility, leading
to a non-uniformity of measurement, as shown in Figure 4.
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Figure 4. Non-uniform measurement due to uneven temperature distribution.

In addition, the illumination driver and the external circuit also have temperature dependent
demodulation delay, which affect the distance measurement.

2.2.3. Distance Response Non-Uniformity (DRNU)

The ToF sensor typically have many analog to digital converters (ADCs) arranged along the
columns of the pixel-field. The different ADCs have slightly different behaviors and result in a
non-uniformity between the columns. In addition, this type of error exists in row and due to the
non-uniformity of the row addressing signals. These two types of non-uniformities lead to differences
of demodulation from pixel to pixel, which is called distance response non-uniformity (DRNU).
This type of error also needs to be compensated.

For instance, the phase shift is calculated with Equation (4):

ϕ= atan
(DC3−DC1

DC2−DC0

)
(4)

While the real phase shift without DRNU compensation is calculated with Equation (5):

ϕ= atan
(
(DC3 + a) − (DC1 + b)
(DC2 + c) − (DC0 + d)

)
(5)

Figure 5 demonstrates the depth image without DRNU compensation, where the non-uniformity
was obviously unneglectable.
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3. Methodology

The conventional calibration methods are time-consuming and complex due to the existence of
multiple error sources. Based on the previous work, this paper put forward an improved calibration
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method based on the electrical analog delay. The method fused various error compensations into a
comprehensive calibration model, where the grayscale image and the depth image were calibrated
jointly, as shown in Figure 6. The lens distortion was corrected using a self-adaptive interpolation
algorithm based on Zhang’s [49] calibration method. For grayscale image correction, DSNU and PRNU
were compensated based on an integration time simulating based method. For depth information
correction, the grayscale image was used to estimate the parameters of ambient light compensation.
After calculating the raw depth data, the pixel fix pattern noise was eliminated by DRNU error
compensation. The temperature drift error was compensated at last.
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3.1. Lens Distortion Correction 

The internal and external parameters of PMD solid-state array Lidar were obtained through 
Zhang’s [49] calibration method, which is not detailed in this paper. Different from the grayscale 
image, there may exist the holes on the depth image (the received signal is too low to demodulate a 
valid signal), resulting in the inapplicability of the traditional correction algorithm. A pixel adaptive 
interpolation strategy we proposed in [42] was utilized in this paper to solve the problem, which is 
presented in Table 1. 

Table 1. Pixel adaptive interpolation strategy. 

Case Pixel Adaptive Interpolation Strategy 

 0 1 2 3 4(1- ) (1- ) (1- ) (1- )x y x y x y x yD a a D a a D a a D a a D= × × + × × + × × + × ×  

 
( )0 1 2 41D uD vD u v D= + + − −  

 
0 0 0 0

0 1 41 -
2 2

p p p px y x y
D D D

+ +
= × + ×
 
 
 

 

 
( )0 4 31y yD a D a D= + − ×  

 0 xD D=  

 0D NaN=  

Figure 6. The comprehensive calibration model process.

3.1. Lens Distortion Correction

The internal and external parameters of PMD solid-state array Lidar were obtained through
Zhang’s [49] calibration method, which is not detailed in this paper. Different from the grayscale
image, there may exist the holes on the depth image (the received signal is too low to demodulate a
valid signal), resulting in the inapplicability of the traditional correction algorithm. A pixel adaptive
interpolation strategy we proposed in [42] was utilized in this paper to solve the problem, which is
presented in Table 1.

Table 1. Pixel adaptive interpolation strategy.

Case Pixel Adaptive Interpolation Strategy
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The most commonly used approach to correct the influence of DSNU and PRNU has a 
standardized process, which can be found in european machine vision association (EMVA) standard 
1288 [50]. In this approach, one dark image and one bright image are captured under the same 
exposure condition. DSNU and PRNU are then calculated from the images. However, there exist 
some limitations of the approach. For instance, the images are captured under a specific condition, 
leading to bad applicability. The ambient light is set artificially, which introduces extra error. Based 
on this approach, an integration time simulating based method was proposed in this paper. The 
main contributions of the method mainly include: (I) Instead of setting the ambient light artificially, 
the levels of ambient light were simulated by setting the integration times and (II) the non-uniform 
of the exposure was eliminated by calculating the mean value of multiple ambient light levels. The 
process of the method is given as follows. 

(1). Set the integration time to 0 μs to simulate the dark condition. Collect N = 100 frames of 
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Green points represent the projection of the corrected pixels on the raw image. Purple points are
the surrounding pixels of the green ones, in which the solid purples mean the real distance pixel while
the hollow ones represent the holes. D0, D1, D2, D3 and D4 denote the pixels to be interpolated and its
lower-left pixel, top-left pixel, lower-right pixel and top-right pixel, respectively. (xp0,yp0), (xp1,yp1),
(xp2,yp2), (xp3,yp3) and (xp4,yp4) are the coordinates of the pixels to be interpolated and its lower-left
pixel, top-left pixel, lower-right pixel and top-right pixel, respectively. αx = xp0 − xp1, αy = yp0 − yp1

and (u,v) are the coordinates of the pixels to be interpolated under a barycentric coordinate system.

3.2. Grayscale Image Calibration

A grayscale image is acquired by TOF chip when PMD solid-state Array Lidar works in the
passive mode. The acquisition process is consistent with the intensity image obtained by traditional
complementary metal oxide semiconductor (CMOS) chip, which can be used to characterize the
intensity of ambient light.

In general, the grayscale image is vulnerable to DSNU and PRNU, where DSNU represents the
differences of gray values between pixels captured under the dark condition and PRNU represents the
differences of gray values between pixels captured under the common condition, respectively.

The most commonly used approach to correct the influence of DSNU and PRNU has a standardized
process, which can be found in european machine vision association (EMVA) standard 1288 [50]. In this
approach, one dark image and one bright image are captured under the same exposure condition.
DSNU and PRNU are then calculated from the images. However, there exist some limitations of the
approach. For instance, the images are captured under a specific condition, leading to bad applicability.
The ambient light is set artificially, which introduces extra error. Based on this approach, an integration
time simulating based method was proposed in this paper. The main contributions of the method
mainly include: (I) Instead of setting the ambient light artificially, the levels of ambient light were
simulated by setting the integration times and (II) the non-uniform of the exposure was eliminated by
calculating the mean value of multiple ambient light levels. The process of the method is given as
follows.

(1). Set the integration time to 0 µs to simulate the dark condition. Collect N = 100 frames of grayscale
images and calculate the mean value.

Ydark−avg =
1
N

∑320

x=1

∑240

y=1
(x, y, N)dark/(320× 240) (6)

(2). Change the integration time to simulate different ambient light levels. Collect N = 100 frames of
grayscale images under amplitudes of 10%, 30%, 50% and 80% respectively. Similarly, the mean
values with different amplitudes are obtained.

YAL−avg =
1
N

∑320

x=1

∑240

y=1
(x, y, N)AL/(320× 240) (7)

(3). Calculate the spatial variances under different ambient levels. Spatial variance is simply an
overall measure of the spatial nonuniformity, which is helpful to estimate DSNU and PRNU.

S2
dark =

∑320
x=1

∑240
y=1

[
(x, y)dark −Ydark−avg

]2
/(320× 240− 1)

S2
AL =

∑320
x=1

∑240
y=1

[
(x, y)AL −YAL−avg

]2
/(320× 240− 1)

(8)

(4). Calculate the correction values of DSNU and PRNU.

bDSNU = Sdark

kPRNU =
√

S2
AL
− S2

dark
/
(
YAL−avg −Ydark−avg

) (9)
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(5). The grayscale compensation of pixel (x, y) is calculated by Equation (10).

Icorr(x, y) = [Iraw(x, y) − bDSNU(x, y)] × kPSNU (10)

where Ydark−avg is the mean value of grayscale images under the dark condition, YAL−avg is the
mean value of grayscale images under ambient light, N means the number of frames, S2

dark
and S2

AL

are spatial variances under dark and ambient light conditions, respectively, bDSNU is the offset of
DSNU, kPRNU is the gain of PRNU and Icorr(x, y) is the compensation value of grayscale image
after calibration.

3.3. Depth Image Calibration

3.3.1. Ambient Light Compensation

Due to its special structure, the PMD solid-state array Lidar has the ability to obtain a grayscale
image and depth image simultaneously. Meanwhile, the amplitude of a grayscale image has a close
relationship with ambient light. Based on this, the grayscale image was used to estimate the parameters
of ambient light compensation in depth calibration, which is the self-adaptive grayscale correlation
based depth calibration method (SA-GCDCM). The basic idea of the method is to eliminate the influence
of ambient light in the sampling stage by introducing an ambient light correction factor KAL. The factor
KAL is calculated from several DCs sampled under different ambient light levels. The ambient light is
controlled accurately by adjusting the integration time. KAL is then utilized to correct the DCs in the real
sampling process. There exists internal noise and external error during the sampling. The errors are
corrected in the calculation. The process of the method is concluded as (all the following measurements
use the spatial average of the region of interest (ROI) within the coordinates (100,70) and (220,165) and
the temporal average of 100 frames as a default):

(1). Turn the ambient light on and record the amplitude of the grayscale image as Qgray.
(2). Change the amplitude of the grayscale image to 0.5 times that of Qgray by adjusting the integration

time. Measure the DC0/2 and record as DC0setting1 and DC2setting1, respectively.
(3). Change the amplitude of the grayscale image to 1.5 times that of Qgray by adjusting the integration

time. Measure the DC0/2 and record as DC0setting2 and DC2setting2, respectively.
(4). Turn the ambient light off and measure the DC0/2, which are recorded as DC0no and

DC2no, respectively.
(5). Calculate four measurements, Q01, Q02, Q21 and Q22.

Q01 = DC0setting1 −DC0no Q21 = DC2setting1 −DC2no

Q02 = DC0setting2 −DC0no Q22 = DC2setting2 −DC2no
(11)

(6). Correct the errors generated in the sampling. There inevitably exists internal noise and external
error. The internal noise mainly comes from the internal circuit and can be eliminated by
subtracting two samples at the same phase. The external error mainly comes from the instability
of the environment. It can be suppressed by calculating the mean value of the samples.

k =
(Q22 −Q21) + (Q02 −Q01)

2
(12)

(7). The ambient light correction factor KAL is calculated by Equation (13):

KAL =
Qgray

k
(13)
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where DC0/1/2/3 are the sample values acquired at 0◦, 90◦, 180◦ and 270◦ respectively. KAL is used
to compensate the ambient light error during the demodulation process as Equation (14):

DC0/1corr(x, y) = DC0/1(x, y) −
Icorr(x, y)

KAL
(14)

where DC0/1corr(x, y) represents the corrected value of DC0/1(x, y).

As introduced in Section 2.1, distance measurements are taken by acquiring the four DCs and
calculated pixel-by-pixel during runtime as Equation (15):

Draw(x, y) =
c
2
×

1
2π f

× atan2
(

DC3(x, y) −DC1(x, y)
DC2(x, y) −DC0(x, y)

)
(15)

The equation is revised after ambient light compensation as Equation (16):

Draw(x, y) =
c
2
×

1
2π f

× atan2
(

DC3(x, y) −DC1corr(x, y)
DC2(x, y) −DC0corr(x, y)

)
(16)

where DC1corr(x, y) and DC0corr(x, y) are sample values corrected by KAL.
Through SA-GCDCM, the disturbance of ambient light could be effectively eliminated. Compared

with the traditional joint method using a common RGB camera with a ToF camera, this method has no
requirement of coordinate transformation and feature matching, leading to a better data consistency
and self-adaptability.

3.3.2. Demodulation Error Correction

In general, the sinusoidal wave is adopted as the modulated continuous wave signal, which can
be represented as E(t) = kAcos(ωt). Similarly, the received signal is deemed as a sinusoidal wave in
demodulation as well. However, because of the limitations of the generator bandwidth, the actual
received signal is similar to a rectangular wave [42], as shown in Figure 7. Therefore, the rectangular
wave was used for demodulation analysis in this paper.
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Thus, an extra error, which is called the demodulation error is generated in the revising of the
sampling process. The method to correct demodulation error has been discussed extensively in [42],
which will not be introduced in this paper.

3.3.3. DRNU Error Compensation

The calibration was based on the electrical analog delay method. Instead of changing the real
distance, delay-locked loop was used to simulate the distance in this method. The simulated distance
is composed of two parts, as shown in Equation (18). The first part is the simulated distance of
DLLs. The system contains several DLLs and each DLL represents a specific simulated distance,
e.g., 0.3 m. The second part represents the real distance between the calibration plate and the PMD
Lidar. Through combining the two parts, multiple distances could be simulated without moving the
calibration plate. However, DLL is susceptible to temperature changing and circuit delay, leading to a
deviation between simulated distance and the set distance. Thus, a DRNU error compensation was
conducted as Equation (19):

Dsim(x, y) = n× dDLL + ozero (18)

DRNU(x, y) = Dcal(x, y) −Dsim(x, y) (19)

where dDLL represents the simulated distance of a single DLL, n is the number of DLLs, ozero is
the distance between the PMD solid-state array Lidar and the reflecting plate, Dsim(x,y) represents
the overall simulated distance, Dcal(x,y) represents the corrected distance after compensation and
DRNU(x,y) is the compensation value.

Since the DRNU error is related with distance, and the limited number of compensate values
cannot completely cover the whole distance. A linear interpolation was carried out to obtain a
continuous offset curve. The interpolate method is quite basic and will not be illustrated here.

3.3.4. Temperature Compensation

Several research have reported the influence of the temperature for the ToF camera [7,15,35].
In this paper, the main components related to temperature error in the PMD Lidar were further
classified into three parts, which are the ToF sensor, the illumination driver and the external circuit,
as discussed in Section 2.2.2. It was found from experiments that the error showed a linear relation
with temperature, from which the higher the temperature, the higher the error was. Since the error
arose from temperature drift was compensated with a joint equation, as shown in Equation (20):

D f inal(x, y) = Dcal(x, y) − (Tact − Tcal) ×
(
TCpix + TClaser + n× TCDLL

)
(20)

where Dfinal(x,y) is the corrected distance after temperature compensation, Tact represents the acting
temperature, Tcal means the temperature during the calibration, TCpix is the temperature coefficient of
the pixel, TClaser means the temperature coefficient of the illumination unit and TCDLL represents the
temperature coefficient of DLL stage.

For the device in this paper, the TCpix was 11.3 mm/K, the TClaser was 2.7 mm/K and the TCDLL was
0.7 mm/K. It is worth mentioning that the parameters were obtained by the specific device, which means
the parameters are not applicable for each device. This is due to the diversity of the circuit board, chip
and other components derived from fabrication.

After utilizing the temperature compensation, the multiscene adaptive multifactor calibration
model was established. Then the feasibility of the model was verified by experiments in Section 4.
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4. Experiments and Discussions

4.1. Experimental Settings

The PMD solid-state array Lidar is shown in Figure 8, which is mainly composed of four parts:
the emitting unit, the receiving unit, the processing unit and the transmission unit. The emitting unit
generates and emits the NIR light with the VCSEL. The receiving unit receives the returned light
with a CMOS sensor and converts the optical signal into an electrical signal. The processing unit
calculates the distance data by demodulating the phase delay between the emitted and the detected
signal. The transmission unit transmits the distance data to the computer.
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Figure 8. The PMD solid-state array Lidar.

As illustrated in Figure 9, the experimental settings were established. The grayscale image
calibration system, as shown in Figure 9a, was used to calibrate the lens distortion and eliminate the
effect of DSNU and PRNU. The depth image calibration system, as shown in Figure 9b, was used to
compensate multierror sources in distance measurements.
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Figure 9. Experimental settings. (a) The grayscale image calibration system and (b) the depth image
calibration system.

The grayscale image calibration system mainly includes the checkerboard, the PMD solid-state
array Lidar, the clamping device and the rail. Based on the system, the grayscale image calibration was
conducted as follows.

(1). Clamp the PMD Lidar on the clamping device.
(2). Adjust the clamping device to a proper location where the checkerboard is suitable in size and

position in the field of view of the PMD Lidar.
(3). Calibrate the grayscale image based on integration time simulating.
(4). Obtain several grayscale images with checkerboard in different directions to calibrate the

lens distortion.
(5). Utilize the pixel adaptive interpolation strategy to fill the holes.
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The depth image calibration system mainly includes the reflecting plate, the PMD solid-state array
Lidar, the cylindrical tube, the ambient light source, the clamping device and the rail. The cylindrical
tube was used to protect the ToF sensor from affecting the stray light. The ambient light source was
used to provide the assistant lighting. Based on the system, the depth image calibration was conducted
as follows.

(1). Install the cylinder on the PMD Lidar and clamp the PMD Lidar on the clamping device.
(2). Adjust the clamping device to a proper location where the quality of the light spot projected on

the reflecting plate is optimized.
(3). Change the distance with the electrical analog delay method to perform the depth calibration.

Multiple error compensation is included in this step.
(4). Change the reflecting board to adjust the method with objects of different reflectivities.
(5). Conduct the interpolation on the data to obtain the continuous offset curves.

4.2. Results with Grayscale Image Calibration

4.2.1. Lens Distortion Correction

Several grayscale images with checkerboard in different directions were obtained to calibrate the
lens distortion. The pixel adaptive interpolation strategy was used to fill the holes. The results are
shown Figure 10.
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The internal parameters and the distortion coefficients are shown in Table 2.

Table 2. Lens parameters.

Internal Parameters
fx fy cx cy

208.915 209.647 159.404 127.822

Distortion Coefficients
k1 k2 p1 p2

−0.37917 0.17410 0.00021 0.00124

4.2.2. DSNU and PRNU

The influences of DSNU and PRNU were eliminated based on the integration time simulating
method introduced in Section 3.2. Firstly, the raw grayscale images were acquired under multiple
ambient light levels through setting the integration time in several values. Then the spatial variances
were calculated from the images to estimate the dark signal non-uniformity (DSNU) and photo
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response non-uniformity (PRNU). At last the influence of DSNU and PRNU were eliminated by a
correction algorithm.

To evaluate the effectiveness of the method, several experiments were conducted in different
scenes. A checkerboard and a flat white board were used as the test scenes to conduct a qualitative
analysis and a quantitative analysis. Then gray images were captured under two real scenes to verify
the feasibility of the method. The results are shown in Figure 11.

The images in the left column were captured before calibration, while the images in the right
column were captured after calibration. Figure 11a,b were captured with the checkerboard. Compared
with the image before calibration, two types of non-uniformity were compensated. In the raw image,
the central area was brighter while the surroundings were darker because of the uneven exposure.
Meanwhile, there existed distinct light and dark stripes in vertical. In the images after calibration,
these two phenomena were suppressed obviously.

To better prove the effectiveness of the method, a quantitative analysis was then conducted.
A flat white board was suitable to conduct the analysis because of its good flatness and smoothness.
The images are shown in Figure 11c,d. The improvement in visual was consistent with results of
the checkerboard. Two types of non-uniformities were compensated obviously. To better verify the
improvement, mean value, root mean square error (RMSE) and peak signal to noise ratio (PSNR) [51]
were chosen to evaluate the quality of the images, and the results are shown in Table 3. The mean value
shows little difference before and after the calibration, which means the method did not change the
overall sampling of the grayscale signal. However, the RMSE got a significant reduction after calibration,
which indicates the uniformity of the grayscale signal was improved distinctly. In addition, the PSNR
improved after calibration, which means the noise derived from PRNU and DSNU was reduced.

Experiments were then conducted in two real scenes to verify the applicability of the method in
reality, as shown in Figure 11e–h. It can be seen that the vertical stripes were effectively suppressed
after calibration. Meanwhile, the uneven exposure, which leads to uneven brightness of the image,
was obviously suppressed. Similarly, quantitative analysis was conducted and the results are shown in
Table 3. The mean values showed no distinct differences before and after the calibration, while the
reduction of the RMSEs was obvious. It means that the non-uniformity of the grayscale images was
suppressed. The PSNRs were higher after calibration, which means the noise was effectively reduced.
The results in real scenes were in accordance with results in test scenes, which mean the calibration
method is feasible in reality.

Table 3. Quantitative analysis of the grayscale calibration method.

Flat White Board Real Scene 1 Real Scene 2

Before After Before After Before After

Mean value 913.98 915.73 559.85 571.83 278.91 305.03
RMSE 168.22 12.89 291.30 221.23 256.65 192.86
PSNR 43.97 55.13 41.58 42.78 42.13 43.37
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4.3. Result with Depth Image Calibration

Depth image calibration was carried out after grayscale image calibration. The results are shown
in Figure 12. In the left image, which was obtained before calibration, there existed many incorrect even
invalid data points, while the bright and dark stripes can be observed distinctly. The non-uniformity of
the whole image indicates the depth data was untrustworthy before calibration. After utilizing ambient
light compensation, demodulation error correction, DRNU error compensation and temperature
compensation, the quality of the depth image improved significantly. The number of noise points
reduced obviously. The confidence of depth information was greatly improved.
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4.4. Ranging Accuracy Verification under Real Environment

To verify the ranging accuracy and the adaptability of the calibration method, several tests
under the real environment were conducted. The test system is shown in Figure 13. Firstly, the test
system was placed in the dark environment (the ambient light was about 0 Lux), indoor environment
(about 500 Lux) and outdoor environment (about 1200 Lux), respectively. Then the reflecting plate was
set as 80% reflectivity, 50% reflectivity and 20% reflectivity, respectively.
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Figure 13. The test system.

In each test, the distance between the PMD solid-state array Lidar and the reflecting plate changed
from 0.5 to 5 m in a gradient. The mean value in ROI (1000 pixels in the central region) was recorded
as the measured distance. Then the distance error was calculated. The test results are illustrated in
Figure 14.
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Compared with the method in [42], the method proposed in this paper effectively reduced the error
in the distance range of 0.5–5 m. Meanwhile, the adaptivity under different environments improved a
lot. Table 4 gives the detailed performance comparison results of the two methods.

Table 4. Detailed performance comparison results of the two methods.

Comparison Items Maximal Error (mm) Average Error (mm) RMSE (mm)

The proposed method 16.4 8.13 4.47
Reference [42] method 20.5 9.68 5.56

The maximal error, average error and RMSE were chosen to compare the detailed performance.
From Table 4, the maximum error was reduced distinctly in the proposed method, while the
non-uniformity reduced a lot, too. Though the difference of average error was not distinct as
other two indicators, the proposed method had better adaptability. In other words, the proposed was
more adaptive to multiscene and different reflectivities.

The proposed method was compared with several traditional methods as well, and the result is
shown in Table 5. It can be obviously figured out that the proposed method has better performance on
range accuracy compared with methods in [13,17,26]. Although the mean distance error shows no
distinct improvement compared with method in [19], the proposed method has better performance on
calibration time and scene scope. In addition, the results of experiments expressed that the proposed
method had an outstanding performance on adaptability.
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Table 5. Detailed performance compared with traditional methods.

Distance Error (mm)
Calibration Time Scene Scope

900 1100 1300 1700 2100 2500 3000 3500 4000

Lindner et al. [13] 19.4 28.2 21.0 28.9 13.5 17.3 15.9 21.8 26.7 About dozens of minutes About 4 m × 0.6 m × 0.4 m
Steiger et al. [17] NaN 3(at 1207) 25 57 NaN NaN NaN NaN About dozens of minutes Not mentioned

Schiller et al. [19] (Automatic
feature detection) 7.45 (mean) NaN NaN About dozens of minutes About 3 m × 0.6 m × 0.4 m

Schiller et al. [19] (Some manual
feature selection) 7.51 (mean) NaN NaN About dozens of minutes About 3 m × 0.6 m × 0.4 m

Huang et al. [26] 42 23 18 24 46 60 58 76 NaN Not mentioned About 1.5 m × 1.5 m × 2 m

The proposed method 3.1 4.4 5.5 7 7.4 8.1 9.8 9.6 12
90 s(calculation)

10 min (calculation, scene
setup and initialization)

About 1.0 m × 1.0 m × 1.5 m
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5. Conclusions

To improve the range accuracy of the PMD solid-state array Lidar, this paper presents a self-adaptive
grayscale correlation based depth calibration method (SA-GCDCM) based on electrical analog delay.
Based on the characteristic of the PMD solid-state array Lidar, the grayscale image was used to
estimate the parameters of ambient light compensation in depth calibration. To obtain uniform and
stable grayscale image, an integration time simulating based method was proposed for eliminating
the influence of DSNU and PRNU. Combining SA-GCDCM and demodulation error correction,
DRNU error compensation and temperature compensation, a comprehensive, multiscene adaptive
multifactor calibration model was established. A series of experiments were conducted to verify the
ranging accuracy and the adaptability of the method. Compared with the prior work, the maximum
error has reduced distinctly, meanwhile the RMSE was reduced as well, indicating the proposed
method had better accuracy and adaptability, respectively. Compared with the traditional methods,
the proposed method had better performance on range accuracy and calibration time and scene
scope. The proposed method was more adaptive to multiscenes with targets of different reflectivities,
which significantly improved the ranging accuracy and adaptability of PMD Lidar.
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