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High-throughput sequencing has opened the route for a deep assessment of

within-host genetic diversity that can be used, e.g., to characterize microbial

communities and to infer transmission links in infectious disease outbreaks.

The performance of such characterizations and inferences cannot be

analytically assessed in general and are often grounded on computer-intensive

evaluations. Then, being able to simulate within-host genetic diversity across

time under various demo-genetic assumptions is paramount to assess the

performance of the approaches of interest. In this context, we built an

original model that can be simulated to investigate the temporal evolution of

genotypes and their frequencies under various demo-genetic assumptions.

The model describes the growth and the mutation of genotypes at the

nucleotide resolution conditional on an overall within-host viral kinetics,

and can be tuned to generate fast non-equilibrium demo-genetic dynamics.

We ran simulations of this model and computed classic diversity indices

to characterize the temporal variation of within-host genetic diversity (from

high-throughput amplicon sequences) of virus populations under three

demographic kinetic models of viral infection. Our results highlight how

demographic (viral load) and genetic (mutation, selection, or drift) factors

drive variations in within-host diversity during the course of an infection.

In particular, we observed a non-monotonic relationship between pathogen

population size and genetic diversity, and a reduction of the impact ofmutation

on diversity when a non-specific host immune response is activated. The

large variation in the diversity patterns generated in our simulations suggests

that the underlying model provides a flexible basis to produce very diverse

demo-genetic scenarios and test, for instance, methods for the inference of

transmission links during outbreaks.
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diversity indices, genome evolution, kinetic model, simulationmodel, virus evolution,

within-host pathogen diversity
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1. Introduction

RNA viruses, such as Influenza A, Ebola, and Hepatitis C

viruses, are often referred as fast evolving pathogens because

of their high mutation rates and rapid generation time (Biek

et al., 2015; Nelson and Hughes, 2015; Picard et al., 2017). These

characteristics hold at the multi-host level as well as at the

within-host level. The development of sequencing technologies

has contributed to unravel the level of genetic diversity within

a single host and how it varies spatially and temporally during

the course of the infection, due to mutation, selection, and

genetic drift processes acting at the within-host scale (Pybus

and Rambaut, 2009; Alizon et al., 2011; Gutiérrez et al.,

2012; Simmons et al., 2012; Abel et al., 2015; Cuevas et al.,

2015; Nelson and Hughes, 2015; Poirier and Vignuzzi, 2017).

Typically, a deep assessment of temporal changes in within-host

genetic diversity can be achieved using whole genome high-

throughput sequencing (HTS) approaches on serial samples

from infected hosts. However, and although most RNA viruses

have relatively small genome sizes, accurate whole genome

sequencing of numerous samples still remains costly and

time consuming (Kulkarni and Frommolt, 2017). Alternatively,

within-host genetic diversity can be approached by high-

throughput amplicon sequencing (HTAS) techniques, which can

be used to identify distinct genotypes for a target marker of

a few hundred bases length within the host while genotyping

a high number of samples through ad hoc multiplexing

techniques (Galan et al., 2010, 2012; Piry et al., 2017). Such

techniques are less costly and produce data that can be easily

handled and analyzed with limited computational resources and

bioinformatics, e.g., using the R package dada2 (Callahan et al.,

2016).

Within-host genetic diversity of viruses is of particular

interest for inferring (potentially indirect) epidemiological links

between hosts and even reconstructing transmission chains in

outbreaks. Before the use of within-host genetic diversity for

such inferences, one essentially exploited the high mutation rate

and rapid generation time of viruses (Brunker et al., 2012; Picard

et al., 2017). Typically, these approaches used genetic-space-time

relations at the multi-host level to reconstruct transmission links

during outbreaks (Cottam et al., 2008; Morelli et al., 2012; Ypma

et al., 2012, 2013; Jombart et al., 2014; Mollentze et al., 2014;

Hall et al., 2015; Lau et al., 2015; Valdazo-González et al., 2015).

In most of the earliest approaches that have been developed,

the host unit was (implicitly) considered as a homogeneous

environment, within which the viral population at a given time

was represented by a unique sequence, such as the consensus

sequence or the majority sequence.

However, recent approaches have exploited within-host

genetic diversity and the degree of genetic similarity (in a

broad sense) between viral genotypes collected from different

hosts for transmission chain reconstruction (Hughes et al.,

2012; Morelli et al., 2012; Murcia et al., 2012; Walker et al.,

2013; Didelot et al., 2014; Jombart et al., 2014; Worby et al.,

2014; De Maio et al., 2018; Leitner and Romero-Severson,

2018; Wymant et al., 2018; Alamil et al., 2019). To evaluate

the performance of these approaches in numerous diverse and

challenging settings, we need simulation models of viral within-

host genetic diversity and tools to characterize this diversity.

Here, we propose such a framework, based on the work of

Worby and Read (2015) on the simulation of evolutionary

and epidemiological dynamics, as well as classical viral kinetic

models and widely used diversity indices. This framework was

designed to possibly generate non-equilibrium fast evolutionary

dynamics. Briefly, the “non-equilibrium” feature means that the

system can bifurcate into new dynamic steady states (Chaisson,

2004), and the adjective “fast” indicates that such bifurcations

may arise quite frequently. In the context of virology considered

here, a “frequent bifurcation” is typically manifested by a change

in the dominant viral genotype during the infection of a host,

as observed, e.g., by Hughes et al. (2012). Multiple mechanisms

related to selection and drift can drive such changes and our

approach is to account for them implicitly by going beyond the

binomial or multinomial draws intuitively applied to modeling

genotype replication.

In our approach, the within-host virus population is

simulated by generating genotypes (i.e., sequence fragments)

and their proportions conditional on a demographic kinetics

to be specified. The resulting computer-based demo-genetic

dynamics can be generated under numerous conditions and can

be monitored like in real situations using HTAS longitudinal

samples (i.e., samples collected from a unique host at different

time points during the infection). In the model, demographic

effects are essentially represented by a founder effect (i.e., the set

of genotypes initiating the infection), which may be relatively

strong (Abel et al., 2015; Poirier and Vignuzzi, 2017), and a

demographic kinetics described by a set of differential equations

and quantifying the variation of the viral load during the course

of the infection, which is represented by a set of differential

equations any other mathematical formalism may be used for

the demographic kinetics as soon as it provides a quantity of

virions across time; e.g., see Yuan and Allen (2011), for models

based on stochastic differential equations and continuous-time

Markov chains. We consider three examples of kinetic models,

all including a latent period, and respectively, representing an

acute infection, a persistent infection and an infection mitigated

by an immune response. These examples were chosen more for

their ability to produce contrasting viral load dynamics than for

their applicability to a specific case study.

Genetic effects incorporated into the model correspond to

the mutation and replication processes. Nucleotide substitutions

are assumed to occur randomly at a constant rate. Mutation

effects are handled by classifying substitutions into lethal

(leading to extreme negative selection) and non-lethal.

Genotype replication is simulated by successive over-dispersed

multinomial draws with a size equal to the current quantity
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of virions that is governed by the chosen kinetic model.

The replication success represents the relative fitness of the

genotypes, which can vary during the course of the infection

via the over-dispersion of the multinomial draws. This over-

dispersion is governed by a shuffling process noising the current

vector of genotype proportions. When this process is applied,

a rare genotype at generation t can significantly increase in

proportion at generation t + 1. This process implicitly mimics

positive selection, genetic drift and spatio-temporal variation

in genotype multiplication (occurring, e.g., when a genotype

invades a new part of the host that is more favorable). Thus,

overall, the stochastic model that we propose implicitly or

explicitly encompasses several biological mechanisms such

as natural selection and genetic drift and produces fast and

non-equilibrium demo-genetic dynamics.

The model briefly described above was designed for the

evaluation, in diverse and challenging demo-genetic situations,

of the performance of methods that reconstruct transmission

trees by exploiting within-host genetic diversity data. However,

we focus in this article on the characterization of the genetic

diversity resulting from this simulation model. Thus, in what

follows, we propose a comprehensive mathematical description

of the model and we investigate the influence of the parameters

on temporal variations in genetic diversity. This investigation is

performed using several diversity indices, and contributes to a

better understanding of the main drivers of within-host genetic

evolution and pathogen population divergence. The results

especially highlight the major impact of the shuffling process,

the non-monotonic relationship between pathogen population

size and genetic diversity, and the reduction of the impact of

mutation on diversity when a host immune response is activated.

These elements are discussed in the last section of this article.

An R code called MoWPP (Model of Within-host Pathogen

Population dynamics) allowing the user to run the model and

compute the diversity indices is provided at https://doi.org/10.

5281/zenodo.6783246.

2. Materials and methods

The following three subsections detail the modeling

framework using the mathematical formalism. The last

subsection provides a concise overview of the model via an

algorithmic description.

2.1. Kinetic models

We consider that the size of the within-host pathogen

population varies over time. To quantify this temporal

variation, one can use a wide range of kinetic models that

were developed to study within-host dynamics of many

pathogens (Perelson and Nelson, 1999; Nowak and May,

2000; Baccam et al., 2006; Beauchemin et al., 2008; Handel

et al., 2010; Saenz et al., 2010; Beauchemin and Handel,

2011; Smith and Perelson, 2011; Pawelek et al., 2012; Canini

and Perelson, 2014; Hernandez-Vargas, 2019), including SARS-

CoV-2 (Du and Yuan, 2020; Gonçalves et al., 2020; Goyal

et al., 2020; Hernandez-Vargas and Velasco-Hernandez, 2020;

Pinky and Dobrovolny, 2020; Wang et al., 2020; Blanco-

Rodriguez et al., 2021; Ghosh, 2021). Thesemodels are grounded

on sets of ordinary differential equations (ODE) basically

governing the numbers of susceptible target cells, infected cells,

and virions.

For this article primarily focused on a new modeling

framework coupling viral kinetics and micro-evolution, we

considered three kinetic models that were chosen because they

generate clearly contrasting viral-load patterns (with one peak,

one plateau, and two peaks), but many other kinetic models

may be considered (see Section 4.2). The three models include

a latent period modeled by considering two compartments

of infected cells: those not producing virions yet and those

actively producing virions. The first model corresponds to acute

infections (Baccam et al., 2006) and has been recently used

to describe the within-host kinetics of SARS-CoV-2 with or

without latent period (Abuin et al., 2020; Hernandez-Vargas

and Velasco-Hernandez, 2020). The second model is a direct

derivation of the first model, that allows us to transform the

acute infection model into a persistent infection model (i.e.,

presenting a plateau) over the 10-day study period by setting the

death rate of infectious cells at zero (it is viewed as a toy model).

The third model is a hybrid between the model of Baccam et al.

(2006) (allowing a latent period in virion production) and the

model of Pawelek et al. (2012) introducing an immune response.

In this section, the state variables (S, I, V , . . . ) are functions

of continuous-time t ≥ 0.

2.1.1. Acute and persistent infection models

The acute infection model is derived from a simple viral

kinetic model describing the dynamics between susceptible

target cells (S), infected cells (I), and virions (V) (Baccam

et al., 2006; Beauchemin and Handel, 2011). It illustrates

the eclipse phase dynamics. The eclipse phase is the time

span between the entry of the virus into the target cells

and the release of the virions produced by these newly

infected cells. The delay in the viral production is modeled

by defining two separate populations of infected cells: the

infected population that is not yet producing virions, I1, and

the infectious population that is actively producing virions,

I2. The following set of differential equations (Baccam et al.,

2006; Beauchemin and Handel, 2011) defines the acute infection

model:
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FIGURE 1

Schematic representation of the acute and persistent models

defined by Equation (1). The persistent model is obtained by

setting the death rate of infectious cells δ to zero.



































































dS

dt
= −βSV

dI1

dt
= βSV − kI1

dI2

dt
= kI1 − δI2

dV

dt
= pI2 − cV

(1)

where the susceptible cells, S, are converted at rate β into

infected cells, I1, upon interaction with virions, V . Infected

cells become infectious at rate k; in other words, 1/k is

the average transition time from I1 to I2. The virions,

V , are assumed to be produced at rate p and cleared at

rate c.

To model a persistent infection (over a relatively short-time

period, i.e., 10 days in our simulation study), we use the acute

model of Equation (1) and we set the death rate δ of infectious

cells I2 to zero. In that respect, we assume that the infectious

cells I2 are not removed. This corresponds to both the absence

of cytotoxic effects of the virus and a delay/lack of activation of

the immune response against the infectious cells, resulting in

negligible damage to these cells (Boldogh et al., 1996), at least

over the short time period considered in our work.

A schematic diagram of these acute and persistent infection

models is shown in Figure 1.

2.1.2. Model with immune system reactions

A third model accounts for an immune response. Innate

immunity through interferon (IFN) induction is modeled by

adding two compartments to the acute-infection model defined

by Equation (1): the IFNs (F) and the refractory uninfected

cells (R). The rising adaptive immune response is modeled

as an increase in the death rate of the infectious cells, δ,

after an initial delay. This model, illustrated in Figure 2, is

defined by:



















































































































dS

dt
= −βSV − φSF + ρR

dI1

dt
= βSV − kI1 −mI1F

dI2

dt
= kI1 − δI2 −mI2F

dR

dt
= φSF − ρR

dV

dt
= pI2 − cV

dF

dt
= qI2 − dF

(2)

where IFNs are secreted only by infectious cells I2 at rate q and

decay at rate d; upon exposure to these signaling proteins, all

infected cells incur an (additional) death ratem, and susceptible

cells become refractory to infection at rate φ (refractory

cells revert to the susceptible state at rate ρ); δ is defined

as follows:

δ =











δI if t < tI

δIe
σI(t−tI) otherwise

with 1/δI the mean lifespan of the infectious cells before the rise

of the immune response, and σI the speed at which the death rate

increases after the time tI when the adaptive immune response

starts (Pawelek et al., 2012).

2.1.3. Kinetic parameter values and model
solving

Values of parameters and initial values of variables used

thereafter for simulating changes in the viral load during 10 days

are provided in Tables 1, 2 for the three kinetic models. Many of

these values are taken from previous studies (Baccam et al., 2006;

Pawelek et al., 2012), in which parameters were either fixed by

the authors or estimated with a least square approach between

the kinetic model and experimental data collected from patients

infected by H1N1 (Baccam et al., 2006) or from unvaccinated

ponies infected by EIV (Pawelek et al., 2012).

The viral production rate, p, is chosen such that the

maximum viral load reached during the infection period, say

Vmax, is the same for the three different models (we use Vmax =
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FIGURE 2

Schematic representation of the model with immune system reaction defined in Equation (2). This scheme is an edited version (with permission)

of the original scheme presented by Pawelek et al. (2012).

TABLE 1 Description and values of variables and parameters used in the acute and persistent infection models described by Equation (1).

Symbol Definition Unit Value

S Uninfected cells that are susceptible to infection Cells Initial value: 4× 108

I1 Infected cells not producing virus Cells Initial value: 0

I2 Infected cells actively producing virus Cells Initial value: 0

V Viral load TCID50/ml Initial value: 4.9

β Rate of susceptible target cell infection (TCID50/ml)−1 .d−1 5.3× 10−6

k 1/k: average transition time from I1 to I2 d−1 4

δ Death rate of infected cells I2 That actively produce virus d−1 3.8 | 0∗

p Viral production rate (TCID50/ml).d−1 0.05 | 0.0095∗

c Clearance rate of virions d−1 3.8

*First value for the acute infection model, second value for the persistent infection model.

In the acute infection model, initial values of S, I1 , I2 , and V and values of β , k, δ, and c are those obtained for patient 4 in Baccam et al. (2006, Table 3). The same values were used for the

persistent infection model, except δ that was set to zero. In both models, p was chosen such that the maximum viral load over the 10-days study period is Vmax = 106 virions.

d stands for day in the unit column.

106 virions). For each model, parameter p is computed by

minimizing (with respect to p) the squared difference, 1p =

(Vmax − V̄p)
2, between Vmax and the maximum value V̄p (over

a 10-day time period) of the number of virions V obtained by

solving the system of ODEs.

The systems of ODEs can be numerically solved with the

ode function of the deSolve package in R. We used a 0.001

day resolution in the applications for defining the time sequence

for which values of states variables (S, I, V , . . . ) were computed.

2.2. Demo-genetic model with fast
variation

To generate within-host genetic diversity of a pathogen

population with a non-equilibrium fast evolutionary dynamics,

we build a discrete-time stochastic model simulating genotypes

and their frequencies at each generation during an infection

period. Numerous data sets can be generated with this

model under various demo-genetic situations that can lead to
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TABLE 2 Description and values of variables and parameters used in the model with immune response described by Equation (2).

Symbol Definition Unit Value

S Uninfected cells that are susceptible to infection Cells Initial value: 3.5× 1011

I1 Infected cells not producing virus Cells Initial value: 0

I2 Infected cells actively producing virus Cells Initial value: 0

R Uninfected refractory cells Cells Initial value: 0

F Interferon IFN fold change Initial value: 5.3

V Viral load TCID50/ml Initial value: 3.5× 10−1

β Rate of susceptible target cell infection (TCID50/ml)−1 .d−1 8.3× 10−6

φ Rate of the IFN-induced antiviral efficacy (IFN fold change)−1 .d−1 9× 10−4

ρ Reversion rate from refractory to susceptible state d−1 1.5

k 1/k: average transition time from I1 to I2 d−1 0.55

δI Death rate of infected cells before onset of the adaptive immune response d−1 4

tI Time at which the adaptive immune response starts d 6

σI Speed of the death rate increase 4

m Killing rate of infected cells by IFN-activated NK cells (IFN fold change)−1 .d−1 2.9× 10−3

p Viral production rate (TCID50/ml).d−1 4.8× 10−3

c Clearance rate of virions d−1 11.5

q Rate of IFN production (IFN fold change).cell−1 1.1× 10−5

d Rate of IFN decay d−1 0.72

Initial values of the number of susceptible, infected and refractory cells and the value of β were taken from Pawelek et al. (2012, Tables 1, 2). The other values were chosen such that the

viral load has two clearly distinct peaks over 10 days.

d stands for day in the unit column.

fast-evolving dynamics and consequently to significant changes

in the viral composition.

Our model integrates several demographic and genetic

factors, namely the kinetic model, the growth of genotypes, the

mutations of genomes and two fitness components, namely the

shuffling process and the elimination of lethal genome. In what

follows, we first describe the growth and mutation stages that

form the skeleton of the demo-genetic model (Sections 2.2.1,

2.2.2). Then, we present the shuffling process in Section 2.2.3,

which is an “option” in our model for noising the proportions of

genotypes during the growth stage (it can be used for favoring

the growth of minor variants, for example, and hence favoring

“frequent bifurcations”). Finally, we present the elimination of

lethal genomes, which is also an “option” in our model that can

be applied after the mutation stage.

In the model, the sum of genotype frequencies at each

generation (i.e., the pathogen population size) is assumed

to be the quantity of virions, V , given by a viral kinetic

model such as those presented in Section 2.1. We only

need values of V at the discrete times corresponding to the

generations. Thereafter, the generation and the day coincide (in

the literature, the reproductive cycle of viruses ranges from 8

to more than 72 h; Roizman, 1996); time t takes integer values

corresponding to the generation and coinciding with integer

values of time in the definition of the kinetic models provided in

Section 2.1.

Host infection is initiated by the introduction of a single

genotype defined by a nucleotide sequence of length L, each

nucleotide being uniformly drawn among {A,C,G,T}. At any

time t (i.e., generation) during the infection period, the within-

host pathogen population is represented by a set of n(t)

different genotypes G(t) = {g1(t), ..., gn(t)(t)} and their absolute

frequencies F(t) = {f1(t), ..., fn(t)(t)} (gi(t) is the i-th genotype

at time t; fi(t) is the frequency of the i-th genotype at time t).

Below, to complement the definition of the stochastic demo-

genetic model, we describe how {G(t), F(t)} are generated by

a sequential procedure, conditionally on {G(t − 1), F(t − 1)}

and V(t).

2.2.1. Growth

At each time t, genotypes undergo a growth stage

constrained by the fact that the total quantity of genomes goes

from V(t − 1) =
∑n(t−1)

i=1 fi(t − 1) to V(t). This stage is

performed with a conditional multinomial draw with size V(t)

and probabilities P∗(t − 1) equal to standardized noisy versions

of the proportions P(t − 1) = 1
V(t−1)

F(t − 1) of the genotypes

in the set G(t − 1) (Section 2.2.3 specifies P∗):

F′(t) | P∗(t − 1),V(t) ∼ Multinomial
(

V(t)P∗(t − 1)
)

(3)
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where F′(t) = {f ′1(t), ..., f
′
n(t−1)

(t)} is the frequency vector, after

the growth stage, of the n(t − 1) genotypes constituting the

G(t − 1) family.

After the growth stage and before the mutation stage,

all genotypes with zero-frequencies are removed. Hence, we

introduce:

G∗(t) = {gi(t − 1) : i = 1, . . . , n(t − 1), f ′i (t) > 0} ⊂ G(t − 1)

= {g∗1 (t), ..., g
∗
m(t)(t)}

the set of non-zero frequency genotypes (m(t) ≤ n(t − 1) is

the number of these genotypes), and F∗(t) = {f ∗1 (t), ..., f
∗
m(t)

(t)}

the vector of the corresponding frequencies [F∗(t) is obtained by

removing the null elements of the vector F′(t)].

2.2.2. Mutations

After the growth of genotypes and the removal of those

with zero-frequencies, genomes undergo a mutation stage. At

this stage, the number Nv(t) of mutations occurring in the

genome v ∈ {1, . . . ,V(t)}, whose genotype is denoted by 7v ∈

G∗(t), follows a binomial distribution with size L (which is the

genome length) and probability µ (which is the mutation rate

per nucleotide per generation):

Nv(t) ∼
indep.

Binomial(L,µ), ∀v ∈ {1, . . . ,V(t)}.

Let V(t) = {v = 1, . . . ,V(t) :Nv(t) > 0} denote the set of

genomes undergoing at least one mutation. For each v ∈ V(t),

Nv(t) indices, noted j1, . . . , jNv(t), are selected uniformly with

replacement from {1, . . . , L} (drawing mutated positions with

replacement allows us to take into account multiple mutations

on the same nucleotide site, which means that the effective

mutation rate is slightly lower than µ; note however that given

the parameter values that we use in the results section, this

event is extremely rare). Then, for j from j1 to jNv(t), the j-

th nucleotide 7v(j) of genome v whose genotype is written

7v = {7v(1), . . . , 7v(L)} is updated by randomly and uniformly

drawing a new nucleotide from the set {A,C,G,T}, excluding the

current value of 7v(j). Let 7̃v denote the genotype obtained using

this iterative procedure.

Let Ṽ(t) designate the set of genomes in V(t) which remain

after the elimination of possible lethal genomes [see Section

2.2.4; Ṽ(t) = V(t) if none of the genomes are lethal]. Assigning

(in an arbitrary order) the indices m(t) + 1, . . . ,m(t) + q(t) to

these q(t) genotypes [where q(t) is the length of Ṽ(t)], noting

{g̃m(t)+1(t), . . . , g̃m(t)+q(t)(t)} = {7̃v : v ∈ Ṽ(t)} and g̃i(t) =

g∗i (t) for each i ∈ {1, . . . ,m(t)}, the genotype set is henceforth:

G̃(t) = G∗(t) ∪ {7̃v : v ∈ Ṽ(t)}

= {g̃1(t), ..., g̃m(t)+q(t)(t)}.

In that respect, the set of frequencies corresponding to the

genotypes in the new set G̃(t) is defined by:

F̃(t) = F̃∗(t) ∪ {f̃7v : v ∈ Ṽ(t)}

= {f̃1(t), ..., f̃m(t)+q(t)(t)}

where F̃∗ is the set of frequencies F∗ updated by deducing

the frequency of genomes that were mutated and

{f̃m(t)+1, . . . , f̃m(t)+q(t)(t)} is the vector of the q(t) genotype

frequencies; ∀k = m(t)+ 1, ...,m(t)+ q(t), fk(t) = 1.

Then, genotypes whose frequencies are zero in G̃(t) are

deleted, identical genotypes are aggregated and their frequencies

are summed. Thus, we obtain the set G(t) of genotypes present

in the host at time t, after the growth and mutation stages, and

F(t) the frequency vector of these genotypes.

2.2.3. Shu	ing process

Here, we describe how we build probabilities P∗(t −

1) equal to standardized noisy versions of the proportions

P(t − 1), introduced in Equation (3). Beyond the effect

of mutation, genotype frequencies may vary due to other

mechanisms such as natural selection and random genetic

drift (Lande, 1976). To implicitly account for the effect of

such mechanisms into our within-host pathogen evolutionary

model, we incorporate a shuffling process into the model. This

process consists of drawing genotype proportions with an over-

dispersion to eventually simulate the extra multiplication of

low-proportion genotypes and/or the reduced multiplication of

high-proportion genotypes.

Let P denote a vector of proportions that sum to one

[typically, P(t − 1) in Section 2.2.1]. The vector of proportions

P∗ provided by the shuffling process applied to P is obtained by

noising P with a centered Gaussian distribution:

P̃ | P ∼ N

(

P, σ 2
)

(4)

where σ 2 = γ1 × Pγ2 × (1− P)γ3 (γ1, γ2, γ3 ≥ 0); cutting P̃ off:

P̂ = min{1,max(0, P̃)}; and re-scaling P̂:

P∗ =
1

∑n
i=1 p̂i

P̂ (5)

where P̂ = (p̂1, . . . , p̂n), n ∈ N
∗. The effects of the shuffling

parameters (γ1, γ2, γ3) are detailed in Supplementary Text 1.

Briefly, the larger γ1, the larger the noise; the smaller γ2,

the more some low-proportion genotypes may reach high

frequencies; the smaller γ3, the more some high-proportion

genotypes may reach low frequencies.

2.2.4. Elimination of lethal genomes

The proportion of lethal mutations incurred by a viral

genome lies between 0.2 and 0.4 for viruses infecting hosts from
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different kingdoms (animal, plant, bacteria; Sanjuán, 2010). For

vesicular stomatitis virus (VSV), an animal virus for which

this value is known, the proportion of lethal mutations is

0.4 (Sanjuán et al., 2004). Hence, we account for a reference

proportion α = 0.4 of lethal mutations by discarding the

genomes with mutations in the first 40% of the nucleotide

positions along the sequence; the othermutations are considered

neutral. To allow the assessment of the presence or absence

of lethal-genome elimination given the viral kinetics, the

proportion, and the frequency of each genotype are re-scaled

after the lethal-genome elimination step, such that the sum of

proportions is one and the sum of frequencies equals V(t).

2.3. Genetic diversity indices

To measure the level of genetic diversity of the

pathogen population within an infected host at each

generation t, we used several diversity indices. The first

three indices are haplotype diversity indices that depend

on genotype abundance (Morris et al., 2014). The fourth

index quantifies pairwise genetic distances that depend on

sequence variation.

2.3.1. Richness (R)

The richness estimator R(t) is the simple count of different

genotypes existing at time t. It is equal to n(t). This index is

therefore highly sensitive to rare genotypes.

2.3.2. Shannon index (H′)

The Shannon diversity index is calculated as follows:

H′(t) = −

R(t)
∑

i=1

pi(t) log(pi(t)) (6)

where R(t) is the number of existing genotypes (richness) at time

t and pi(t) is the proportion of the i-th genotype at time t. This

index is both sensitive to rare and abundant genotypes.

2.3.3. Gini-Simpson index (D)

The Gini-Simpson index also depends on the genotype

proportions and is defined as follows:

D(t) = 1−

R(t)
∑

i=1

p2i (t) (7)

where R(t) and pi(t) are defined as for Equation (6). This index

is sensitive to abundant genotypes.

2.3.4. Jukes-Cantor distance (JC)

Pairwise indices are grounded on the comparison of the

sequences of each pair of sequences. Here, we used the Jukes-

Cantor distance (Jukes and Cantor, 1969) to evaluate the within-

host genetic diversity. Supposing that the rate of nucleotide

substitution is the same between any pair of nucleotides, the

Jukes-Cantor distance is defined in the following way:

d̄(t) = Eij[d(gi(t), gj(t))] (8)

where i and j represent two genotypes drawn randomly,

independently, and uniformly from the genotype space and

d(gi(t), gj(t)) is given by:

d(gi(t), gj(t)) = −
3

4
log(1−

4

3
p(gi(t), gj(t)))

with p(gi(t), gj(t)) the mean pairwise distance (p-distance)

between the two sequences gi(t) and gj(t). This p-distance is the

proportion of nucleotide sites at which gi(t) and gj(t) differ, and

it is estimated by p̂i,j(t) = ni,j(t)/L, ni,j(t) being the number of

nucleotide differences between gi(t) and gj(t).

2.4. Simulation setting

In order to study the impact of the demo-genetic factors

on the within-host genetic diversity, we measured the genetic

diversity of pathogen populations by the above-mentioned

indices during 10 generations. Each pathogen population is

characterized by a set of viral genotypes generated via our

evolutionary model where the length of each genetic sequence

was set to L = 330 nucleotides and the mutation rate was

set to µ = 10−5 mutation per nucleotide per generation, as

default values. These populations differ in the demo-genetic

characteristics that are included through the kinetic model,

the shuffling process and the elimination of lethal genomes.

We remind that kinetic parameters are specified in Tables 1, 2.

Default values of genetic parameters are specified in Table 3. This

table also indicates how default values are varied for each figure

displaying diversity dynamics. For each demo-genetic scenario,

we performed 100 independent simulations of the temporal

dynamics of the within-host population.

2.5. Backbone of the algorithmic
description of the model

Here, the model is summarized via an algorithmic

description. Details and justifications are provided in the

previous subsections.

1. Set parameter values;
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TABLE 3 List of parameters included in the genetic component of the model and their default values (top part of the table); values actually taken by

these parameters, set of kinetic parameters and number of generations per day (G/d) for each figure displaying diversity dynamics (bottom part of

the table).

Symbol Definition Default value

L Length of genome fragment 330

µ Mutation rate per nucleotide per generation 10−5

γ1 Scale parameter in the noise variance of the shuffling process 0.8

γ2 First shape parameter in the noise variance of the shuffling process 0.4

γ3 Second shape parameter in the noise variance of the shuffling process 70

α Proportion of lethal mutations 0.4

Figure L µ γ1 γ2 γ3 α Kinetic G/d

parameters

Figure 3 330 10−5 {0.8, NA} {0.4, NA} {70, NA} {0, 0.4} Tables 1, 2 1

Supplementary Figure 1 330 10−5 NA NA NA (0.2, 0.4) Tables 1, 2 1

Supplementary Figure 2 330 10−5 0.8 0.4 70 (0.2, 0.4) 1

Figure 4 330 10−5 0.8 (0, 1) 70 0 Tables 1, 2 1

Supplementary Figure 3 330 10−5 0.8 (0,1) 70 0.4 Tables 1, 2 1

Supplementary Figure 4 330 10−5 (0,1) 0.4 70 0 Tables 1, 2 1

Supplementary Figure 5 330 10−5 0.8 0.4 (0,100) 0 Tables 1, 2 1

Figure 5 330 (5× 10−7 , 5× 10−5) 0.8 0.4 70 0.4 Tables 1, 2 1

Figure 6 (30, 1,200) 10−5 0.8 0.4 70 0.4 Tables 1, 2 1

Supplementary Figure 6 330 (5× 10−7 , 5× 10−5) 0.8 0.4 70 0 Tables 1, 2 1

Supplementary Figure 7 (30, 1,200) 10−5 0.8 0.4 70 0 Tables 1, 2 1

Supplementary Figure 8 330 (5× 10−7 , 5× 10−5) NA NA NA 0.4 Tables 1, 2 1

Supplementary Figure 9 330 10−5 {0.8, NA} {0.4, NA} {70, NA} {0, 0.4} Tables 1, 2 1

Supplementary Figure 10 330 10−5 0.8 0.4 70 0.4 Tables 1, 2+ scaling 1

to vary Vmax

Supplementary Figure 11 330 10−6 {0.8, NA} {0.4, NA} {70, NA} {0, 0.4} Table 1 for shared 1

parameters

Supplementary Figure 12 330 10−5 0.8 0.4 70 0.4 Tables 1, 2 {1, 2}

For Supplementary Figure 11, kinetic parameters that are not shared (i.e., those specific to models with persistent infection and immune response) are given in Supplementary Figure 11

caption, and µ was set at 10−6 to keep the computation time reasonable for the model with persistent infection whose maximum viral load was larger than 5 × 106 . Unique value when

the parameter is fixed; values within brackets when two values are used; values within parentheses when a range of values is used, the two values given providing the minimum and the

maximum of the range.

2. Set initial states (at time, or generation, t = 0) of the

number of virions V(0), the family of genotypes G(0) and the

genotype frequencies F(0);

3. Compute the number of virions V(t) from t = 1 to t = 10

with the kinetic model;

4. For time t from 1 to 10,

Growth of genotypes conditional on the kinetics

(a) Compute previous proportions of genotypes P(t − 1) =

V(t − 1)−1F(t − 1);

(b) If the shuffling process is applied, add noise to P(t − 1)

with a centered Gaussian distribution: P̃(t − 1) | P(t −

1) ∼ N
{

P(t − 1), σ 2
}

, cut P̃(t − 1) off: P̂(t − 1) =

min 1,max
{

0, P̃(t − 1)
}

; and rescale P̂(t− 1): P∗(t− 1) =

(
∑n

i=1 p̂i(t − 1))−1P̂(t − 1);

Else keep P unchanged: P∗(t − 1) = P(t − 1);

(c) Draw the frequency vector of the n(t − 1) genotypes

constituting the G(t − 1) family after the growth stage:

F′(t) | P∗(t − 1),V(t) ∼ Multinomial
[

V(t), P∗(t − 1)
]

;

(d) Remove genotypes with zero-frequencies and update

genotype frequencies accordingly; updated genotypes and

genotype frequencies are denoted G∗(t) and F∗(t);

Mutations of genomes

(e) For genome, or virion, v from 1 to V(t), draw the number

of mutations Nv(t) ∼ Binomial(L,µ) and let V(t) =

{v = 1, . . . ,V(t) :Nv(t) > 0} denote the set of genomes

undergoing at least one mutation;

(f) For genome v ∈ V(t), draw Nv(t) indices from {1, . . . , L}

and update the nucleotide corresponding to each index

by drawing a new nucleotide from the set {A,C,G,T}

excluding the current value of the nucleotide;
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(g) If the elimination of lethal genomes is applied, discard

the genomes with mutations in the first 40% of the

nucleotide positions along the sequence and update

genotype frequencies accordingly;

(h) Remove genotypes whose frequencies are zero, aggregate

identical genotypes and update genotype frequencies

accordingly; updated genotypes and their frequencies are

denoted G(t) and F(t), respectively;

5. For time t from 0 to 10, compute the four diversity indices

based on variables derived from {G(t), F(t)}.

3. Results

Table 3 provides the model parametrizations that were used

for all the sets of simulations corresponding to all the figures

mentioned in the results section, the parameters that vary in each

figure, and the ranges of variation of these parameters.

3.1. Cross-e�ects of the viral kinetic, the
shu	ing process, and the elimination of
lethal genomes

Figure 3 shows, for three different viral kinetics, the

temporal evolution of the genetic diversity of the viral

population within a host during an infection, computed from

100 replicates for each kinetic and each model configuration

(i.e., with/without shuffling process; with/without lethal genome

elimination). The diversity is assessed with the four indices

described in Section 2.3: richness (R), Shannon (H′), Gini-

Simpson (D), and Jukes-Cantor (JC). The kinetic models, which

quantify the temporal variation of the viral load during the

infection, are those presented in Section 2.1: the acute model,

the persistent infection model and the model with an immune

response. The simulations are performed with default parameter

values, namely the kinetic parameters given in Tables 1, 2, α =

0.4 when lethal genomes are eliminated and (γ1, γ2, γ3) =

(0.8, 0.4, 70) when the shuffling process is applied.

The four diversity indices are more or less smoothed and

delayed versions of the temporal dynamics of virions. We

however note that the number of different genotypes is strongly

reduced by a fast onset of the immune response (index R,

column 3).

Figure 3 shows that promoting non-equilibrium and fast

variations with the shuffling process induces a marked increase

in the within-host genetic diversity, whatever the index, even

with lethal genomes (red and blue lines). In addition, the

presence of the shuffling process results in major qualitative

changes in the within-host diversity measured by the H′ and D

indices, and to a lesser extent by the JC index. This statement

can be observed in more details by comparing Supplementary

Figures 1, 2, which show the temporal changes in the four

diversity indices when the proportion of lethal mutations α

varies between 0.2 and 0.4, either in the absence of the

shuffling process (Supplementary Text 1) or in its presence

(Supplementary Text 2).

Figure 3 also shows, as intuitively expected, that negative

selection against lethal mutations (red and green lines) reduces

the richness (R) by 60% both in the presence and in the

absence of the shuffling process (i.e., when viral multiplication

probabilities are noised). In contrast, lethal genome elimination

seems to have little impact on Shannon (H′), Gini-Simpson (D),

and Jukes-Cantor (JC) diversity indices. Supplementary Figures

1, 2 essentially confirms this observation.

3.2. Fast changes in genotype
proportions

In the shuffling process, the enhancement of low-proportion

genotypes is governed in particular by parameter γ2: the lower

γ2, the larger the dispersion of the noise affecting genotype

proportions in the multiplication stage and, consequently,

the faster some low-proportion genotypes may reach large

proportions. Figure 4 and Supplementary Figure 3 (both

displaying the effect of the variation of γ2 but corresponding

respectively to simulations without and with lethal genome

elimination) show that variation in γ2 generates significantly

different temporal profiles for all the diversity indices. The

overdispersion obtained with small γ2 increases the number

of genotypes (R), the probability of substitutions (JC), and the

evenness in genotypes abundance (H′). In addition, small γ2

values rapidly lead to a maximum Gini-Simpson diversity (D).

The two other shuffling parameters, γ1 and γ3, have much

less influence (apart for γ1 = 0) on the diversity indices (see

Supplementary Figures 4, 5, which display the effect of the

variation of γ1 and γ3, respectively, both in the absence of

lethal-genome elimination).

3.3. Changes in the number of mutations

The proportion of mutated genomes increases with the

mutation rateµ and the genome size L. By applying the shuffling

process and eliminating the lethal genomes or not, Figures 5,

6 and Supplementary Figures 6–8 show that the three diversity

indices R, H′, and D are affected in a qualitatively similar

manner by increasing µ or L (Figures 5, 6, respectively display

the effect of the variation of µ and L, in the presence of

the shuffling process and the elimination of lethal genomes;

Supplementary Figures 6, 7 are analogous to Figures 5, 6, but

do not include lethal-genome elimination; Supplementary

Figure 8 is analogous to Figure 5, but does not include the

shuffling process). These effects are similar to the one obtained
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FIGURE 3

Temporal variations in within-host genetic diversity under various demo-genetic conditions, namely with or without the shu	ing process

[(γ1, γ2, γ3) = (0.8, 0.4, 70) or (NA, NA, NA)] and with or without the elimination of lethal genomes (α = 0.4 or 0); See Table 3 for full parameter

specification. Row 1: variation in within-host virion quantity under the models with acute infection (column 1), persistent infection (column 2),

and immune response (column 3). Rows 2–5: variation in within-host genetic diversity measured by richness (R), Shannon (H′), Gini-Simpson

(D), and Jukes-Cantor (JC) indices, respectively. Shaded areas delimit the 95% pointwise confidence envelopes of the diversity curves under all

demo-genetic conditions.

by decreasing γ2 (Figure 4). To refine this observation, the

increased diversity of genotypes obtained for higher values

of µ or L is reflected by an increased richness (R) and a

faster increase of the Gini-Simpson diversity (D) up to its

maximum. Even for high values of mutation rate and genome

size, the immune response mitigates the replication of new

genotypes, leading to a very low richness (R) and a low

evenness (H′).

As expected, the proportion of nucleotide differences

(JC) increases with the mutation rate µ (Figure 5), while it

decreases when the sequence size L increases (Figure 6), even

in the absence of removal of lethal genomes (Supplementary
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FIGURE 4

E�ect of the shu	ing parameter γ2 on within-host genetic diversity in the absence of lethal-genome elimination (α = 0), the other shu	ing

parameters being equal to their default values (γ1, γ3) = (0.8, 70); See Table 3 for full parameter specification. Row 1: variation in within-host

virion quantity under the models with acute infection (column 1), persistent infection (column 2), and immune response (column 3). Rows 2–5:

variation in within-host genetic diversity measured by richness (R), Shannon (H′), Gini-Simpson (D), and Jukes-Cantor (JC) indices, respectively.

Figure 7). The JC index is computed among unique sequences

which, for a given mutation rate, are less numerous when

sequences are shorter. Thus, the JC curves corresponding to

L = 30 reach significantly higher values than the curves

obtained for longer sequences, and the following curves

gradually and slightly lower from L = 300 to L =

1, 200 nucleotides.

4. Discussion

4.1. Discussion of the results

In this work, we introduced a stochastic model to simulate

within-host pathogen evolution during an infection in order

to outline the demographic and genetic factors shaping viral
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FIGURE 5

E�ect of the mutation rate µ on within-host genetic diversity in the presence of the shu	ing process [(γ1, γ2, γ3) = (0.8, 0.4, 70)] and the

elimination of lethal genomes (α = 0.4); See Table 3 for full parameter specification. Row 1: variation in within-host virion quantity under the

models with acute infection (column 1), persistent infection (column 2), and immune response (column 3). Rows 2–5: variation in within-host

genetic diversity measured by richness (R), Shannon (H′), Gini-Simpson (D) and Jukes-Cantor (JC) indices, respectively. See Table 3 for full

parameter specification.

within-host genetic diversity. Our explicit model developed in

a forward framework allows us to monitor temporal changes

(i.e., across viral generations) in within-host genetic diversity

computed under various demo-genetic scenarios. This model

is able to generate very diverse within-host scenarios in terms

of viral load and genetic diversity as illustrated in Section

3. Demographic effects are considered mainly through the

kinetic model quantifying the temporal variation of the viral

load. Genetic effects are considered through mutation and

replication processes approximatelymimicking natural selection

and genetic drift. These processes are based, in particular, on

the elimination of lethal genomes (leading to negative selection)
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FIGURE 6

E�ect of the genetic sequence size L on within-host genetic diversity in the presence of the shu	ing process [(γ1, γ2, γ3) = (0.8, 0.4, 70)] and the

elimination of lethal genomes (α = 0.4); See Table 3 for full parameter specification. Row 1: variation in within-host virion quantity under the

models with acute infection (column 1), persistent infection (column 2), and immune response (column 3). Rows 2–5: variation in within-host

genetic diversity measured by richness (R), Shannon (H′), Gini-Simpson (D), and Jukes-Cantor (JC) indices, respectively. See Table 3 for full

parameter specification.

and the shuffling of genotype proportions generating over-

dispersion with respect to multinomial draws (corresponding

to genetic drift and positive selection). We observed a major

impact of the shuffling process on within-host genetic diversity,

both qualitatively and quantitatively, whatever the diversity

index. There are two explanations to this observation: firstly,

the shuffling process favors the number of genotypes (i.e., the

richness R) despite the mass at zero of the noisy proportions (see

Section 2.2.3); secondly, the shuffling process favors the presence

of a larger number of abundant genotypes, as particularly

illustrated with Shannon (H′) and Gini-Simpson (D) indices

that are sensitive to abundant genotypes. Thus, by coupling

the model that we propose with a host-to-host transmission

model, we could obtain a flexible basis to challenge, in very
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diverse settings, the methods that reconstruct transmission trees

between hosts on the basis of multiple virus sequences collected

from each host (e.g., De Maio et al., 2018; Alamil et al., 2019).

The host-to-host transmissionmodel may specifically include an

impact of viral load in the source host at transmission time (i) on

transmission probability and/or (ii) on the initial viral load (and

hence, on the subsequent dynamics) in the recipient host.

In contrast to the Wright-Fisher model considering that

the total pathogen population size is constant (Fisher, 1923;

Wright, 1931; Imhof and Nowak, 2006) and to the Worby

and Read model (Worby and Read, 2015) assuming that the

size of the pathogen population converges to an attraction

function via the sum of binomial jumps, in our approach, virion-

quantity changes during an infection are explicitly modeled

(and hence controlled), and we can use many existing viral

kinetic models found in the specialized literature. Predictions

from the neutral theory, which highlight the importance of

population size and genetic drift, provide a useful null model

allowing to assess the occurrence and strength of selection

on intra-host genetic diversity in rapidly evolving pathogens

(Nelson and Hughes, 2015; Frost et al., 2018; Lauring, 2020).

However, the succession of demographic processes (e.g., founder

effect, expansion, bottleneck) and their consequences on genetic

diversity during the course of an infection can be quite complex.

Thus, by accounting for temporal variation in virus load (under

different kinetic assumptions) and contrasting diversity indices,

we can investigate the relative importance of viral load and

genetic drift in shaping intra-host genetic diversity dynamics.

With this in mind, we specifically observed a non-monotonic

relationship between pathogen population size and genetic

diversity. In Figure 3, this non-monotonic relationship is mostly

exemplified by the comparison between the richness index (R)

at the peak population size across the three kinetic models,

or by the contrasting patterns of the different diversity indices

for the model with immune response (and to a lesser extent

of the JC index for the persistent infection model). Even for

the acute infection model where all diversity curves seem to

grossly correlate with viral load, there are delays between the

peak population size and the peaks in diversity indices, and

these delays often induce huge differences in diversity indices

for similar viral loads, as further illustrated by Supplementary

Figure 9). This may result from the complex interplay between

diversity accumulation through time and changes in the size

of the pathogen population. Analyzing and confronting the

variations of different diversity indices in further analyses may

provide some clues on the major processes shaping genetic

diversity across time through main and interaction effects.

Interactions between genetic and demographic forces have

been pointed out in numerous studies: pathogen population

size can impact mutational robustness (Elena et al., 2007) as

well as robustness to random genetic drift (Kuo et al., 2009;

Didelot et al., 2016; LaBar and Adami, 2017) and selection

intensity (Gutiérrez et al., 2012; Didelot et al., 2016; Frickel

et al., 2018), which directly affects the composition of the viral

population. Our study also illustrates such interactions (the

word “interaction” being considered in its statistical meaning,

i.e., the effect of a factor on a dependent variable, here a

diversity index, changes according to the values of one or more

other factors). Consider as an example the demographic force

consisting of the immune response included in the kinetic model

with immune response. The level of within-host genetic diversity

and the mutation rate are known to be positively correlated (Xu

et al., 2019; Castellano et al., 2020) and we clearly see this with

the assessment of richness and Jukes-Cantor indices in Figure 5.

However, the immune response reduces, in general, the impact

of mutation on diversity and reduces, in particular, the evenness

of mutant genotypes (Shannon index). By considering that

the immune response de facto induces an additional selective

pressure, the negative effect of the immune response on diversity

can be viewed as a manifestation of the overall quick response

of rapidly mutating viruses (such as RNA viruses) to selection

(Domingo and Holland, 1997; Holmes, 2009; Sanjuán, 2010).

From amethodological point of view, a global sensitivity analysis

and accompanying graphs (Saltelli et al., 2008; Wainwright

et al., 2014) may be applied in a further study to deepen the

multidimensional understanding of the covariation between

parameters and diversity indices.

4.2. Perspectives in modeling

In the analysis presented in this paper, we compared

diversity for three fixed viral kinetics that were standardized

by setting the same value for the maximum number of virions

reached over the 10-day study period (similarly, one may

constrain the cumulative number of virions over 10 days to

be the same). This choice allowed us to mitigate the effect of

population size on diversity (which is major, as illustrated by

Supplementary Figure 10) and, hence, to investigate the effect

of the shape of the viral kinetics on diversity. However, beyond

this objective, we aim in further studies to use our model

to numerically test methods for reconstructing transmissions

between hosts. In this perspective, one may simulate scenarios

where the virus has intrinsic growth characteristics that are

modulated from one host to another by different immunity

components (Blanco-Rodriguez et al., 2021) and/or different

values for parameters driving immunity strength (Hernandez-

Vargas and Velasco-Hernandez, 2020). Supplementary Figure

11 somehow illustrates such a configuration at the within-

host level: using the three models of Section 2.1 and setting

the same values for the shared parameters, the original model

components induce differences in the viral kinetics, especially

in the maximum viral load, and subsequently on diversity

dynamics. This is obviously a schematic setting, and host-to-host

variations in the shared parameters may be included to match

previous work (e.g., Baccam et al., 2006; Pawelek et al., 2012)
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where parameters (even those not directly related to immunity)

are separately estimated for different hosts. In addition, other

kinetic models (with or without shared parameters) adapted to

the disease and the population under study may deserve to be

considered, as discussed below.

Our model can easily incorporate more advanced kinetic

models of the number of virions and, hence, be used,

e.g., to study within-host pathogen diversity in the presence

of alternative immunity processes (Blanco-Rodriguez et al.,

2021), antiviral treatment (Beauchemin et al., 2008; Smith

and Perelson, 2011), chronic infection (Perelson and Nelson,

1999; Pinky and Dobrovolny, 2017), co-infection (Pinky and

Dobrovolny, 2017, 2020), multiple target cells (Wang et al.,

2020), variation of virion infectivity over time (Smith and

Ribeiro, 2010; Vaidya et al., 2010; Beauchemin and Handel,

2011), co-receptor switch (Alizon and Boldin, 2010) and virion

loss due to cell entry (Beauchemin et al., 2008; Gonçalves

et al., 2020). We implemented a few of these models in the

R code MoWPP accompanying this manuscript in addition to

the three kinetic models presented in Section 2.1. Another

perspective is to provide alternative choices in the genetic

component of our hybrid model. The basic substitution model

used here may notably be replaced by more realistic mutation

processes (Kimura, 1980; Tavaré, 1986; Nishimaki and Sato,

2019), which would constrain the frequencies of different

sequence modifications and might possibly modify the observed

diversity patterns. While viral load was modeled as a continuous

process (using ODEs) like most of the standard virus kinetics

models found in the literature, sampling of virus genomes

during replication and within-host infection was modeled as

a discrete process for numerical tractability, with genotype

growth and genome mutation occurring at a discrete time step

(once per day). Modifying this time step while keeping the

same virus kinetics impacts the resulting diversity dynamics, as

illustrated by Supplementary Figure 12 where genotype growth

and genome mutation happen twice a day, another biologically

plausible generation time for viruses (Roizman, 1996). In this

case, the level of genetic diversity increases or reaches its largest

value more rapidly, because the processes that generate and

increase diversity occur twice more often. Other perspectives

would consist in including relative fitness depending on the

genetic sequence or frequency-dependent selection (Sanjuán

et al., 2004; Alizon and Boldin, 2010); note that ourmodel, where

genetics is modeled conditionally on demographics, effectively

copes with variations in the relative fitness of variants, but

would need to be adapted to handle variations in absolute

fitness that can impact population size (i.e., the numbers

of virions).

Beyond considering the way the model components are

defined, models can be improved by using realistic parameter

values and implementing goodness-of-fit procedures of the

fitted model(s) to validate their components. The statistical

estimation of the model parameters from host-level kinetic

data and within-host genetic data is likely to be a challenge

that first requires to identify the appropriate inference

approach and level of data accuracy using models such as

the one presented here. This point is further discussed in

Supplementary Text 2.
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