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Background: Chronic obstructive pulmonary disease (COPD) stands as a predominant cause of global morbidity and mortality. This 
study aims to elucidate the relationship between pyroptosis-related genes (PRGs) and COPD diagnosis in the context of immune 
infiltration, ultimately proposing a PRG-based diagnostic model for predicting COPD outcomes.
Methods: Clinical data and PRGs of COPD patients were sourced from the GEO database. The “ConsensusClusterPlus” package was 
employed to generate molecular subtypes derived from PRGs that were identified through differential expression analysis and LASSO 
Cox analysis. A diagnostic signature including eight genes (CASP4, CASP5, ELANE, GPX4, NLRP1, GSDME, NOD1and IL18) was 
also constructed. Immune cell infiltration calculated by the ESTIMATE score, Stroma scores and Immune scores were also compared 
on the basis of pyroptosis-related molecular subtypes and the risk signature. We finally used qRT – PCR to detect the expression levels 
of eight genes in COPD patient and normal.
Results: The diagnostic model, anchored on eight PRGs, underwent validation with an independent experimental cohort. The area under 
the receiver operating characteristic (ROC) curves (AUC) for the diagnostic model showcased values of 0.809, 0.765, and 0.956 for the 
GSE76925, GSE8545, and GSE5058 datasets, respectively. Distinct expression patterns and clinical attributes of PRGs were observed 
between the comparative groups, with functional analysis underscoring a disparity in immune-related functions between them.
Conclusion: In this study, we developed a potential as diagnostic biomarkers for COPD and have a significant role in modulating the 
immune response. Such insights pave the way for novel diagnostic and therapeutic strategies for COPD.
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Introduction
Chronic Obstructive Pulmonary Disease (COPD) is a significant medical concern worldwide due to its high incidence 
and mortality rates. Projections suggest that by 2030, COPD will rise as the third leading cause of death globally.1 

Research has shown that smoking is an important risk factor for patients with COPD, and harmful components in 
cigarette smoke can activate the innate immune system, recruit inflammatory cells to target lung tissue, and mediate the 
process of inflammation.2 A retrospective study has found that smoking cessation can enhance the efficacy of single 
inhaler triple therapy, leading to better clinical and functional outcomes six months after commencement.3 Liu et al 
reported pyroptosis influences the development of COPD.4 Currently, there is evidence that cigarette smoke extract 
induces pyroptosis through the ROS/NLRP3/caspase-1 pathway.5 Therefore, it is particularly important to explore the 
regulatory mechanisms related to inflammation in COPD.

Pyroptosis is described proinflammatory programmed cell death and could play a significant role in a variety of biological 
systems.6 This process, driven by the GSDMD pyroptosis driver, forms non-selective pores in the cell membrane. This alteration 
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subsequently induces cell swelling, rupture, and the eventual release of cellular contents.7,8 GSDMD comprises of two domains, 
namely the N-terminal gasdermin-N and the C-terminal gasdermin-C, which are connected by a linking loop. The cleavage of 
GSDMD between these domains is adequate to induce pyroptosis. Being a pore-forming protein, GSDMD typically exists in 
a state of autoinhibition.9 Recently, upon acute exposure of mice to cigarette smoke (CS), NLRP3 facilitates the activation of 
GSDMD in bronchial epithelial cells and macrophages located in the bronchoalveolar space, presumably via the activation of the 
NLRP3 inflammasome.10 Notably, the initiation of pyroptosis releases inflammatory factors that can potentiate a robust 
inflammatory response, serving as precursors to certain diseases.11 It has been reported that the nanotuner platform can cause 
pyroptotic cell death in various gasdermin-E-positive human cancers, leading to enhanced anti-tumour efficacy and minimized 
systemic side effects.12 Given that inflammation is pivotal in the pathogenesis of COPD, the identification and elucidation of 
pyroptosis-related genes (PRGs) can furnish potential biomarkers for COPD diagnosis.

Our extensive literature review on pyroptosis culminated in the identification of 31 known PRGs.13–15 These were 
subjected to meticulous scrutiny, with specific genes earmarked for subsequent evaluation. Our research integrated 
mRNA data from three distinct cohorts, synthesized the role of PRGs, and delved into their correlation with COPD- 
related immune cell infiltration. It was discerned that immune cell infiltration exhibited substantial variations across the 
two PRG modification patterns. These patterns exhibited a direct relation to immune checkpoints and overall immune 
activity. Building on this, we devised a pyroptosis scoring system tailored to pinpoint COPD patients based on PRG 
modification patterns. Our study is to identify and evaluate potential screening markers associated with COPD for early 
diagnosis and intervention of COPD. Our research was accepted by the medical ethics review of the Anqing Municipal 
Hospital (2022.No.61).

Materials and Methods
Source of Datasets
Datasets were sourced from the Gene Expression Omnibus (GEO) and annotated using R version 3.6.5,16 in conjunction 
with the GEO query package. These datasets detailed gene expression profiles and clinical data for patients diagnosed 
with COPD (Supplementary Table 1), all derived from Homo sapiens. COPD is heterogeneous, defining features include 
persistent airflow obstruction and respiratory symptoms. We primarily incorporated data from three distinct databases: 
(GEO dataset information summary Supplementary Tables 1–3).
GSE76925:17 Comprising 40 normal controls and 111 COPD patients (Supplementary Table 1).
GSE8545:18 Including 36 normal controls and 18 COPD patients (Supplementary Table 2).
GSE5058:19 Featuring 24 normal controls and 15 COPD patients (Supplementary Table 3).

For processing, annotation, and normalization of the datasets, we employed the hgu133plus2.db20 and 
illuminaHumanv4.db21 annotations. As a result, the gene expression matrices for these datasets were duly acquired. In 
addition to these datasets, we conducted a comprehensive literature review pertinent to pyroptosis. Based on this review, 
we identified and shortlisted 31 recognized pyroptosis-related genes for subsequent analyses.13–15

Express Mechanism of Pyroptosis-Related Genes
Firstly, we obtained an expression matrix of PRGs from the dataset GSE76925. Boxplot was used to visualize the 
expression of the PRGs between normal controls and COPD patients. Subsequently, the R programme RCircos22 was 
used to plot the circos plot for the differential expression across chromosomes. Expression pattern of PRGs was 
visualized with R function “pheatmap”.23 Then, PPI networks of PRGs were constructed using STRING.24 

Correlations were visualized using the R corrplot package.25 KEGG and GO term gene set enrichment analysis 
(GSEA) was done using clusterProfiler.26

Modeling COPD Based on Pyroptosis-Related Genes
A logistic regression analysis was executed on PRGs of the dataset GSE76925 utilizing R, specifically leveraging the glm 
function.27 Genes linked to the diagnosis of COPD were filtered based on variables with a significance level of p < 0.05. 
The LASSO28 serves as a shrinkage estimation technique. This methodology involves the construction of a penalization 
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procedure to compress numerous regression coefficients to zero, thus facilitating variable selection. Leveraging the 
pyroptosis genes associated with COPD diagnosis, a LASSO classifier was designed to pinpoint an optimized feature 
subset.

Risk scores for each sample across datasets GSE76925, GSE8545, and GSE5058 were computed based on the 
aforementioned model. ROC curves were subsequently formulated using the R package “pROC”.29 A violin plot was 
employed to vividly depict the risk distribution between COPD and the control group across the datasets GSE76925, 
GSE8545, and GSE5058. To forecast the binding miRNA of COPD diagnostic markers, the miRDB30 platform was 
utilized, culminating in the construction of mRNA-miRNA interaction networks. These networks were visualized 
employing the Cytoscape software.31

Construction of PRG Molecular Subclusters
Consensus clustering was performed using the ConsensusClusterPlus package in R to identify optimal profiles.32 

Differentially expressed genes (DEGs) were identified using the limma package33 in R. To select DEGs for in-depth 
analysis, we adopted the following criteria: a log2 fold change (FC) ≥1, and a false discovery rate (FDR) <0.05. The 
ESTIMATE R-package34 was employed to compute both ESTIMATE, Stroma scores and Immune scores within the 
GSE76925 dataset. The ComplexHeatmap package35 was utilized to generate heatmaps, illustrating the variation in 
clinical data distributions (such as Age, Sex, Race, BMI, FEV1, and FEV1/FVC subtype) across different groups. For 
molecular markers of immune-checkpoint subtypes, we selected CD274, CTLA4, HAVCR2, IDO1, LAG3, and PDCD1. 
Meanwhile, CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF were chosen as molecular 
markers for immune-activity subtypes. Box plots were subsequently generated to visualize the immune-related char-
acteristics of each subtype.

Gene Ontology /Kyoto Encyclopedia of Genes (GO/KEGG) Enrichment Analysis
The “GO plot” software package in R was used for GO36 and KEGG37 pathway enrichment analyses. GO included cell 
composition, biological processes, and molecular functions. Metascape was used to identify significantly enriched terms 
for GO and KEGG terms for differentially expressed genes (p value ≤0.01).

Gene Set Enrichment Analysis(GSEA)
Annotating potential pathway functional enrichments between gene sets using GSEA.38 Gene set enrichment analysis of 
the gene expression matrix was used to analyze the gene expression profiles of different subtypes of GSE76925 using 
clusterProfiler. The “c2.cp.kegg.v7.4.symbols.gmt” was selected as a reference in the Molecular signatures database 
(MSigDB)39 for GSEA. Statistical significance was defined as p≤0.1. The gseaplot application EnrichmentMap was used 
to visualize functional enrichment.

Weighted Correlation Network Analysis (WGCNA)
The network analysis was performed using an R package of WGCNA40 in genes of GSE76925.Then, the soft threshold 
value of the correlation matrix was set to 4(R²=0.879) and height to 0.25 to choose parameter most relevant of COPD. 
With default parameters, Metascape was used to analyze Gene Ontology/KEGG terms and visualize enrichment results, 
identifying significant terms with a maximum overlap of 3 terms. p-value< 0.01, and a minimum enrichment of 1.5.

Immune Cell Infiltration Analysis and PRG Analysis
Gene expression profiles and immune cell files of GSE76925 were used to extract an immune cell infiltrate matrix in R using 
CIBERSORT,41 where the source code and the corresponding immune cell file were downloaded. The heatmaps for immune 
infiltration of 22 immune cells from distributions for each sample were plotted using the R package ”pheatmap”. Correlation 
heatmaps of immune cell infiltration were calculated in R and visualized with the corrplot package. We analyzed the 
correlation between pyroptosis related genes and immune cell infiltration and then visualized the results using the 
PHEATMAP package.
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Human Clinical Specimens
RNA samples of COPD and normal person were obtained from Anqing Municipal Hospital, AnHui, P. R. China. The 
clinical information for these two groups was listed in Supplementary Table 4. The study protocol was approved by 
Anqing Municipal Hospital Research Ethics Committee. All patients signed clinical study consent forms. Written 
informed consent for publication of their details was obtained from the patient.

The diagnosis of COPD is based on the presence of risk factors, symptoms, and spirometry demonstrating persistent 
airflow obstruction. According to GOLD guidelines, post-bronchodilator testing with an FEV1 to forced vital capacity 
ratio less than 70% is recommended for the diagnosis of obstruction. People with COPD should receive smoking 
cessation, vaccinations, inhaler therapy, physical activity, pulmonary rehabilitation, long-term oxygen therapy and non- 
invasive ventilation.42

Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
Total RNA was extracted from whole blood samples of COPD patients and normal individuals using a combination of 
Trizol reagent (Invitrogen) and silica-based adsorption column method. Then the total RNA was reverse transcribed into 
cDNA using the HiScript 1st Strand cDNA Synthesis Kit (cDNA first-strand synthesis kit.).

Statistical Analysis
Analyses were performed using the R software (version 4.2.1). To evaluate the diagnostic impact of gene expression on 
normal and disease conditions, ROC curves were plotted and analyzed using the pROC package. Differential gene 
expression was assessed using the wilcox. test function in R. Significance levels were defined as: *p <0.05; **p <0.01; 
***p <0.001; ****p<0.0001. Regarding the method of genetic identification, we performed univariate logistic regression 
analysis on the PRGs in GSE76925, selecting genes associated with COPD diagnosis based on a significance level of 
p<0.05.
Correlations between immune cells were quantified using the Pearson correlation coefficient test. The strength of these 
correlations was categorized as follows:

● Strong correlation: r≥ 0.8
● Medium correlation: 0.6≤ |r|≤ 0.79
● Moderate correlation: 0.4≤ |r|≤ 0.59
● Weak correlation: 0.2≤ |r|≤ 0.39
● No correlation: |r| < 0.2

Significant correlations between functional genes were visualized using the corrplot function from the corrplot package in 
R. Analyses examining associations between PRGs and immune cells were conducted using the psych package in R.

Results
Data Download and Pre-Processing
The mRNA expression profile datasets of GSE76925, GSE8545 and GSE5058 (Table 1) were downloaded from GEO 
(http://www.ncbi.nlm.nih.gov/geo/). Data processing of clinicopathological characteristics was performed with the 
GEOquery, Illuminahumanv4.db and HG U133p lus2.D B packages. Expression data and annotations of genes were 
then processed using MAS5.0 normalization with the “Affy” Bioconductor package. Gene annotation files were down-
loaded from HGNC. After matching the expression matrix contains 15,575 genes and 151 samples from GSE76925, 
16,930 genes and 54 samples from GSE8545 and 16,930 genes and 39 samples from GSE5058. We searched the 
literatures related to pyroptosis and obtained 31 pyroptosis related genes (Table 2).
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Expression Mechanism of Pyroptosis Related Genes
In this study, 31 PRGs derived from the literature were screened for analysis in GSE76925. Moreover, box plots show CASP4, 
CASP5, ELANE, GPX4, GSDMB, GSDME, NLRP1, NOD1 within highly expressed genes and CASP6, IL18 within lowly 
expressed ones as compared with the normal samples (Figure 1A). Chromosome map shows that CASP4, CASP5, IL18 locate 
in chr11; GSDME, NOD1 locate in chr7, and CASP6 locates in chr4 (Figure 1B). There is a distinct difference in the expression 
patterns of PRGs between COPD and normal samples through a heatmap (Figure 1C). An interactome network graph was 
generated using STRING (Figure 1D). Figure 1E depicts a heat map representation of correlation between pyroptosis related 
genes. GO analysis revealed that PRGs were associated with interleukin-1 beta production, interleukin-1 production, positive 

Table 1 Summary of Those 3 GEO Datasets of Chronic Obstructive Pulmonary Disease 
(COPD)

ID GSE Number Platform Samples Disease References

1 GSE76925 GPL10558 111 patients and 40 controls COPD [17]

2 GSE8545 GPL570 18 patients and 36 controls COPD [18]

3 GSE5058 GPL570 15 patients and 24 controls COPD [19]

Abbreviation: COPD, chronic obstructive pulmonary disease.

Table 2 The 31 Original Pyroptosis-Related Genes That Were 
Used in This Study

Genes Name

AIM2 Absent in melanoma 2

CASP1 Cysteine-aspartic acid protease-1

CASP3 Cysteine-aspartic acid protease-3
CASP4 Cysteine-aspartic acid protease-4

CASP5 Cysteine-aspartic acid protease-5

CASP6 Cysteine-aspartic acid protease-6
CASP8 Cysteine-aspartic acid protease-8

CASP9 Cysteine-aspartic acid protease-9

ELANE Elastase, neutrophil expressed
GPX4 Glutathione peroxidase 4

GSDMB Gasdermin B

GSDMC Gasdermin C
GSDMD Gasdermin D

GSDME Gasdermin E

IL1B Interleukin 1 beta
IL6 Interleukin 6

IL18 Interleukin 18

NLRC4 NLR family CARD domain containing 4
NLRP1 NLR family pyrin domain containing 1

NLRP2 NLR family pyrin domain containing 2

NLRP3 NLR family pyrin domain containing 3
NLRP7 NLR family pyrin domain containing 7

NOD1 Nucleotide binding oligomerization domain containing 1

NOD2 Nucleotide binding oligomerization domain containing 2
PJVK Pejvakin/deafness, autosomal recessive 59

PLCG1 Phospholipase C gamma 1

PRKACA Protein kinase cAMP-activated catalytic subunit alpha
PYCARD PYD and CARD domain containing

SCAF11 SR-related CTD associated factor 11

TIRAP TIR domain containing adaptor protein
TNF Tumor necrosis factor
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Figure 1 Expression mechanism of pyroptosis-related genes. (A) Boxplots of pyroptosis-related genes, Blue represents the normal group and red represents the COPD 
group (*p<0.05; **p<0.01; *** p<0.001; ****p<0.0001). (B) Chromosomal mapping of Differential pyroptosis genes. (C) Heatmap of pyroptosis-related genes, Blue 
represents the normal group, red represents the COPD group; (D) PPI analysis the differentially expressed pyroptosis-related genes, The larger the node, the darker 
the color, the more important the gene. (E) Correlation heatmaps of pyroptosis-related genes, The color represents the strength of the relatedness, with red indicating 
negative correlation, and blue indicating positive correlation. 
Abbreviations: COPD, chronic obstructive pulmonary disease; PPI, protein–protein interactions.
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regulation of interleukin-1 beta production, inflammasome complex, cytosolic part, membrane raft and cysteine-type endo-
peptidase activity involved in apoptotic process, cysteine-type endopeptidase activity, cysteine-type peptidase activity, cysteine- 
type endopeptidase activator activity involved in apoptotic process (Figure 2A). KEGG pathway analysis showed PRGs were 
enriched in pathways, such as NOD-like receptor, TNF signaling pathway, IL-17 signaling pathway, Apoptosis and Necroptosis 
(Figure 2B). We used the R package Pathview to visualize pathway of apoptosis composing KEGG pathways (Figure 2C).

Construction of PRG Molecular Subclusters
A total of 8 pyroptosis related genes (CASP4, CASP5, ELANE, GPX4, GSDME, IL18, NLRP1, NOD1) with significant 
diagnosis were selected using univariate logistic regression analysis combined with LASSO in GSE76925 (p<0.05) 
(Figure 3A–D). A diagnostic model based on eight diagnostic markers was constructed using multiple logistic regression. 
Subsequently, we applied the above model to diagnose for each sample in GSE76925, GSE8545 and GSE5058. ROC 
curve analysis showed that risk scores were a strong diagnostic ability with an AUC of 0.809 in GSE76925, 0.765 in 

Figure 2 Functional enrichment analysis of pyroptosis-related genes. (A) GO top enrichment function dotplot; (B) KEGG top enrichment function dotplot; (C) Apoptosis 
pathway diagram. 
Abbreviations: GO, gene-ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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GSE8545 and 0.956 in GSE5058 (Figure 4A–C). The violin diagram confirms that the model has the same diagnostic 
ability (Figure 4D–F). Next, miRDB was used to screen the targeted relationship between miRNAs and diagnostic 
markers of PRGs. In addition, 7 mRNA and 174 miRNA were obtained, diagnostic marker interaction network of 
miRNA-pyroptosis was constructed (Supplementary Figure 1).

Molecular Typing Analysis Based on PRGs
Based on 31 genes related to pyroptosis, a consensus cluster analysis was performed using the ConsensusClusterPlus R package 
to classify GSE76925 COPD group into two gene clusters: gene cluster C1 and gene cluster C2 (Supplementary Figure 2).

The “limma” R package was used to screen 105 DEGs associated with pyroptosis, and the filter criteria were | 
logFoldchange (FC) | >1 and false discovery rate (FDR) <0.05, with 7 genes being upregulated and 98 genes 

Figure 3 Construction of a diagnostic model for COPD. (A) Univariate Logistic regression analysis. (B and C) LASSO logistic regression algorithm screening of COPD 
diagnostic markers. (D) Multivariate Logistic regression analysis. 
Abbreviation: LASSO, logistic least absolute shrinkage and selection Operator.
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downregulated in GSE76925 COPD group. Upregulated and downregulated genes are plotted by volcano plot 
(Figure 5A). The expression patterns and clinical characteristics of pyroptosis related genes were significantly different 
between the C1 and C2 samples through heatmap(Figure 5B and C).

The C1 group has higher risk scores than the C2 group by beeswarm plot in COPD diagnostic model scores (Figure 5D). 
We applied the Estimate algorithm from GSE76925 (COPD samples) to calculate various immune scores: ESTIMATE score, 
immune score and matrix score. The violin chart showed that each score of C1 group also exhibited significantly higher 
immune score than the C2 group (Figure 5E). The C1 group in immune-checkpoint (CD274, CTLA4, PDCD1) was 
significantly higher than the C2 group. And immune activity gene (CD8A, GZMA GZMB, PRF1) in the C1 group also 
showed significantly higher than C2 group, while TBX2 in the C1 group lower significantly than in the C2 group (Figure 5F).

GO/KEGG Enrichment Analysis
We performed gene enrichment analysis of 105 PRGs of differential genes using the Metascape online tool. The function was 
screened using p <0.01, minimum count of 3 and enrichment factor >1.5. Overall, the function of DEGs was significantly 
associated with inflammatory response, response to lipopolysaccharide, response to molecule of bacterial origin, cellular response 
to cytokine stimulus, leukocyte migration, myeloid leukocyte migration and cytokine receptor binding, receptor ligand activity, 
chemokine receptor binding, and signaling receptor activator activity. DNA-binding transcription activator activity, growth factor 
activity, transcription regulator complex, RNA polymerase II transcription regulator complex, extracellular matrix, external 
encapsulating structure, TNF signaling pathway, IL-17 signaling pathway, NF-kappa B signaling pathway, NOD-like receptor 
signaling pathway, MAPK signaling pathway (Figure 6) (Table 3). The detailed results were shown in Supplementary Table 5.

Figure 4 Validation of COPD diagnostic model. (A) GSE76925 ROC analysis of risk score. (B) GSE8545 ROC analysis of risk score. (C) GSE5058 ROC analysis of risk 
score. (D) GSE76925 violin plots. (E) GSE8545 violin plots. (F) GSE5058 violin plots.
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Figure 5 Subtype analysis. (A) Volcano plot of DEGs in C1 and C2, Red represents upregulated gene, blue represents downregulated gene, gray represents indifference 
gene; (B) Heatmap of PRGs, Red represents C2 group, blue represents C1 group; (C) Heatmap of clinical characteristics, Red represents C2 group, blue represents C1 
group; (D) Bee swarm plot of risk score, Red represents C2 group, blue represents C1 group; (E) Violin plot of immune score, Red represents C2 group, blue represents C1 
group; (F) Boxplots of immune biomarker, Red represents C2 group, blue represents C1 group (*p<0.05; **p<0.01; ***p<0.001). 
Abbreviations: DEGs, differentially expressed genes; PRG, pyroptosis-related genes.
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Figure 6 GO/KEGG enrichment analysis. (A) Network diagram of the top 20 enrichment functions the top 20 enriched terms in KEGG analysis. Cluster ID to indicate the 
color. Each node is an enriched term. (B) Network diagram of the top 20 enrichment functions. P value indicates the color. Each node is an enriched term. (C) GO BP 
enrichment results dot plot. The size of the dot represents the count number, and the color represents P value. (D) GO MF enrichment results dotplot. (E) GO CC 
enrichment results dot plot; (F) KEGG enrichment results. 
Abbreviations: GO, gene-ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; MF, Molecular Function; CC, Cellular Components.
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Table 3 GO/KEGG Enrichment Analysis

Category GO Description Count LogP

GO Biological Processes GO:0006954 Inflammatory response 25 −20.85304906

GO Biological Processes GO:0032496 Response to lipopolysaccharide 18 −16.26035766

GO Biological Processes GO:0002237 Response to molecule of bacterial origin 18 −15.77215212

GO Biological Processes GO:0009617 Response to bacterium 23 −15.17001703

GO Biological Processes GO:0071345 Cellular response to cytokine stimulus 22 −14.37853773

GO Biological Processes GO:0060326 Cell chemotaxis 14 −13.7640133

GO Biological Processes GO:0050900 Leukocyte migration 14 −13.13173926

GO Biological Processes GO:0071396 Cellular response to lipid 18 −12.81834099

GO Biological Processes GO:0006935 Chemotaxis 18 −12.77465739

GO Biological Processes GO:0042330 Taxis 18 −12.74569332

GO Molecular Functions GO:0005126 Cytokine receptor binding 15 −13.41803475

GO Molecular Functions GO:0005125 Cytokine activity 14 −13.00331778

GO Molecular Functions GO:0048018 Receptor ligand activity 17 −11.91524193

GO Molecular Functions GO:0030546 Signaling receptor activator activity 17 −11.8170326

GO Molecular Functions GO:0030545 Signaling receptor regulator activity 17 −11.1824344

GO Molecular Functions GO:0042379 Chemokine receptor binding 7 −8.255128539

GO Molecular Functions GO:0008009 Chemokine activity 6 −7.722573377

GO Molecular Functions GO:0001664 Gprotein-coupled receptor binding 9 −6.108989859

GO Molecular Functions GO:0005539 Glycosaminoglycan binding 10 −7.975209334

GO Molecular Functions GO:0008201 Heparin binding 7 −5.64462679

GO Cellular Components GO:0005667 Transcription regulator complex 13 −7.728286783

GO Cellular Components GO:0090575 RNA polymerase II transcription regulator complex 6 −3.684595276

GO Cellular Components GO:0031012 Extracellular matrix 7 −2.414412546

GO Cellular Components GO:0030312 External encapsulating structure 7 −2.410283073

GO Cellular Components GO:0044853 Plasma membrane raft 3 −2.139577205

KEGG Pathway hsa04668 TNF signaling pathway 14 −17.55473142

KEGG Pathway hsa04657 IL-17 signaling pathway 13 −16.92025671

KEGG Pathway hsa04060 Cytokine-cytokine receptor interaction 16 −14.18269091

KEGG Pathway hsa04064 NF-kappa B signaling pathway 9 −9.960989991

KEGG Pathway hsa04621 NOD-like receptor signaling pathway 10 −9.015528688

KEGG Pathway hsa05323 Rheumatoid arthritis 8 −8.886205988

KEGG Pathway hsa04061 Viral protein interaction with cytokine and cytokine receptor 8 −8.633101909

KEGG Pathway hsa05417 Lipid and atherosclerosis 9 −7.179598211

(Continued)
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GSEA
We conducted GSEA to analyze the pathway enriched in expression profile of GSE76925 /COPD according to C1 and C2 
using clusterProfiler. A p-value<0.05 was used as the threshold to determine the significant enrichment of KEGG 
pathways. (Supplementary Figure 3, Table 4). GSEA pathway of COPD in GSE76925 enrichment results showed that 
Salmonella infection, MAPK signaling pathway, Cytokine-cytokine receptor interaction, Human cytomegalovirus infec-
tion, NF-kappa B signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, Chagas disease, Pathways 
in cancer, Transcriptional misregulation in cancer, Apoptosis, Th17 cell differentiation, AGE-RAGE signaling pathway 
in diabetic complications, Coronavirus disease COVID-19, MicroRNAs in cancer, TNF signaling pathway, JAK-STAT 
signaling pathway markedly enriched (Supplementary Table 6) (Table 4).

Table 3 (Continued). 

Category GO Description Count LogP

KEGG Pathway hsa05146 Amoebiasis 7 −7.150791148

KEGG Pathway hsa05144 Malaria 8 −11.11086597

Abbreviations: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 4 GSEA

Category Enrich Function NES EnrichmentScore Pvalue

KEGG Pathway Salmonella infection −1.712018306 −0.409682221 0.001876173

KEGG Pathway MAPK signaling pathway −1.841890851 −0.437790808 0.001886792

KEGG Pathway Cytokine-cytokine receptor interaction −2.594083879 −0.625896563 0.001904762

KEGG Pathway Human cytomegalovirus infection −2.120409696 −0.518117418 0.001915709

KEGG Pathway NF-kappa B signaling pathway −2.500995015 −0.667940292 0.001926782

KEGG Pathway PI3K-Akt signaling pathway −1.828888664 −0.427287909 0.001930502

KEGG Pathway HIF-1 signaling pathway −1.818057434 −0.485601113 0.001934236

KEGG Pathway Chagas disease −2.296923224 −0.617713744 0.001934236

KEGG Pathway Pathways in cancer −1.694577382 −0.3761112 0.001934236

KEGG Pathway Transcriptional misregulation in cancer −1.858152784 −0.464047357 0.001934236

KEGG Pathway Prostate cancer −1.846604718 −0.49660916 0.001934236

KEGG Pathway C-type lectin receptor signaling pathway −2.382461064 −0.638791792 0.001941748

KEGG Pathway Tuberculosis −2.228464932 −0.558434209 0.001941748

KEGG Pathway Th17 cell differentiation −1.909515919 −0.512727104 0.001945525

KEGG Pathway T cell receptor signaling pathway −2.045880988 −0.549342702 0.001945525

KEGG Pathway AGE-RAGE signaling pathway in diabetic complications −2.245180649 −0.602856965 0.001945525

(Continued)
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WGCNA
We performed robust weighted gene co-expression network analysis to expression profile in GSE76925/COPD. With the 
soft threshold set at 4 (scale-free R2 = 0.879) and the cut height at 0.25, we finally identified sixteen modules relevant to 
this subtype of COPD (Figure 7A–D). The association between modules and clinical characteristics was measured by the 
correlation between modular feature gene values and clinical features. Figure 7C and D showed that black module was 
most significantly associated with subtype of COPD. (correlation = 0.72, p = 4.6E-70). We uploaded black module into 
STRING database to build the protein–protein interaction (PPI) network. The sub-network in the top ranked-score were 
identified with the MCODE to obtained a module (Figure 7E). We considered that this module might play a special role 
in the diagnostic mechanism of COPD subtypes, then put this module gene into Metascape. The function was screened 
by p<0.01, minimum count of 3 and enrichment factor >1.5. The results showed differentially expressed genes are 
primarily related to NF-kappa B signaling pathway, Epstein-Barr virus infection, Human T-cell leukemia virus 1 
infection, MAPK signaling pathway, TNF signaling pathway, IL-17 signaling pathway, inflammatory response, 
Coronavirus disease-COVID-19, cellular response to biotic stimulus, Chemokine signaling pathway (Figure 7F).

Analysis of Correlation Between Immune Cell Infiltration and PRGs
Correlation analysis is results show (Figure 8A) that T cells follicular helper was positively correlated with GSDMB, 
GSDMD, NOD1, PLCG1, negatively correlated with CASP6. Macrophages M2 was significant negative correlated with 
GPX4, and positively with IL18. There was significant positively correlation between T cells CD4 memory resting and 
CASP6, Plasma cells and NLRP7, AIM2, T cells gamma delta was significant negatively correlated with IL18. Heat 
maps of 22 immune cells shows a clear negative correlation between Mast cells resting and Mast cells activated; between 
T cells CD4 memory resting and T cells follicular helper (Figure 8B). Heatmap of immune cell infiltration showed 
significant differences between COPD and the normal group (Figure 8C). Compared to normal group, COPD patients had 
higher proportions of immune cells with CD4 memory activated and CD4 memory resting, and there was a significant 
difference between COPD and the normal group (Figure 8D). Finally, the box plot of immune cell infiltration presents 
T cells CD4 memory resting and Macrophages M2 showed a higher level of immune infiltration compared to normal, 
whereas Plasma cells, T cells follicular helper and T cells gamma delta with a lower level (Figure 8E).

Expression of PRGs in COPD and Normal Control
Quantitative real-time PCR (qRT-PCR) was performed to detect PRGs expression. The results showed that NOD1 and 
GSDME expression in COPD were significantly higher than in healthy individual (Figure 9A and B). However, 
expression of the six PRGs was downregulated in COPD compared with normal individual (Figure 9C–H).

Discussion
By 2030, COPD is projected to rank as the third primary cause of morbidity and mortality worldwide.1 Current 
therapeutic strategies for COPD emphasize minimizing disease activity, mitigating symptoms, stalling disease progres-
sion, and ultimately reducing disease severity. A significant challenge in the management of COPD remains the accurate 
diagnosis and prognosis.

Table 4 (Continued). 

Category Enrich Function NES EnrichmentScore Pvalue

KEGG Pathway Coronavirus disease - COVID-19 −1.894609174 −0.462941453 0.001949318

KEGG Pathway Parathyroid hormone synthesis, secretion and action −1.790883333 −0.482644158 0.001953125

KEGG Pathway Cellular senescence −2.112588758 −0.535582749 0.001960784

KEGG Pathway Human immunodeficiency virus 1 infection −1.610105286 −0.398110802 0.001960784

Abbreviations: GSEA, Gene Set Enrichment Analysis;KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Recently, a novel method of programmed cell death, termed Pyroptosis, has come into the spotlight. Investigations 
have linked pyroptosis with tumor immunity and its therapeutic implications. Chen et al8 have showcased that 
nanoparticles can induce pyroptosis predominantly through a mitochondrial apoptosis pathway, triggered by PLC in 

Figure 7 Network analysis identifies modules of co-expressed genes across disease. (A) Sample dendrogram and trait heat map; (B) Analys is of the scale-free fit index (left) 
and the mean connectivity (right) for various soft-thresholding powers; (C) The correlation of heatmap between subtype and module signature genes in COPD. (D) The 
correlation of scatterplot between subtype and black module. (E) The sub-networks with the highest of MCODE scores were identified, that is an important functional sub- 
networks in the black module. (F) GO\KEGG enrichment analysis of functional sub-networks. 
Abbreviations: COPD, chronic obstructive pulmonary disease; GO, Gene Ontology.
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Figure 8 Correlation analysis between immune cell infiltration and pyroptosis. (A) Correlation analysis between pyroptosis genes and 22 immune cell infiltration, red 
represent positive correlation, blue represent negative correlation; (B) The correlation heat map of 22 immune cells infiltration, red represent negative correlation, blue 
represent positively correlation, The darker the colour, the stronger the correlation; (C) Heatmaps of immune cells infiltration between COPD group and normal group; 
(D) Box plots of immune cell infiltrate composition, (E) Box plots of two immune cell infiltrate composition, red represents COPD group; blue represents normal group, 
*p<0.05; **p<0.01; ***p<0.001.
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early endosomes. Meanwhile, Chai et al43 revealed the pivotal role of GSDMD-induced inflammatory cytokine release 
and pyroptosis in fostering host immune responses against infections. Meng et al13 provided evidence suggesting that 
pyroptosis scores could predict the prognosis and immunotherapy response in patients with cutaneous melanoma. To our 
knowledge, this study is the pioneer in exploring the role of Pyroptosis-related genes (PRGs) in COPD diagnosis.

Previous research has identified diagnostic biomarker signatures. Meng et al13 pinpointed an optimal panel of PRGs 
that could guide immunotherapy candidates and therapeutic strategies, anchored in comprehensive evaluations of tumor 
PRG modifications. By employing pyroptotic patterns, one can ascertain patient immunophenotypes and tailor immu-
notherapy approaches.14 Furthermore, Chao et al44 introduced a prognostic model associated with PRGs in glioma 
patients. This model’s AUC values in the test set reached 0.669, 0.713, and 0.709 for 1-year, 3-year, and 5-year intervals, 
respectively. In contrast, our study identified eight PRGs with an AUC ranging from 0.765 to 0.956. Our findings suggest 
that a select combination of biomarkers is instrumental in diagnosing COPD.

Notably, CD8+ T cells and NK cells have been evidenced to instigate tumor pyroptosis via the GSDMB-GZMA axis, 
driven by interferon-γ (IFN γ). These immune cells could potentially target GSDMB-expressing cancer cells to enhance 

Figure 9 Continued.
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antitumor immunity.45 Additionally, the nuclear PD-L1 family, when overexpressed, could shift TNF-induced apoptosis 
to pyroptosis, leading to tumor necrosis and potentially promoting tumor growth.46 These studies underscore the intricate 
ties between pyroptosis and immune responses in tumor treatments. Yet, the domain of COPD remains untouched in the 
context of PRG bioinformatics.

Our research endeavors led us to devise a pyroptosis score system, gauging the diagnostic potential of PRGs in 
individual COPD patients. Based on the expression of 8 PRGs, we formulated two distinct pyroptosis modification 
paradigms. Our diagnostic classifier integrating these PRGs showcased robust discrimination in the training sets (AUC 
values: GSE76925=0.809, GSE8545=0.765) and held up impressively in the test set GSE5058 (AUC=95.6%). Beyond 
identifying the eight key PRGs (CASP4, CASP5, ELANE, GPX4, GSDME, IL18, NLRP1, NOD1) as potential 
biomarkers for COPD, we have also sculpted a diagnostic model rooted in these PRGs. Both internal and external 
validations reinforced the model’s efficacy in distinguishing COPD patients from control groups.

Figure 9 RT-qPCR analyze the mRNA of PRGs in blood between normal and COPD. (A) NOD1 mRNA (B) GSDME mRNA (C) IL-18 mRNA (D) CASP4 mRNA (E) 
CASP5 mRNA (F) ELANE mRNA (G) GPX4 mRNA (H) NLRP1 mRNA. *p<0.05; ***p<0.001; RT-qPCR: Real-time quantitative PCR.
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In addition, our study found five PRGs (NOD1, GSDME, GPX4, NLRP4, CASP4) were significantly different 
between COPD and normal control, which was consistent with the results of the box plot analysis of PRGs in GSE76925. 
NOD1 and GSDME were overexpressed in the COPD, while GPX4, NLRP1, CASP4 is underexpressed in the COPD. 
This finding is inconsistent with the results reported in the literature, which may be due to differences in the clinical 
samples collected.

The cytoplasmic nucleotide-binding oligomerization domain-1 (NOD1), a member of the NLR family, is widely 
expressed in various cell types.47,48 The N-terminal of NOD1 contains caspase activation/recruitment domains (CARDs), 
which are highly expressed in inflammatory cells. The activation of NF- κ B signaling pathway leads to the secretion of 
inflammatory cytokines.49,50 In advanced COPD stages, the upregulation of TLR4 and NOD1 in bronchial epithelia is 
connected with heightened inflammation and an increased bacterial load of P. aeruginosa.51 Elevating NOD1 expression 
in COPD mouse models exacerbated lung function impairments caused by cigarette smoke, as manifested by increased 
airway resistance, diminished functional residual capacity, and more pronounced pulmonary injury.52 In our study, T cells 
follicular helper displayed a positive correlation with GSDMB, GSDMD, and NOD1.

GSDME belongs to the Gasdermin family, which also includes GSDMA, GSDMB, GSDMC, GSDMD, and DFNB59.9 

Gasdermin E possesses a autoinhibitory dual-domain architecture, comprising the N-terminal and C-terminal domains of 
Gasdermin.53 As vital substrates for pyroptotic cell death, GSDME and GSDMD facilitate distinct forms of pyroptosis. 
GSDME-dependent pyroptosis is an inflammasome-independent pyroptosis without the assembly of inflammasomes. 
However, GSDME-N cleaved by caspase-3 has the pore-forming property to promote the release of cytokines such as IL- 
1β and IL-18, which have been confirmed in most pathological and pharmacological studies.54–56 Recently, using GSDME- 
deficient mice and human tubular epithelial cells (TECs), Xia et al found that cisplatin treatment led to pyroptosis in TECs, 
upregulation of GSDME-N expression, and induction of cell pyroptosis through pharmacological and genetic interventions. 
Silencing GSDME attenuated acute kidney injury and inflammation in mice. These findings suggest that Caspase-3/GSDME- 
induced pyroptosis and inflammation contribute to the development of acute kidney injury (AKI).56 Gan et al demonstrate 
that GSDME plays a role in the development of Crohn’s disease (CD) by inducing GSDME-mediated pyroptosis, which leads 
to the release of proinflammatory cytokines.57 Furthermore, knockout of GSDME switched the manner of death of A549 and 
human primary alveolar epithelial cells from pyroptosis to apoptosis upon H7N9 virus infection, and GSDME knockout mice 
survived H7N9 virus lethal infection.58 GSDME also plays a significant role in Corona Virus Disease 2019 (COVID-19). 
Specifically, the activation of the caspase-3/GSDME axis triggers the demise of airway epithelial cell during infection with 
SARS-CoV-2, particularly when GSDMD is absent.59 Both our study and the box plot analysis of PRGs in relevant literature 
consistently revealed a significant overexpression of GSDME in the COPD group compared to the control group.

GPX4 serves as a crucial regulator of ferroptosis, and it is capable of inducing ferroptosis in mouse tumor 
xenografts.60 Recent findings indicate that GPX4 exhibits dual functionality in OA, serving both to regulate ferroptosis 
or oxidative stress and to modulate ECM degradation via the MAPK/NFkB signaling pathway.60 Copper directly binds to 
GPX4 protein, leading to the formation of GPX4 aggregates and subsequent autophagic degradation of GPX4.61 Our 
research corroborated that M2 Macrophages were more prevalent in the COPD group, exhibiting a strong inverse 
correlation with GPX4 and a positive one with IL-18. In contrast, T cells gamma delta had a significant negative 
correlation with IL-18.

NLRP1, a member of the NOD-like receptor (NLR) family, possesses a domain known as FIIND (function-to-find 
domain).62 The NLRP1 inflammasome serves as an innate immune sensor for the SARS-CoV-2 3CL protease.59 

Inflammasome-dependent caspase-1 activity can result in pyroptosis.63 CASP4/5 bind intracellular lipopolysaccharide 
(LPS), the primary structural component of the outer membrane of Gram-negative bacteria, with high specificity and 
affinity via their N-terminal CARD domain, triggering caspase activation and resulting in pyropoptotic cell death.64 

Inhibiting CASP4 results in compromised cell migration and adhesion to the extracellular matrix in epithelial cancer 
cells.65 Alveolar macrophages isolated from asthma patients display elevated expression of caspase-4, which is the 
human homologue of caspase-11. This upregulation of caspase-4/11 suggests a significant role in allergic airway 
inflammation.66

Additionally, our thorough examination revealed significant differences in immune cell infiltration patterns in relation 
to various pyroptosis types and their clinical implications. Notably, the GSEA result was significantly enriched in 
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a myriad of pathways, including the MAPK signaling pathway, NF-kappa B signaling pathway, and HIF-1 signaling 
pathway, among others.

We employed CIBERSORT for an exhaustive analysis of COPD immune infiltration to delve deeper into the role of 
immune cell infiltration in this disease. We found the proportion of CD4 memory-resting T cells and M2 macrophages in 
COPD patients was significantly elevated compared to controls, while the presence of Plasma cells, T cells follicular 
helper, and T cells gamma delta was considerably lower.

Research indicates that pyroptosis affects immune system components, such as macrophages and dendritic cells 
(DCs).67 Pyroptosis mediates interactions between innate and adaptive immunity, shaping the cancer microenvironment 
to induce an immunostimulatory response.68 In our study, we explored the relationship between several pyroptotic genes 
and immune cell infiltration. We found these PRGs to be significantly correlated with immune cells, suggesting an 
interplay between pyroptosis and the immune response in COPD. The underlying molecular mechanisms remain to be 
elucidated.

Our study has certain limitations. Although there were differences in PRGs between the two groups in our clinical 
specimens and database data analysis, CASP4, CASP5, ELANE, GPX4, and NLRP1 were found to be expressed at lower 
levels in the COPD group compared to the control group in our clinical whole blood specimens. This finding is 
inconsistent with the results reported in the literature, which may be due to differences in the clinical samples collected. 
Our external validation was performed on two datasets with a relatively small sample size in the external validation set. 
Although the model’s AUC demonstrated reasonable discriminatory power, there is room for improvement. 
Consequently, our goal in this study was to identify and evaluate potential screening biomarkers associated with 
COPD for early diagnosis and intervention. Assessing their diagnostic accuracy and sensitivity in a larger population 
is a crucial direction for future research.

Conclusion
In this study, we identified eight potential PRGs—namely, CASP4, CASP5, ELANE, GPX4, GSDME, IL18, NLRP1, 
and NOD1—as potential diagnostic biomarkers for COPD. Notably, This is the first time these PRGs have been 
associated with COPD diagnosis. We conducted both internal and external validations of a PRGs diagnostic model for 
COPD using LASSO logistic regression. The AUC value of this model in the test set yielded values of 0.765, 0.809, and 
0.956 for datasets GSE8545, GSE76925, and GSE5058, respectively.

To further investigate the role of the immune response in COPD, we employed CIBERSORT to assess immune cell 
infiltration using our gene signatures. Preliminary correlation analysis suggests that pyroptosis may be implicated in the 
immune response observed in COPD patients. Thus, our gene signature serves as potential markers for the screening of 
COPD. The insights gained from this study not only enrich our understanding of the pyroptosis genes in patients with 
COPD but also aim to screen for biomarkers to achieve early intervention, reduce the disease burden, and improve the 
quality of life for patients with COPD.
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