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Permanent embryo arrest: molecular and cellular concepts
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Developmental arrest is one of the mechanisms responsible for the elevated levels of embryo demise during the first week of in vitro

development. Approximately 10–15% of IVF embryos permanently arrest in mitosis at the 2- to 4-cell cleavage stage showing no

indication of apoptosis. Reactive oxygen species (ROS) are implicated in this process and must be controlled in order to optimize

embryo production. A stress sensor that can provide a key understanding of permanent cell cycle arrest and link ROS with cellular

signaling pathway(s) is p66Shc, an adaptor protein for apoptotic-response to oxidative stress. Deletion of the p66Shc gene in mice

results in extended lifespan, which is linked to their enhanced resistance to oxidative stress and reduced levels of apoptosis.

p66Shc has been shown to generate mitochondrial H2O2 to trigger apoptosis, but may also serve as an integration point for

many signaling pathways that affect mitochondrial function. We have detected elevated levels of p66Shc and ROS within arrested

embryos and believe that p66Shc plays a central role in regulating permanent embryo arrest. In this paper, we review the cellular

and molecular aspects of permanent embryo arrest and speculate on the mechanism(s) and etiology of this method of embryo demise.
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Introduction

One of the features of in vitro-produced (IVP) mammalian embryos is

the high frequency of early developmental failure thought to be

brought on by sub-optimal culture environments (Johnson and

Nasr-Esfahani, 1994; Betts and King, 2001; Favetta et al., 2004a,b).

Fewer than 50% of all in vitro fertilized (IVF) embryos reach the blas-

tocyst stage of development (Xu et al., 1992) with many of these

unable to sustain development following embryo transfer (Farin

et al., 2001). Data generated from the European registers by European

Society of Human Reproduction and Embryology (ESHRE) indicate

that the clinical pregnancy rates per aspiration and per embryo transfer

were 26.6 and 30.1%, respectively, for all human IVF cycles in 2004

(Andersen et al., 2008). The reasons for this high rate of embryo

demise remains unclear, but it has been proposed as a protective mech-

anism for preventing further development of abnormal, poor-quality

embryos. Almost half of all arrested human embryos display chromo-

somal abnormalities (Almeida and Bolton, 1998), and significantly

more chromosomal aberrations are observed, alongside delayed devel-

opment, for IVP bovine embryos compared to their in vivo-derived

counterparts (Kawarsky et al., 1996; Viuff et al., 1999). Blastomeres

with characteristic features of apoptosis, including nuclear and cyto-

plasmic fragmentation, have been detected in both in vitro- and

in vivo-derived embryos, indicating that high levels of apoptosis

might play a role in early embryo death (Hardy, 1997; Kamjoo

et al., 2002). The in situ terminal uridine deoxynucleotidyl transferase

dUTP nick end labeling (TUNEL) assay, which detects fragmented

DNA, has identified a greater incidence of apoptotic nuclei in cultured

bovine blastocysts compared with those derived in vivo (Gjorret et al.,

2003). Interestingly, no morphological or biochemical signs of apoptosis

has been observed during the early cleavage stages of embryogenesis

(Byrne et al., 1999; Matwee et al., 2000, 2001; Betts and King, 2001;

Hardy et al., 2001; Gjorret et al., 2003). It is at this early developmental

stage that �15% of all IVP bovine embryos are permanently arrested in

a senescence-like state (Fig. 1). Our preliminary results have revealed

that roughly 10% of all human embryos produced by IVF or intracyto-

plasmic sperm injection permanently arrest at the early cleavage stages

in culture and that 40% of patients exhibit at least one arrested embryo

per treatment cycle indicating that this is a common phenomenon in

humans as well (D. H. Betts, unpublished results). In this review we

discuss what permanent early embryo arrest is, the role of reactive

oxygen species (ROS) and the possible molecular mechanism(s)

involved in mediating this event, and speculate on the causative role

of telomere integrity in this context.

Permanent embryo arrest is a non-apoptotic event

Programmed cell death, or apoptosis, is a feature of both IVP and

in vivo-derived preimplantation/preattachment stage embryos

(Hardy, 1997; Matwee et al., 2000; Kamjoo et al., 2002). Apoptosis,

a mechanism to rid the early embryo of unwanted or damaged cells,

if extensive, could also lead to developmental failure. In spite of

this effective program, the ability of an early embryo to undergo apop-

tosis appears to be developmentally regulated (Betts and King, 2001;
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Hardy et al., 2001). No morphological, biochemical or molecular indi-

cation of apoptosis has been observed before the 8-cell stage of bovine

and human embryos (Byrne et al., 1999; Hardy, 1999; Matwee et al.,

2000; Gjorret et al., 2003). Conversely, exposure of 2- to 4-cell

embryos to agents that either depolarize mitochondria (carbonyl

cyanide m-chlorophenylhydrazone, CCCP) or inhibit protein kinases

(staurosporine) can partially activate the apoptotic pathway, with

embryos exhibiting some caspase activation and limited DNA frag-

mentation (Matwee et al., 2000; Brad et al., 2007; Gjorret et al.,

2007). These observations suggest that all the components of the apop-

totic machinery are at hand, but that 2- to 4-cell embryos cannot nor-

mally elicit this process because they either have immature

(undifferentiated) mitochondria (Plante and King, 1994; Van

Blerkom, 2004) and/or that they have to overcome some inhibition

of the cell death pathway by the way of non-ascertained factor(s)

(Weil et al., 1996; Brad et al., 2007). Interestingly, embryos derived

from somatic cell nuclear transfer (SCNT) display some character-

istics of apoptosis at the 2- to 4-cell cleavage stage (Gjorret et al.,

2005), probably because nuclear reprogramming of the differentiated

somatic cell genome (which does has the ability to trigger apoptosis)

occurs gradually over the first 2- or 3-cell cycles (King et al., 1996). It

would appear, therefore, that a unique mode of embryo demise is in

operation at the 2- to 4-cell cleavage stage where they enter a perma-

nent cell cycle arrest state (Favetta et al., 2004a,b), are still metaboli-

cally active (D. H. Betts, unpublished data; Fig. 1D) and exhibit high

levels of intracellular ROS (Favetta et al., 2007b). These character-

istics of permanent embryo arrest are reminiscent of the well-known

and delineated phenomenon-cellular senescence.

Permanent embryo arrest5cellular senescence?

Replicative senescence is an in vitro event, described first by Leonard

Hayflick who proposed that most proliferating somatic cell types

permanently stop dividing after a limited number of population dou-

blings (Hayflick and Moorhead, 1961). Senescent cells display distinct

morphological and gene expression profiles of ‘aged’ cells that

accumulate in vivo in tissues with increasing age (Herbig et al.,

2006). In vivo senescence may contribute to organismal aging as a

consequence of its proposed role as a potent tumor suppressor mechan-

ism (Di Micco et al., 2007). Cellular senescence is thought to be a DNA

damage-response to oncogene-induced DNA replication stress and/or to

telomere disruption, both converging on the p53 DNA damage signal-

ing pathway (Bartek et al., 2007). We have previously shown that

permanent replication arrest of cultured bovine somatic cells is associ-

ated with telomere shortening (Betts et al., 2008), increased levels of

serine 20-p53 phosphorylation, and elevated levels of oxidative

damage (Favetta et al., 2004a). Since cellular senescence can occur

prematurely under conditions of elevated oxidative stress (Toussaint

et al., 2000; von Zglinicki, 2000) and can be activated by disruption

of the telomere structure itself, even at maximally long telomere

lengths (Li et al., 2003; Stewart et al., 2003), we hypothesize that

arrested mammalian embryos permanently stop dividing at the 2- to

4-cell stage of early development by a similar stress signaling pathway.

Permanent embryo arrest is dependent on the time of first clea-

vage, with �15% of embryos arrested at the 2- to 4-cell stage if

their first cleavage event was at 32 hpi, while only �1% of

embryos were arrested among those cleaved at 26–28 hpi (Favetta

et al., 2004b). Embryos cultured in 20% oxygen conditions

display significantly elevated levels of intracellular ROS and

higher frequencies of permanent embryo arrest compared with the

embryos produced under 5% oxygen atmospheres (Favetta et al.,

2007b). Unlike senescent fibroblasts (Favetta et al., 2004a), no

significant differences in mRNA and protein levels of the tumor sup-

pressor p53 are observed in both arrested and late cleaving embryos

compared with their early cleaving counterparts (Favetta et al.,

2004b, 2007a,b). However, like senescent fibroblasts (Favetta

Figure 1: Permanently arrested 2- to 4-cell embryos are metabolically active, non-apoptotic and display high levels of p66Shc and phosphorylated histone g-H2A.X
foci.
(A) On Day 8 of in vitro bovine embryo culture, blastocyst (BL) development is typical but there also exists arrested (*) 2- to 4-cell embryos displaying no mor-
phological signs of apoptosis. (B and C) Immunofluorescent detection of fragmented DNA in bovine 2-cell embryos and BLs by TUNELTM assay. No DNA frag-
mentation (a hallmark of apoptosis) was ever observed in early 2- to 4-cell cleavage stage embryos (B) but is a normal occurrence (*) in later stage embryos (i.e. 8- to
16-cells, morulae and BLs) (C). (D) Two- to four-cell arrested embryos (even on the 6–8 days of culture) stain positive for Calcein (green fluorescence) indicating
that, like their senescent somatic cell counterparts, arrested embryos are still metabolically active whereas fragmenting embryos are not (*). (E and F) The associ-
ation of elevated p66Shc (red staining) with phosphorylated histone g-H2A.X foci (green foci, arrow) is apparent in arrested 2-cell embryos (E) compared with low
p66Shc and no nuclear g-H2A.X staining in proliferating 2-cell embryos (F). Green and red colors in each representative photomicrograph indicate positive staining
for phosphorylated g-H2A.X (Alexa FlourTM 488) and p66Shc (Alexa FlourTM 596), respectively. Corresponding nuclei (insets) of each embryo are stained with
DAPI (blue).

Betts and Madan

446



et al., 2004a), significantly higher levels of the oxidative stress

adaptor protein p66Shc have been detected in arrested embryos

(Favetta et al., 2004b, 2007a,b). These results further substantiate

the view that permanent embryo arrest may be mediated by the pro-

duction of intracellular ROS.

The involvement of oxygen tension and ROS in
permanent embryo arrest

ROS are implicated in the induction of apoptosis (Stone and Yang,

2006) and cellular senescence (Passos et al., 2007). Specificity

could be determined by the intensity of the pro-oxidant challenge

since the treatment of different primary cells with increasing doses

of exogenous hydrogen peroxide (H2O2) induces proliferation, senes-

cence or apoptosis, respectively (Chen et al., 2000). Somatic cell pro-

liferation is inhibited by high-oxygen culture environments (Balin

et al., 2002) as well as by treatment with H2O2 (Chen and Ames,

1994). Conversely, low-oxygen conditions and antioxidant treatments

prolong the proliferative lifespan of cell cultures (Packer and Fuehr,

1977; Poot, 1991).

Among the various culture conditions and exogenous factors that

lead to elevated production of ROS in embryos, including the traces

of metallic cations, visible light and amino oxidases, the in vitro

oxygen tension is the most studied and the easiest to control (Guerin

et al., 2001). Earlier studies have demonstrated the detrimental

effects of culturing embryos of various species under atmospheric

(�20%) oxygen concentrations (Pabon et al., 1989; Nagao et al.,

1994; Dumoulin et al., 1999) and the beneficial effects of reducing

the oxygen tension (Dumoulin et al., 1999; Hashimoto et al., 2000;

Orsi and Leese, 2001) and co-culturing with somatic cells to

provide an oxidant ‘buffering’ system (Xu et al., 1992; Nagao et al.,

1994). Reducing the oxygen concentration of embryo culture from

20 to 5% enhances embryo development to the blastocyst stage and

increases their total cell counts (Batt et al., 1991; Nagao et al.,

1994; Gardner and Lane, 1996), probably by reducing the proportion

of cells undergoing apoptosis (Van Soom et al., 2002). Enhanced

embryo development under lower oxygen conditions is thought to

be attributable to improved embryo metabolism (Khurana and

Wales, 1989; Du and Wales, 1993) and decreased ROS production

leading to reduced oxidative stress (Guerin et al., 2001).

A direct relationship between increased H2O2 production and elev-

ated embryo fragmentation has also been documented, suggesting that

ROS may induce apoptosis in embryos (Yang et al., 1998). In

addition, it has been noted that embryos cultured in 20% oxygen con-

ditions sustain a 10-fold increase in intracellular H2O2 levels and a

2-fold increase in the frequency of permanent embryo arrest at the

2- to 4-cell stage, compared with embryos cultured in 5% oxygen ten-

sions (Favetta et al., 2007b).

More recently, we have observed a dose-dependent increase in per-

manent embryo arrest after exposure of 2- to 4-cell embryos to H2O2

and that this oxidant-induced embryo arrest can be abrogated by

exposure to an antioxidant, PEG-Catalase (D. H. Betts, unpublished

results). Although oxidative stress appears to signal a permanent

senescence-like state in 2- to 4-cell bovine embryos, exposure of

oocytes and late-cleavage stage embryos (8- to 16-cells, morulae

and blastocysts) to exogenous H2O2 imposes a dose-dependent

increase in apoptosis (D. H. Betts, unpublished results), suggesting

that ROS-mediated events are developmentally regulated. Intracellu-

lar ROS levels are significantly more abundant in 2- to 4-cell arrested

embryos (D. H. Betts, unpublished results) and in an embryo popu-

lation that exhibit higher frequencies of permanent embryo arrest

(Favetta et al., 2007b). Concentration of non-toxic ROS, via altera-

tions in the reduction-oxidation (redox) state, is considered to be an

important mechanism that regulates cellular functions including

energy production and proliferation in early embryos by way of redox-

sensitive transcription factors (Harvey et al., 2002). Interestingly,

oxygen tension has recently been shown to alter gene expression in

blastocysts (Harvey et al., 2004, 2007) possibly through epigenetic

mechanisms (Islam and Mendelson, 2006). It is intriguing to speculate

that permanent embryo arrest may be activated directly by ROS/

oxygen-mediated gene expression. It is well established that the elev-

ated ROS levels generate damage to cells/embryos through increased

lipid peroxidation (Nasr-Esfahani et al., 1990; Nasr-Esfahani and

Johnson, 1992), and protein oxidation, and induce DNA strand

breaks (Guerin et al., 2001; Orsi and Leese, 2001), including telomeric

DNA (Petersen et al., 1998). All of these are also observed features of

senescent somatic cells.

Does telomere dysfunction play a role in embryo
arrest?

The signaling of permanent cell cycle arrest has long been attributed to

the critical shortening of telomere(s), the repetitive DNA sequences

(TTAGGG)n and associated proteins located at the ends of mamma-

lian chromosomes (Harley et al., 1990, 1992; Allsopp et al., 1992,

1995; Vaziri, 1997; Vaziri and Benchimol, 1998). Telomere shorten-

ing can be overcome by the de novo synthesis of telomeric DNA by

telomerase (Greider and Blackburn, 1985), a multi-subunit reverse

transcriptase that uses its RNA component (TERC) to align itself to

the chromosomal ends and as a template for the synthesis of telomeric

sequences (Collins and Greider, 1995; Collins et al., 1995). High

levels of telomerase activity have been detected in germ line tissues,

cells of renewal tissues, cancer cells and immortalized cell lines but

not in most somatic tissues (Kim et al., 1994; Harle-Bachor and

Boukamp, 1996; Wright et al., 1996; Betts and King, 1999). Ectopic

expression of the telomerase catalytic subunit (TERT) extends replica-

tive lifespan while preserving long telomere lengths and normal kar-

yotypes in diploid somatic cells (Bodnar et al., 1998; Thomas et al.,

2000). Conversely, late generation mice lacking the telomerase

RNA (mTERC2/2) component display shortened telomeres,

chromosome abnormalities and exhibit infertility, increased apoptosis

and a decreased cell proliferation in the testis, bone marrow and spleen

(Blasco et al., 1997; Lee et al., 1998). Together, these results demon-

strate that telomeres provide chromosomal stability and regulate the

proliferative capacity of cells in vivo and in vitro.

We have previously shown that the permanent cell growth arrest of

cultured bovine somatic cells is associated with telomere shortening

(Betts et al., 2008), increased levels of serine 20-p53 phosphorylation,

and elevated levels of oxidative damage (Favetta et al., 2004a). Cellu-

lar senescence occurs prematurely under the conditions of elevated

oxidative stress (von Zglinicki, 2000, 2002) and can be activated by

disruption of the telomere structure itself, even at maximally long tel-

omere lengths (Li et al., 2003; Stewart et al., 2003). Mild hyperoxia

and even normoxic (20% oxygen) culture environments inhibit the

proliferation of human fibroblasts and increase telomere shortening/

damage by causing single-stranded breaks specifically within telo-

meric DNA (von Zglinicki et al., 1995; Petersen et al., 1998; Sitte

et al., 1998). ROS damage to the telomeres accumulates due to cellular

deficiencies in the repair of such damage (Petersen et al., 1998).

Single-stranded telomeric DNA contributes significantly to telomere

shortening (Makarov et al., 1997; Petersen et al., 1998), but also

acts as a trigger of p53-dependent cell cycle arrest and cell death

(von Zglinicki, 1998; Saretzki et al., 1999). Telomeres therefore act

as sentinels that signal cell cycle arrests by the accumulation of single-

stranded telomeric DNA above a certain threshold in length and/or

amount that abrogates a functional telomere structure. Indeed,
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experimental disruption of the telomerase catalytic subunit (hTERT)

in proliferating normal diploid somatic cells disrupts telomere struc-

ture (telomere uncapping) and subsequently activates an early senes-

cence phenotype (Masutomi et al., 2003). ROS-mediated disruption

of the telomere structure may explain the high rates of developmental

arrest of IVP embryos and the stochastic variation in division capacity

within somatic cells cultures (Sozou and Kirkwood, 2001). Conver-

sely, under high-oxidative stress conditions, TERT is reversibly

excluded from the nucleus, where it co-localizes with mitochondria,

possibly providing protection through improved mitochondria metab-

olism and reduced ROS-generation (Ahmed et al., 2008). Interest-

ingly, we have localized TERT in proliferating 2-cell bovine

embryos as large punctate foci reminiscent of the mitochondria stain-

ing patterns observed in early cleavage-stage embryos (D. H. Betts,

unpublished results). Also, our preliminary results from pharmaco-

logically treating bovine embryos with telomerase inhibitors have

shown an increased incidence of permanent embryo arrest

(D. H. Betts, unpublished results). There is now supporting evidence

that telomere-dysfunction induced senescence/apoptosis is triggered

by the production of mitochondrial ROS (Liu et al., 2002a,b,c; Liu

et al., 2003; Passos et al., 2007). Co-localization of phosphorylated

histone g-H2A.X fluorescence, a marker of DNA damage, to the telo-

meres indicates telomere dysfunction-induced foci (Herbig et al.,

2004, 2006). We have observed g-H2A.X foci in the arrested 2-cell

embryos but no staining in their proliferating counterparts

(D. H. Betts, unpublished results; Fig. 1E and F). Telomere and/or

mitochondrial dysfunction could explain the ‘pre-mature’ arrest

states that arise in vivo or in vitro after exposure to oxidative stresses

for cells and embryos that possess relatively long telomere lengths

(Betts and King, 2001; Favetta et al., 2004a,b; Kurz et al., 2004).

The role of the stress adaptor protein p66Shc
in embryo arrest

At the molecular level, the response of somatic cells to oxidative stress

appears to involve the tumor suppressor protein p53, which recognizes

free radical-induced DNA damage (Migliaccio et al., 1999; Sharpless

and DePinho, 2002). p53 leads cells to either die through apoptosis, or

to arrest in response to a variety of cellular stresses, such as DNA

damage, hypoxia, oxidative stress, excessive mitogenic stimuli or

denuded telomeres (Donehower, 2002; Sharpless and DePinho,

2002). At low concentrations, ROS can modulate p53, but are also

suggested to be downstream mediators of p53 in p53-dependent apop-

tosis (Johnson et al., 1996). Although we have detected significantly

elevated levels of p53 in senescent bovine fibroblasts (Favetta et al.,

2004a), our studies have also shown that p53 might not play a signifi-

cant role during early embryo development (Matwee et al., 2000;

Favetta et al., 2004b). This was further confirmed by more recent

studies (Velez-Pardo et al., 2007). It would be interesting to

examine the isoforms of p53 (p63 and p73) as possible inducers of

early embryo arrest.

A stress sensor that can link intracellular ROS levels with perma-

nent arrest of replication in cultured cells and embryos is p66Shc, a

newly identified protein belonging to the Shc family of adaptors for

signal transduction in mitogenic and apoptotic-responses (Pinton

and Rizzuto, 2008). p66Shc is a splice variant of p52Shc/p46Shc, a

cytoplasmic signal transducer Shc family involved in mitigating pro-

liferation signals from activated receptors to Ras (Pelicci et al., 1992).

Deletion of p66Shc in mice results in approximately a 30% increase in

lifespan because of a greater resistance to oxidative stress and

reduction in p53-mediated apoptosis (Migliaccio et al., 1999). The

observations that p66Shc is required for early mitochondrial responses

to oxidative challenge including mitochondrial fragmentation and

suppression of Ca2þ signal propagation (Pinton et al., 2007) and

that forkhead/FOXO activity is regulated by intracellular ROS in a

p66Shc-dependent, mitochondrial and extra-mitochondrial manner

(Fig. 2) suggest that intracellular H2O2/ROS might also provide

specific signaling functions in cellular senescence (Nemoto and

Finkel, 2002). Upon serine-36 phosphorylation, p66Shc is translo-

cated into the mitochondrial intermembrane space where it interacts

with reduced cytochrome c to produce H2O2 and to open the per-

meability transition pores which allow the generation and release of

ROS into the cytosol (Orsini et al., 2004; Giorgio et al., 2005;

Pinton et al., 2007). This p66Shc-mediated intracellular ROS pro-

duction may facilitate permanent replication arrest in cells/embryos

at modest ROS levels and induce apoptosis at high ROS doses

(Fig. 2). The activation of permeability pores in a subpopulation of

mitochondria may provide the means for the embryo to regulate mito-

chondrial metabolism and/or remove impaired mitochondria by trig-

gering their autophagic degradation (Elmore et al., 2001; Hajnoczky

and Hoek, 2007). Morphologically good-quality embryos have mito-

chondria localized at the nuclear periphery; however, they are also dis-

tributed at the outside edges of cytoplasm in granular and clumped

aggregates (Neganova et al., 2000; Wilding et al., 2001). In contrast,

in slow developing or blocked embryos, the distribution pattern is

more uniform with dense mitochondria accumulated around the

nuclei while the marginalized cytoplasmic clusters of mitochondria

and mitochondrial activity remain strikingly reduced (Neganova

et al., 2000; Wilding et al., 2001). These observations point to a poss-

ible connection between cytoskeletal organization and the activity of

motor proteins involved in mitochondrial transport (Neganova et al.,

2000). The mitochondrial aggregation patterns closely parallel the

p66Shc distribution pattern observed in proliferating cells and arrested

2- to 4-cell embryos (Favetta et al., 2004b, 2007a,b). It would be inter-

esting to perform co-localization studies of activated p66Shc with

MitoTrackerw staining of mitochondria in embryos to correlate

p66Shc staining intensities with trans-membrane potentials. It

would be equally interesting to test whether or not the serine–

threonine kinase mTOR is present in arrested embryos since it inhibits

autophagy (Meijer and Codogno, 2006) and augments mitochondrial

metabolism and ROS generation (Nemoto et al., 2006). This mTOR-

regulation of mitochondrial autophagy/metabolism may also be under

the control of the extra-mitochondrial p66Shc pathway (Fig. 2). This

line of events has been linked to the activation of Akt, which leads

to the phosphorylation of Forkhead (FOXO) transcription factors

(Nemoto and Finkel, 2002). Subsequent reduction in forkhead-

dependent transcriptional activity (Kops et al., 1999; Takaishi et al.,

1999; Nemoto and Finkel, 2002) provides for cell survival and resist-

ance to apoptosis (Kops et al., 2002; Nemoto and Finkel, 2002), which

are requirements for permanent cell cycle arrest.

Although low levels of p66Shc are detected in post-mitotic cells

(Conti et al., 1997, 2001), we have demonstrated significantly elevated

levels of p66Shc mRNA and protein in senescent bovine fibroblasts

and permanently arrested embryos in the absence of apoptosis

(Favetta et al., 2004a,b). These elevated levels of p66Shc are associ-

ated with more extensive oxidative damage and the production of

intracellular ROS (Favetta et al., 2004a,b, 2007a,b). It is interesting

that early cleavage-stage embryos, which are more or less transcrip-

tionally quiescent, have rising p66Shc mRNA levels as the duration

of arrest increases (Favetta et al., 2004b). The high levels of p66Shc

in arrested embryos may be a result of faulty degradation of maternal

mRNAs. A recent report from Richard Schultz’s group has revealed

through global gene expression profiling that many maternal tran-

scripts are not properly degraded during maturation of aged (low

quality) oocytes (Pan et al., 2008). Gene products such as p66Shc

may be present at sufficient quantities in low-quality cleavage-stage
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embryos prior to embryonic genome activation to elicit various cellu-

lar processes including permanent cell cycle arrest. The detection of

increased levels of the cyclin-dependent kinase inhibitor p27 in

arrested cleavage-stage human embryos (Civico et al., 2002) further

supports this assumption.

Likewise, increasing levels of p66Shc have been detected in aging

human diploid fibroblasts and exposure to oxidative stress has been

shown to induce greater levels of p66Shc in cells from aged individuals

relative to their younger counterparts (Pandolfi et al., 2005). Elevated

quantities of the cell cycle regulator p21waf1/cip1 have been detected

upon p66Shc activation in epidermal growth factor-stimulated A431

cells (Sato et al., 2002). Oxidant or antioxidant treatment of embryos

at different embryonic stages modulates the occurrence of permanent

embryo arrest or apoptosis depending on the stage of development at

which the embryos were treated (D. H. Betts, unpublished data).

These observations suggest that ROS-induced embryo arrest is devel-

opmentally regulated. Furthermore, our recent observation that RNA

interference knockdown of p66Shc in bovine embryos significantly

diminishes the occurrence of permanent embryo arrest (Favetta et al.,

2007a) supports the hypothesis that p66Shc regulates the senescence-

signaling pathway in cells and embryos. Moderate production of

ROS/H2O2 (oxidative stress) by mitochondrial p66Shc may mediate

global changes in gene expression/activation and the induction of oxi-

dative telomeric damage resulting in permanent arrest of growth in cells

and blastomeres (Fig. 2).

Why embryo arrest?

The question that still comes up is: why do early embryos, equipped

with such a potent apoptotic mechanism to rid itself of damaged or

unwanted cells, have this alternative permanent-arrest state? The

early cleavage divisions are under maternal control (Braude et al.,

1988), using transcripts accumulated during oogenesis. Depending on

the level of specific maternal stores and the typically low gene

expression profiles of most genes, early cleavage embryos, which are

sensitive to their micro-environment, including suboptimal culture con-

ditions, may signal permanent embryo arrest at this stage of develop-

ment as a means to prevent further development of low-quality

(abnormal/damaged) embryos (Betts and King, 2001). Embryo arrest

may be another mechanism to prevent further development of certain

chromosomally abnormal embryos (Almeida and Bolton, 1998), and/

or embryos that fail to activate embryonic genomes (Artley et al.,

1992). This is especially relevant since early cleavage embryos,

which display a high proportion of undifferentiated mitochondria

(Sathananthan and Trounson, 2000), are not subject to the scrutiny of

cell cycle checkpoints (Hartwell and Weinert, 1989). Alternatively,

p66Shc-mediated embryo arrest may represent a failed attempt to regu-

late mitochondrial trans-membrane potential to compensate for meta-

bolic over-reactivity resulting in the overproduction of ROS.

Germ cells show high levels of telomerase (Betts and King, 1999)

and it has long been held that the telomere length is reset in gametes

Figure 2: p66Shc is proposed to regulate a ROS-mediated, telomere dysfunction pathway that signals permanent embryo arrest.
Extracellular stressors such as H2O2 or intracellular mitochondrial ROS production can activate various kinases that subsequently activate p66Shc (serine-36 phos-
phorylation) leading to its mitochondrial translocation and p66Shc-mediated ROS production and release from the mitochondria that can be partially detoxified by
antioxidants. Oxidative stress can also activate the p66Shc-Akt-FOXO pathway, which leads to the activation/inactivation of the forkhead family (FOXO) of tran-
scription factors by post-translational modifications. The effects of acetylation and deacetylation of FOXO appear to be promoter specific, altering (up- or down-
regulation) the expression of various genes that will promote permanent cell cycle arrest. Although high levels of intracellular ROS can lead to necrosis or apoptosis,
moderate levels of ROS can accelerate telomere shortening and/or cause telomere-uncapping leading to a DNA damage response that activates permanent cell cycle
arrest. This cyclic pattern of ROS-mediated activation of p66Shc leads towards continual intracellular ROS production and mitochondrial dysfunction, allowing for a
cellular environment favoring mitochondria autophagy or senescence-activation (anti-apoptosis) via a retrograde response and/or other Ca2þ-dependent signaling
pathways (not shown). HSP90, Heat shock protein 90; PKCb, protein kinase C b; PP2A, protein phosphatase 2A; Pin 1, peptidyl-prolyl cis/trans isomerase; AKt,
protein kinase b.
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(Kozik et al., 1998; Baird et al., 2006) to ensure that each generation

begins life with its complement of telomeres intact. Surprisingly,

recent studies have shown that there is considerable telomere lengthen-

ing in early post-fertilization stages of embryo development (Schaet-

zlein et al., 2004; Liu et al., 2007). Telomeres of mouse oocytes are

shorter compared with their somatic cells counterparts; but, they are

predominantly elongated in the early cleavage stages presumably by

telomere sister-chromatid exchanges (Liu et al., 2007). Permanent

embryo arrest could be the result of a checkpoint mechanism that evalu-

ates the ability of an embryo to establish the correct telomere length and

structure (telomere integrity) at the outset of development since proper

telomere length and structure have long-lasting implications for health

and reproduction (Liu et al., 2002a,b,c; Epel et al., 2004, 2006; Aydos

et al., 2005; Keefe et al., 2005, 2006).

Future perspectives

Entry into a permanently arrested state is likely determined by an

embryos’ ability to protect and lengthen its telomeres (TERT and

other telomere-associated proteins), its potential to combat ROS (anti-

oxidants) and its capacity to regulate the p66Shc pathway. Oxidative

stress activation of p66Shc, which induces H2O2/ROS generation and

mitochondrial dysfunction, may be a key player in the positive feed-

back signaling pathway required for permanent cell cycle arrest.

Other investigators have suggested that p66Shc polymorphism may

be linked to longevity (Ventura et al., 2002; Mooijaart et al., 2004)

and may even be associated with fertility in humans. P66Shc

appears to regulate mitochondrial metabolism in a way that modulates

the quantity of ROS released into the cytosol. Depending on when

p66Shc is activated during preimplantation development and on the

amount of ROS generated, the oxidative stress-induced telomere

uncapping may lead to permanent embryo arrest or apoptosis. Telo-

mere length has been recently used to predict developmental compe-

tence of human embryos (Keefe et al., 2005). Therefore, genetic or

pharmacological modification of the p66Shc pathway by promoting

stress resistance could have direct implications for various age-related

diseases and infertility in humans (Napoli et al., 2003; Francia et al.,

2004; Graiani et al., 2005; Berry et al., 2006; Tothova et al., 2007).

The observation that �50% of human embryos arrested at the 2- to

4-cell stage display a normal karyotype (Almeida and Bolton, 1998)

indicates that technical means to combat permanent cell cycle arrest

could alleviate some cases of age-related infertility and that these

embryos, originally deemed to be non-viable biological waste, could

serve as a less ‘controversial’ source for embryonic stem cells for

use in regenerative medicine or in the very least additional means to

study human embryonic stem cell biology.
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