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Abstract: Several dental materials contain silver for antibacterial effect, however the effect is relatively
low. The reason for the lower antibacterial efficacy of silver is considered to be the fact that silver ions
bind to chloride ions in saliva. To develop new effective silver antibacterial agents that can be useful
in the mouth, we synthesized two novel amino acid (methionine or histidine)–silver complexes (Met
or His–Ag) loaded with montmorillonite (Mont) and analyzed their antibacterial efficacy. At first
the complexes were characterized using nuclear magnetic resonance (NMR), and amino acid–Ag
complex-loaded Mont (amino acid–Ag–Mont) were characterized using X-ray diffraction (XRD) and
scanning electron microscopy (SEM). The antibacterial efficacy of these materials in dental acrylic
resin was then investigated by bacterial growth measurement using a spectrophotometer. As controls,
commercially available silver-loaded zeolite and silver-zirconium phosphate were also tested. Dental
acrylic resin incorporating His–Ag–Mont strongly inhibited Streptococcus mutans growth. This was
explained by the fact that His-Ag complex revealed the highest amounts of silver ions in the presence
of chloride. The structure of the amino acid–Ag complexes affected the silver ion presence in chloride
and the antibacterial efficacy. His–Ag–Mont might be used as antibacterial agents for dental materials.

Keywords: montmorillonite; amino acid; antibacterial; Streptococcus mutans; nuclear magnetic reso-
nance; X-ray diffraction

1. Introduction

Silver ions (Ag+) have long been known to be effective against a broad range of
microorganisms [1]. The broad-spectrum antimicrobial properties of silver encourage its
use in biomedical applications, water and air purification, food production, cosmetics,
clothing, and numerous household products [2].

In dentistry, major diseases such as caries and periodontitis occur due to bacterial
infection. Silver compounds have been used to prevent these diseases from as early as
the 1840s, when silver nitrate was used to reduce the incidence of caries in the primary
dentition. Silver nitrate, silver fluoride, and silver diamine fluoride have been used for
dental application or in addition to dental restorative materials [3–6]. Nevertheless, the
antibacterial effects of these compounds may be lower than expected because silver ions
easily interact with chloride in a saliva solution [7]. To obtain greater antibacterial effects,
silver nanoparticles show more efficient antimicrobial properties due to their large surface
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area [8–10]. However, increasing consumption of silver products leads to worries about
human and environmental toxicity and silver resistance in bacteria [5,11]. Therefore,
the effectiveness of antibacterial materials with low concentrations of release remains to
be investigated.

Other researchers found that silver(I) complexes with donor atoms such as nitrogen
or oxygen have a wide effective spectrum of antimicrobial activity [6–13]. For amino acid–
silver complex materials, several amino acids such as histidine [14], arginine, glutamic
acid [15,16], and aspartic acid [17,18], have been investigated. Each amino acid revealed
different antibacterial effects. In our previous study, we investigated the concentration of
Ag+ in several amino acid–silver complexes in sodium chloride and marine water. The
histidine–amino acid complex and methionine-amino acid complex showed higher Ag+

ion concentration in high–Cl− marine water [19].
Safety is most important for applying materials for dental application. Essential

amino acids exist in food and the human body, and people take them as supplements.
Therefore, essential amino acids are not toxic to use for dental applications. However, no
previous report has examined whether these silver-amino acid complexes can be used for
dental application.

In this study, we investigated the antibacterial effect of amino acids-silver in dental
acrylic resin. When dental acrylic resin is hardened after the powder and liquid react, it
is difficult to release antibacterial materials from dental acrylic resin. In order to release
amino acids–silver, they were loaded onto montmorillonite. Montmorillonite has a layered
structure and is often used as a material on which other molecules/compounds [20,21].
For example, the copper nanoparticle loaded montmorillonite can release copper ions
and revealed an antibacterial effect not only on contact with materials but also in the
surrounding medium [22]. The objective of this study was to investigate differences in the
amino acid–silver complex on antibacterial efficacy. The null hypothesis of this study was
that the different silver compounds would show no differences in their antibacterial effects.

2. Materials and Methods
2.1. Synthesis of Amino Acid–Silver Complexes Loaded onto Montmorillonite

We mixed 10 mM essential amino acid (histidine or methionine) solution with 4 mM
AgNO3 solution at a molar ratio of 10:1 = amino acid: Ag+ to form the amino acid–
silver complex. Subsequently, 0.5 g of montmorillonite was added to this solution and
mixed for 15 h at 50 ◦C. Met–Ag–Mont (methionine–silver–montmorillonite) and His–Ag–
Mont (histidine–silver–montmorillonite) were centrifuged, the supernatant was removed,
washed with a distilled water, and then the pellet was dried for 5 h at 50 ◦C.

2.2. Resin Sample Preparation

As antibacterial materials, montmorillonite, Met–Ag–Mont, His–Ag–Mont, silver-
zeolite (AJION, Sinanen Zeomic Co. Ltd., Nagoya, Japan), and a silver-based inorganic
antimicrobial agent (NOVARON AG300, Toagosei, Tokyo, Japan) were used. These materi-
als were added to dental acrylic resin powder at 0.01, 0.02, 0.03, and 0.05 w% (Unifast lll,
GC Tokyo, Japan). The powder was mixed with a regulated amount of Unifast liquid. The
acrylic resin was put in a 10 mm diameter, 2 mm thickness silicon mold and kept for 5 min.
The surface of the acrylic resin plate was polished using 15 µm diamond rapping film.

2.3. Nuclear Magnetic Resonance (NMR) Measurement

In order to measure nuclear magnetic resonance (NMR), each amino acid-silver com-
plex was dissolved in D-water. We recorded the 1H and 13C NMR spectra at room tem-
perature on an NMR spectrometer (UNITY INOVA400NB, Varian Japan, Tokyo, Japan) at
399.78 and 100.53 MHz, respectively.
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2.4. Scanning Electron Microscopy (SEM)

In order to disclose the structure of each antibacterial material tested in this study,
montmorillonite, Met–Ag–Mont, His–Ag–Mont, silver–zeolite (AJION, Sinanen Zeomic
Co. Nagoya, Japan), and silver zirconium phosphate (NOVARON, Toagosei Co. Ltd.,
Tokyo, Japan) were observed using a field-emission scanning electron microscope (Fe-SEM:
Topcon DS-720, Topcon, Tokyo, Japan).

2.5. X-Ray Diffraction (XRD)

The crystal phases of the samples were identified using an X-ray powder diffractome-
ter (CuKα; 1.54 Å, RINT 2500, Rigaku, Osaka, Japan) operating under 40 kV acceleration
and 200 mA current at a scanning rate of 0.02◦ per s.

2.6. Bacteria

Streptococcus mutans (S. mutans, ATCC25175), stored at −80 ◦C, was subcultured on
blood agar plates (37 ◦C, 5% CO2). Colonies from these blood agar plates were cultivated
overnight in brain heart infusion broth (BHI, EIKEN CHEMICAL CO., Tokyo, Japan), and
the obtained liquid cultures were used for the experiments.

2.7. Bacterial Growth Spectrophotometry

To select relevant concentrations of monomers, growth was first assessed by spec-
trophotometry. Liquid overnight cultures were centrifuged, and bacteria were resuspended
in fresh BHI broth. The concentration was adjusted to 1 × 106 colony-forming units
(CFU)/mL spectrophotometrically at a wavelength of 600 nm (BioSpectrometer Basic,
Eppendorf, Hamburg, Germany). Three disks per material were placed in a 24-well plate
(Costar 24 well, Corning, NY, USA), upon which 2 mL of bacterial suspension was added.
As positive and negative controls, respectively, three wells did not receive a material disk,
and another three wells did not receive a bacterial suspension. The absorbance was mea-
sured for 36 h at 600 nm and 37 ◦C using a microplate reader (POLARstar Omega, BMG
LABTECH, Ortenberg, Germany). This procedure was repeated three times (n = 3 sites on
3 disks) [23].

2.8. Silver Ion Measurement in Different Concentrations of Chloride Ion Solution

Silver ion concentration was measured at different concentrations of chloride ion
solution (0, 25, 50, 100, 250, 580, and 1000 ppm) using atomic absorption spectrometry
(AAS: AAnalyst 300; Perkin-Elmer, Waltham, MA, USA). To confirm the stability of the
Ag+, the Ag+ concentration change of His–Ag, Met–Ag, or Ag in 6 mM and 612 mM of Cl−

was also measured for 25 h.

3. Results and Discussion
3.1. Montmorillonite-Loaded Amino Acid–Silver Complex Preparation

In order to synthesis of amino acid (histidine or methionine)–silver complex, we used
a 10 mM essential amino acid solution was mixed with 4 mM AgNO3 solution at a molar
ratio of 10:1 = amino acid: Ag+ to form the amino acid-silver complex. As preliminary
test, we prepared different molar ratio solution of Met/Ag = 0, 1, 3, 6 and 10. Then 4, 135,
546 mmol/L of NaCl was added to the solution. The highest silver ion concentration was
recorded for Met/Ag = 10 at all NaCl solution. These results showed higher concentration
of methionine revealed higher silver ion. This may can explain that the formation of amino
acid-silver complex suppressed deposition of silver chloride. From these data, we used
4 mM AgNO3 solution at a molar ratio of amino acid: Ag + = 10:1 in this study. Furthermore,
we loaded the amino acid–silver complex with montmorillonite to release this ability in
hardened Poly(methyl methacrylate) (PMMA) dental resin.



Materials 2021, 14, 1442 4 of 10

3.2. NMR Measurement

First, we confirmed the structure of the silver-amino acid complexes using NMR. The
1H and 13C NMR spectra of methionine and histidine are shown in Figure 1a–d. The peaks
are assigned to the chemical structures with the corresponding number. The silver-added
samples were also measured under the same conditions. For methionine, the number-2 and
-3 protons are shown in the larger shift for 1H NMR (Figure 1a). Number-2 and 3 carbons
are seen as the larger shift for 13C NMR (Figure 1b). In the case of histidine, the number-2
and -4 protons are shown in the larger shift for 1H NMR (Figure 1c). Number-2 and -4
carbons are observed in the larger shift for 13C NMR (Figure 1d). These effects were caused
by interactions with the neighboring silver.
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histidine–Ag. (d) 13C NMR spectra of histidine and histidine–Ag.

In the case of methionine, the Ag–S interaction affected the neighboring 1H and 13C
peaks (Figure 1a,b). In the case of histidine, the Ag–N (no. 3 or no. 1) interaction affected
the neighboring 1H and 13C peaks (Figure 1c,d). Therefore, silver forms complexes with
these amino acids in aqueous solution at this concentration.

3.3. Scanning Electron Microscope (SEM) Observation and X-ray Diffraction (XRD) Analysis

Figure 2 shows SEM images of montmorillonite (a), His–Ag–Mont (b), Met–Ag–Mont
(c), silver zeolite (AJION) (d), and silver zirconium phosphate (NOVARON) (e). Montmo-
rillonite and both amino acid–silver–Mont complexes showed plate-like structures. AJION
and NOVARON showed around 500 nm cubic structures.

Figure 3a shows the XRD pattern. Montmorillonite revealed a strong peak at 2θ = 6.95◦

(d = 1.27 nm) and a weak peak at 14.1◦ (d = 6.29 nm). Met–Ag–Mont revealed a strong
peak at 2θ = 5.16◦ (d = 1.71 nm) and a weak peak at 10.3◦ (d = 0.86 nm). His–Ag–Mont
revealed a strong peak at 2θ = 4.61◦ (d = 1.92 nm).
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Figure 3. (a) XRD analysis of montmorillonite, His–Ag–Mont, Met–Ag–Mont, silver zeolite (AJION),
and silver zirconium phosphate (NOVARON). (b) Schematic diagram of montmorillonite, His–Ag–
Mont, Met–Ag–Mont.

When the antibacterial agent cetylpyridinium chloride (CPC) was incorporated with
dental resin, the antibacterial effect was revealed only on the surface due to CPC immo-
bilized in resin matrix [24]. Montmorillonite is often used for loading inorganic materi-
als [20–22,25]. In order to release Ag+ for this study, we used montmorillonite for loading
the materials. SEM observation of montmorillonite revealed a layered structure. XRD con-
firmed that His–Ag–Mont and Met–Ag–Mont were loaded into layers of montmorillonite
(Figure 3b) [26]. AJION showed several peaks, including ones at 2θ = 7.24◦ (d = 1.22 nm),
10.2◦ (d = 0.86 nm), 12.6◦ (d = 0.70 nm), and 14.5◦ (d = 0.61 nm), assigned to type A zeolite
(ICDD; International Centre for Diffraction Data). AJION was reported to contain 2.5%
(w/w) of Ag+ bound electrostatically to synthetic type-A zeolite [27]. NOVARON revealed
a peak at 14.0◦ (d = 0.63 nm), assigned to sodium zirconium phosphate (ICDD). NOVARON
was zirconium phosphate containing Ag+ in the crystal structure [28].
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3.4. Bacterial Growth

In this study, we aimed to develop efficient, longer-lasting antibacterial silver agents
for dental application. The chloride concentration of saliva is known to be 20–30 mM [29].
To determine the antibacterial efficacy of the silver agents against S. mutans, we used BHI
medium for bacterial growth. BHI contains a chloride concentration of 25 mM, nearly the
same as saliva.

Figure 4 showed that Streptococcus mutans growth curves for dental acrylic resin
incorporating different amounts of montmorillonite. His–Ag–Mont inhibited S. mutans
growth, whereas acrylic with any concentration of montmorillonite did not inhibit S. mu-
tans growth. Acrylic with 0.05 w% AJION showed longer inhibition of S. mutans growth,
but the optical density (OD) measured by spectrophotometry increased after 28 h. A higher
concentration of NOVARON also inhibited some bacterial growth; however, all concentra-
tions of NOVARON revealed bacterial growth after 36 h. Acrylic incorporating 0.03 and
0.05 w% Met–Ag–Mont showed complete inhibition of S. mutans growth. In the case of
His–Ag–Mont, all studied concentrations in acrylic resin completely inhibited bacterial
growth. Therefore, the null hypothesis of this study that the different silver compounds
would show no differences in antibacterial effects was rejected.

Materials 2021, 14, x FOR PEER REVIEW 6 of 10 
 

 

10.2° (d = 0.86 nm), 12.6° (d = 0.70 nm), and 14.5° (d = 0.61 nm), assigned to type A zeolite 
(ICDD; International Centre for Diffraction Data). AJION was reported to contain 2.5% 
(w/w) of Ag+ bound electrostatically to synthetic type-A zeolite [27]. NOVARON revealed 
a peak at 14.0° (d = 0.63 nm), assigned to sodium zirconium phosphate (ICDD). NOVA-
RON was zirconium phosphate containing Ag+ in the crystal structure [28]. 

3.4. Bacterial Growth 
In this study, we aimed to develop efficient, longer-lasting antibacterial silver agents 

for dental application. The chloride concentration of saliva is known to be 20–30 mM [29]. 
To determine the antibacterial efficacy of the silver agents against S. mutans, we used BHI 
medium for bacterial growth. BHI contains a chloride concentration of 25 mM, nearly the 
same as saliva. 

Figure 4 showed that Streptococcus mutans growth curves for dental acrylic resin 
incorporating different amounts of montmorillonite. His–Ag–Mont inhibited S. mutans 
growth, whereas acrylic with any concentration of montmorillonite did not inhibit S. mu-
tans growth. Acrylic with 0.05 w% AJION showed longer inhibition of S. mutans growth, 
but the optical density (OD) measured by spectrophotometry increased after 28 h. A 
higher concentration of NOVARON also inhibited some bacterial growth; however, all 
concentrations of NOVARON revealed bacterial growth after 36 h. Acrylic incorporating 
0.03 and 0.05 w% Met–Ag–Mont showed complete inhibition of S. mutans growth. In the 
case of His–Ag–Mont, all studied concentrations in acrylic resin completely inhibited bac-
terial growth. Therefore, the null hypothesis of this study that the different silver com-
pounds would show no differences in antibacterial effects was rejected. 

 
Figure 4. Streptococcus mutans growth curves for dental acrylic resin incorporating different 
amounts of montmorillonite, His–Ag–Mont, Met–Ag–Mont, silver zeolite (AJION), and silver zir-
conium phosphate (NOVARON). 

OD measurement revealed that each silver compound had a different antibacterial 
effect. NOVARON has an antibacterial effect against S. mutans, and the minimum inhibi-

Figure 4. Streptococcus mutans growth curves for dental acrylic resin incorporating different amounts of montmorillonite,
His–Ag–Mont, Met–Ag–Mont, silver zeolite (AJION), and silver zirconium phosphate (NOVARON).

OD measurement revealed that each silver compound had a different antibacterial
effect. NOVARON has an antibacterial effect against S. mutans, and the minimum inhibitory
concentration (MIC) and the minimum bactericidal concentration (MBC) of NOVARON
against S. mutans were found to be 40 µg/mL [24]. Kiriyama et al. revealed that dental
acrylic resin incorporating 0.5 w% NOVARON inhibited S. mutans growth. The results
showed a strong correlation between the amount of eluted silver ions and a reduction in the
number of colony-forming units (CFUs) [28]. Kawahara et al. revealed that silver-zeolite
AJION inhibited the growth of bacteria when tested under anaerobic conditions. However,
the MIC value of silver–zeolite in BHI broth was greater than that in water. These authors
suggested that proteins and chloride in BHI probably inactivated a significant portion
of the Ag+ released from silver zeolite [27]. There are two possible mechanisms for the
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antibacterial effect for silver compounds: first, bacterial cells are inhibited for several
functions or are damaged due to silver ions from the silver zeolite. Another mechanism
is the generation of reactive oxygen species, due to the inhibition of respiratory enzymes
by silver ions, which attack the cell itself [29,30]. Therefore, silver ion concentration
is important for achieving an antibacterial effect. Compared to commercially available
materials such as AJION and NOVARON, His–Ag–Mont revealed a particularly strong
antibacterial effect. This was due to a different silver ion concentration in BHI medium due
to the presence of Cl−.

All samples revealed many small black spots on the surface after 36 h of bacterial
growth measurement. These black spots were due to the formation of silver oxide and
silver sulfide [31–36].

3.5. Silver Ion Measurement in Different Concentrations of Chloride Ion Solution

To confirm the antibacterial effect of each compound, the silver ion concentration was
measured at different chloride ion concentrations (0, 25, 50, 100, 250, 580, and 1000 ppm)
using AAS (Figure 5). At 30–50 Cl−/mM, the Ag+ concentration of His–Ag was higher
than that of Met–Ag or Ag. AAS measurements revealed that the Ag+ concentration of Ag
was low because of silver chloride (AgCl) formation due to the strong bond between Ag+

and Cl−. Compared to Ag, Ag–His in particular revealed a higher Ag+ ion concentration.
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These AAS measurements explained the results of the bacteria growth curves. The
concentration of chloride ions in the BHI tested in this study was 25 mM. The AAS
data recorded Ag+ concentrations at 25 mM were His–Ag > Met–Ag > Ag. Different
Ag+ concentration likely depended on the higher solubility of silver or silver-amino acid
complexes in a solution containing Cl−. This higher Ag+ concentration gave His–Ag–Mont
a longer antibacterial effect.

In our previous study, we tested the antibacterial effect of 10 amino acid–Ag complexes
(histidine, methionine, arginine, glycine, alanine, phenylalanine, asparagine, aspartic acid,
glutamic acid, and cysteine) and an imidazole–Ag complex in a sea-water based medium
containing Cl− [19]. Only histidine, methionine and imidazole formed stable complex with
Ag in sea water based medium, and they inhibited bacteria growth. The Ag+ concentration
of amino acid complex in the medium after bacterial growth was 0.019 mM for Met–Ag
complex, 0.016 mM for the His–Ag complex, and less than 0.002 mM for other amino acid
complexes (unpublished data). Among the essential amino acids, histidine and methionine
have a strong binding energy to Ag+ [37]. The Ag–N bond for histidine and Ag–S bond
for methionine was also confirmed by our NMR analysis. These strong bonds between
Met–Ag and His–Ag may inhibit silver chloride formation due to the weaker bond between
Ag+ and Cl−.
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Recently, consumption of silver and silver compounds has increased as antibacterial
materials; however, silver-resistant bacteria in Gram-negative pathogens is reported [38,39].
Several periplasmic silver binding proteins (SilE) have been investigated as silver resistance
genes. SilE exist at the bacterial cell surface and reduce silver toxicity when a silver ion
binds to SilE [11]. Histidine and methionine residues in SilE coordinate to Ag+ [39,40]. The
1H NMR spectroscopy demonstrated the binding of Ag to the N atom of histidine [11].
Later, the 1H NMR spectrum confirmed that Ag+ binds to the S atom of methionine [40].
The binding strength changes according to the environment. The histidine-silver ion bond
in SilE is stronger in an acidic environment than in a neutral environment [41].

It is known that the distribution of metal complex ion species in solution changes
depending on conditions such as coordination concentration, metal ion concentration,
temperature, and pH. His–Ag and Met–Ag may have a stable complex formation in Cl−

solution due to a relatively strong bond with silver. This may be the reason why lower
concentrations of His–Ag and Met–Ag had a longer antibacterial effect. This can be useful
for reducing the amounts of silver compounds in dental materials. In this study, His–Ag–
Mont had a longer antibacterial effect in BHI medium. AAS measurement revealed that the
Ag+ of His-Ag complex were higher existence in the Cl− concentration of BHI. The Ag+

stability of His–Ag and Met–Ag change depend the concentration of Cl−. The Ag+ of the
Met–Ag complex may be more stable than that of His–Ag complex in a solution of high
Cl− concentration. Further study is needed to investigate the antibacterial effect of His–Ag
and Met–Ag in different pHs and concentrations of chloride ion for a simulated intra-oral
environment.

4. Conclusions

This study found that two silver–amino acid-loaded montmorillonites (His–Ag–Mont
and Met–Ag–Mont) in dental acrylic resin had a longer antibacterial effect than silver-
loaded zeolite and silver-zirconium phosphate. In particular, His–Ag–Mont had a stronger
antibacterial effect, which proved the existence of the highest silver ion concentration in
a solution containing Cl−. Thus, the structure of amino acid–silver strongly affected the
antibacterial effect of silver. This study was an exploratory research to find an effective
antibacterial agent for dental materials in the existence of chlorine ion in saliva, food and
beverages. This study has limitations, however, His–Ag–Mont incorporated with dental
acrylic resin may be a candidate as an oral antibacterial agent. Moreover, we also need to
confirm the safety in the future.
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