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Dynamics of fMRI patterns reflect sub-second
activation sequences and reveal replay in human
visual cortex
Lennart Wittkuhn 1,2✉ & Nicolas W. Schuck 1,2✉

Neural computations are often fast and anatomically localized. Yet, investigating such

computations in humans is challenging because non-invasive methods have either high

temporal or spatial resolution, but not both. Of particular relevance, fast neural replay is

known to occur throughout the brain in a coordinated fashion about which little is known. We

develop a multivariate analysis method for functional magnetic resonance imaging that

makes it possible to study sequentially activated neural patterns separated by less than 100

ms with precise spatial resolution. Human participants viewed five images individually and

sequentially with speeds up to 32ms between items. Probabilistic pattern classifiers were

trained on activation patterns in visual and ventrotemporal cortex during individual image

trials. Applied to sequence trials, probabilistic classifier time courses allow the detection of

neural representations and their order. Order detection remains possible at speeds up to 32

ms between items (plus 100 ms per item). The frequency spectrum of the sequentiality

metric distinguishes between sub- versus supra-second sequences. Importantly, applied to

resting-state data our method reveals fast replay of task-related stimuli in visual cortex. This

indicates that non-hippocampal replay occurs even after tasks without memory requirements

and shows that our method can be used to detect such spontaneously occurring replay.
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Many cognitive processes are underpinned by rapidly
changing neural activation patterns. Most famously,
memory and planning have been linked to fast replay of

representation sequences in the hippocampus, happening
approximately within 200–300 milliseconds (ms) while the ani-
mal is resting or sleeping, e.g.1–9. Similar events have been
observed during behavior10,11, as well as outside of the
hippocampus12–17. Likewise, internal deliberations during choice
are reflected in alternations between orbitofrontal value repre-
sentations that last less than 100 ms18, while perceptual learning
has been shown to result in sub-second anticipatory activation
sequences in visual cortex19–21. Investigating fast-paced repre-
sentational dynamics within specific brain areas therefore pro-
mises important insights into a variety of cognitive processes.
Such investigations could be crucial for understanding replay,
which is characterized by a widespread co-occurrence of neural
reactivation events throughout the brain of mostly unknown
functional significance, in particular outside of the hippocampus,
see, e.g.17,22. These aspects are still understudied in humans.

Studying fast neural dynamics is particularly difficult in
humans because signal recording must mainly occur non-
invasively. How fast and anatomically localized neural dynamics
can be investigated using non-invasive neuroimaging techniques
is therefore a major challenge for human neuroscience, see,
e.g.23,24. The main concern related to functional magnetic reso-
nance imaging (fMRI) is that this technique measures neural
activity indirectly through slow sampling of an extended and
delayed blood-oxygen-level-dependent (BOLD) response
function25–27 that can obscure temporal detail. Yet, the problems
arising in BOLD fMRI might not be as insurmountable as they
seem. First, BOLD signals from the same participant and brain
region show reliable timing and last for several seconds. Miezin
et al.28, for instance, reported a between-session reliability of
hemodynamic peak times in visual cortex of r2= 0.95, see
also29,30. Even for closely timed events, the sequential order can
therefore result in systematic differences in activation strength31

that remain in the signal long after the fast sequence event is over,
effectively mitigating the problems that arise from slow sampling.
Moreover, Misaki et al.32 were able to decode onset differences in
visual stimulation of only 100 ms when two stimuli were shown
to one eye before the other. Interestingly, Misaki et al.32 indicated
that timing differences become most apparent in peak activation
strength, rather than temporal aspects of the hemodynamic
response function (HRF). A second reason that makes the
investigation of fast neural dynamics feasible is that some fast
sequence events have properties that make it easier to detect
them. Replay events, in particular, involve reactivation of spatially
tuned cells in the order of a previously traveled path. But these
reactivated paths do not typically span the entire spatial envir-
onment and only involve a local subset of all possible places the
animal could occupy7,8. This locality means that even when
measurement noise causes some elements of a fast sequence to
remain undetected, or leads to partially re-ordered detection, the
set of detected representations will still reflect positions nearby in
space. In this case, successive detection of elements nearby in
space or time would still identify the fast process under investi-
gation even under noisy conditions.

If fMRI analyses can capitalize on such effects, this could allow
the investigation of fast sequential activations. As mentioned
above, one important application of such methods would be
hippocampal replay, a topic of intense recent interest, for reviews,
see, e.g.24,33–37. To date, most replay research has studied the
phenomenon in rodents because investigations in humans and
other primates either required invasive recordings from the
hippocampus38–42, used techniques with reduced hippocampal
sensitivity and spatial resolution43–48, or investigated non-

sequential fMRI activation patterns over seconds or
minutes49–53. Recently, we have hypothesized that the properties
of BOLD signals mentioned above should enable the investigation
of rapid neural dynamics. Indeed, using fMRI, we identified fast
sequential hippocampal pattern reactivation in resting humans54.
However, Schuck and Niv54 did not yet answer questions
about how fMRI could be used to measure the speed of replay.
One additional exploratory question is whether replay occurs
outside of the hippocampus, and even following simple visual
detection tasks.

Here, we provide and experimentally validate a multivariate
analysis approach for fMRI that addresses the challenges and
questions outlined above. The main idea of our approach is that
fast neural event sequences will cause characteristic time courses
of overlapping activation patterns. While the effects of co-
occurring activations on individual voxels is complex, we reason
that characteristic overlap will nevertheless lead to predictable
and simple fluctuations in the time courses of pattern classifiers.
The present experiment tests this idea and our results confirm
that logistic regression classifier time courses reveal the content
and order of fast sequential neural events using fMRI. Impor-
tantly, we use this method to ask whether sequential reactivations
of sensory events occur outside of the hippocampus, even if task
experiences did not require memorization or involve repeated
sequential structure. Our study extends our previous work in
several ways. First, our controlled experimental design provides
evidence for the decodability of fast sequential neural events in a
setting where the speed and order of fast neural event sequences
are known. We also show that sequence detection can be achieved
in the presence of high levels of signal noise and timing uncer-
tainty, and is specific enough to differentiate fast sequences from
activation patterns that could reflect slow conscious thinking.
Second, we develop a modeling approach of multivariate fMRI
pattern classification time courses that validates our experimental
results and allows inference of the speed of fast sequential neural
processes from the frequency spectra of our fMRI sequentiality
metric. Third, we report that our task induced fast sequential
replay in sensory brain areas during post-task rest, although it did
not require any memorization, did not feature strong sequential
structure, and did not elicit systematic hippocampal responses.
Finally, our results have implications for the interpretation of our
own previous results in Schuck and Niv54 and future fMRI studies
investigating fast neural event sequences, like hippocampal
replay.

Results
As discussed above, we investigated the possibility that fMRI can
be used to address two cornerstones of understanding signals
resulting from fast activation sequences: order detection and ele-
ment detection. The first effect, order detection, pertains to the
presence of order structure in the signal that is caused by the
sequential order of fast neural events. We evaluated this effect by
investigating the impact of item order on (a) the relative strength
of activations within a single measurement, and (b) the order of
decoded patterns across successive measurements. The second
effect, element detection, quantifies to what extent fMRI allows
detection of elements that were part of a sequence versus those
that were not. While event detection is a standard problem in
fMRI, we focused on the special case relevant to our question:
detecting neural patterns of brief events that are affected by
patterns from other sequence elements occurring only tens of
milliseconds before or afterwards, causing backward and forward
interference, respectively. Using full sequences of all possible
elements in our experimental setup that tested sequence ordering,
our design ensured that the two effects can be demonstrated
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independently, i.e., the order effect could not have been a side
effect of element detection.

Participants viewed images of five different objects. During
slow trials (Fig. 1a, 600 trials in total), individual images were
shown with inter-trial intervals (ITIs) of approximately 2.5 s, as
is common in fMRI decision-making experiments (cf.44,47,52,54).
In fast trials (120 trials in total), the same images were shown as
either a random sequence of all five objects (sequence trials, 75
trials, Fig. 1b), or two objects were repeated several times (repe-
tition trials, 45 trials, Fig. 1c). Importantly, image presentation
rate was greatly increased in sequence and repetition trials, with
as little as 32 ms between stimuli and a presentation time of 100
ms per stimulus. Logistic regression classifiers were trained on
data from slow trials and applied to sequence and repetition trials,

as well as to resting-state data. We then asked whether the order
and the elements of fast sequences are detectable from fMRI
signals, depending on sequence speed, number of repetitions,
level of background noise, and timing uncertainty. To this end,
visual stimuli in sequence and repetition trials were presented in a
precisely timed and ordered manner, as detailed below. Since
activation patterns were primarily visual in nature, only data from
visual and ventral temporal cortex were considered. A corre-
sponding analysis using hippocampal data did not yield com-
parable results, see below. The analyses included N= 36 human
participants who underwent two fMRI sessions with four task
runs each, i.e., eight runs in total. Four additional participants
were excluded from analyses due to insufficient performance, see
Methods and Supplementary Information (SI) (Supplementary

Fig. 1 Task design and behavioral performance. a On slow trials, individual images were presented and inter-trial intervals (ITIs) were 2.5 s on average.
Participants were instructed to detect upside-down visual stimuli (20% of trials) but not respond to upright pictures. Classifier training was performed on
fMRI data from correct upright trials only. b Sequence trials contained five unique visual images, separated by five levels of inter-stimulus intervals (ISIs)
between 32 and 2048ms. c Repetition trials were always fast (32 ms ISI) and contained two visual images of which either the first or the second was
repeated eight times (causing backward and forward interference, respectively). In both task conditions, participants were asked to detect the serial
position of a cued target stimulus in a sequence and select the correct answer after a delay period without visual input. One sequence or repetition trial
came after five slow trials. fMRI analyses focused on the time from sequence onset to the end of the delay period (16 s≈ 13 TRs, 1 TR= 1.25 s). d Illustration
of the three fastest sequence speed conditions of 32, 64, and 128ms ISI between images. e Mean behavioral accuracy in sequence trials (in %) as a
function of sequence speed (ISI, in ms; N= 36, ts≥ 23.78, ps < 0.001, ds≥ 3.96, linear mixed effects (LME) model and five one-sided one-sample t-tests
against chance (50%), false discovery rate (FDR) correction). f Mean behavioral accuracy in repetition trials (in %), as a function of which sequence item
was repeated (fwd= forward, bwd= backward condition; N= 36, ts ≥ 2.94, ps ≤ 0.003, ds ≥ 0.49, two one-sided one-sample t-tests against chance
(50%) with FDR-correction). All error bars represent ±1 standard error of the mean (SEM). All statistics have been derived from data of N= 36 human
participants who participated in one experiment. The horizontal dashed lines in (e) and (f) indicate 50% chance level. The original authors of Haxby et al.55

hold the copyright of the stimulus material (individual images of a cat, chair, face, house, and shoe) shown in (a), (b), and (c) and made it available under
the terms of the Creative Commons Attribution-Share Alike 3.0 license (see http://data.pymvpa.org/datasets/haxby2001/and http://creativecommons.
org/licenses/by-sa/3.0/ for details). Source data are provided as a Source Data file.
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Fig. 1a). Sessions were separated by 9 days on average (SD=
6 days, range: 1–24 days).

Training fMRI pattern classifiers on slow events. In slow trials,
participants repeatedly viewed the same five images individually
for 500 ms (images showed a cat, chair, face, house, and shoe,
taken from55). Temporal delays between images were set to 2.5 s
on average, as typical for task-based fMRI experiments56. To
ensure that image ordering did not yield biased classifiers through
biased pattern similarities (cf.57), each possible order permutation
of the five images was presented exactly once (120 sets of 5 images
each). Participants were kept attentive by a cover task that
required them to press a button whenever a picture was shown
upside-down (20% of trials; mean accuracy= 99.44%; t(35)=
263.27, 95% CI [99.13, +∞]; p < 0.001, compared to chance
(50%); d= 43.88; Supplementary Fig. 1a–c). Using data from
correct upright slow trials, we trained five separate multinomial
logistic regression classifiers, one for each image category (one-
vs.-rest; see Methods for details; cf.55). fMRI data were masked by
a gray-matter-restricted region of interest (ROI) of occipito-
temporal cortex, known to be related to visual object processing
(11,162 voxels in the masks on average; cf.55,58–60). Spatial pat-
terns associated with image categories indicated a mix of over-
lapping and non-overlapping sets of voxels, and average
correlations between the mean voxel patterns were negative (see
SI). We accounted for hemodynamic lag by extracting fMRI data
acquired 3.75–5 s after stimulus onset (corresponding to the
fourth repetition time (TR), see Methods). Cross-validated (leave-
one-run-out) classification accuracy was on average 69.22% (SD
= 11.18%; t(35)= 26.41, 95% CI [66.07, +∞], p < 0.001, com-
pared to chance (20%); d= 4.40; Fig. 2a). In order to examine the
sensitivity of the classifiers to pattern activation time courses, we
applied them to seven TRs following stimulus onset on each trial.
This analysis confirmed delayed and distinct increases in the
estimated probability of the true stimulus class given the data,
peaking at the fourth TR after stimulus onset, as expected, given
that the classifiers were trained on data from the fourth TR fol-
lowing stimulus onset (Fig. 2b). The peak in probability for the
true stimulus shown on the corresponding trial was significantly
higher than the mean probability of all other stimuli at that time
point (ts ≥ 17.95, ps < 0.001, ds ≥ 2.99; Bonferroni-corrected).
Decoding in an anatomical ROI of the hippocampus did not
surpass the chance level (decoding accuracy: mean (M)= 20.52%,
SD= 1.49%; t35= 2.10, 95% CI [20.02, 21.03], p= 0.05, com-
pared to chance (20%), d= 0.35; using the same decoding
approach, see SI for details).

Single event and event sequence modeling. The data shown in
Fig. 2b highlight that multivariate decoding time courses are
delayed and sustained, similar to single-voxel hemodynamics. We
captured these dynamics elicited by single events by fitting a sine-
based response function to the time courses on slow trials (a
single sine wave flattened after one cycle, with parameters for
amplitude A, response duration λ, onset delay d, and baseline b;
Fig. 2c and Supplementary Fig. 4; see Methods). Based on this fit
to single events, we derived expectations for probabilistic time
courses during sequential events. The sequentiality analyses
reported below essentially quantify how well successive activation
patterns can be differentiated from one another depending on the
speed of stimulus sequences. We therefore considered two time-
shifted response functions and derived the magnitude and time
course of differences between them. Based on the sinusoidal
nature of the response function, the time course of this difference
can be approximated by a single sine wave with duration λδ= λ
+ δ, where δ is the time between events and λ is the average fitted

single event duration, here λ= 5.24 TRs (see Eqs. (4) and (5),
Methods). This average parameter was used for all further ana-
lyses (Fig. 2c, d; see Methods). In this model, the amplitude is
proportional to the time shift between events (until time shifts
become larger than the time-to-peak of the response function).
Consequently, after an onset delay (d= 0.56 TRs), the difference
in probability of two time-shifted events is expected to be positive
for the duration of half a cycle, i.e., 0.5λδ= 0.5(5.24+ δ) TRs, and
negative for the same period thereafter. Simply put, this means
that the strength of overlapping activations will initially be
ordered forward, in the same way as the sequence, i.e., earlier
items will be activated stronger. In a later period, however, this
will reverse and result in backwards ordering, i.e., earlier items
will be activated less. In summary, three predictions therefore
arise from this model: (1) the first event will dominate the signal
in earlier TRs, and activation strengths will be proportional to the
true event order during the sequential process; (2) in later TRs,
the last sequence element will dominate the signal, and the
activation strengths will be ordered backwards; and (3) the
duration and strength of these two effects will depend on the
fitted response duration and the timing of the stimuli as specified
above (Fig. 2e and Eqs. (1)–(5); see Methods). For sequences with
more than two items (as in sequence trials, see below), δ is
defined as the interval between the onsets of the first and last
sequence item. To reflect the relation between the true order and
the activation strength, we henceforth term the above-mentioned
early and late TRs as the forward and backward periods, and
consider all results below either separately for these phases, or for
both relevant periods combined (calculating periods depending
on the timings of image sequences and rounding TRs, see
Methods).

Detecting sequentiality in fMRI patterns following fast and slow
neural event sequences. Our first major aim was to test detection
of sequential order of fast neural events with fMRI. We therefore
investigated the above-mentioned sequence trials in which par-
ticipants viewed a series of five unique images at different speeds
(Fig. 1b). Sequence speed was manipulated by leaving either 32,
64, 128, 512, or 2048 ms between pictures, while images were
always presented briefly (100 ms per image, total sequence
duration 0.628–8.692 s). Note, that we refer to the inter-stimulus
interval (ISI) as “sequence speed” (see Fig. 1d). Sequences always
contained each image exactly once. Every participant experienced
15 randomly selected image orders that ensured that each image
appeared equally often at the first and last position of the
sequence (all 120 possible orders counterbalanced across parti-
cipants). The task required participants to indicate the serial
position of a verbally cued image 16 s after the first image was
presented. This delay between visual events and response
(roughly spanning 13 TRs; see x-axes in Fig. 3a, b) allowed us to
measure sequence-related fMRI signals without interference from
following trials, while the upcoming question did not necessitate
memorization of the sequence during the delay period. Perfor-
mance was high even in the fastest sequence trials (32 ms: M=
88.33%, SD= 7.70, t35= 29.85, 95% CI [86.16, +∞], p < 0.001
compared to chance (50%), d= 4.98), and only slightly reduced
compared to the slowest condition (2048 ms: M= 93.70%, SD=
7.96, t35= 32.95, 95% CI [91.46, +∞], p < 0.001 compared to
chance (50%), d= 5.49; Fig. 1e and Supplementary Fig. 1d).

We investigated whether sequence order was detectable from
the relative pattern activation strength within a single measure-
ment. Examining the time courses of probabilistic classifier
evidence during sequence trials (Fig. 3a) showed that the time
delay between events was indeed reflected in sustained within-TR
ordering of probabilities in all speed conditions. Specifically,
immediately after sequence onset, the first element (red line) had
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the highest probability and the last element (blue line) had the
lowest probability. This pattern reversed afterwards, following the
forward and backward dynamics that were predicted by the time-
shifted response functions (Fig. 2d; forward and backward
periods adjusted to sequence speed, see above and Methods). A
TR-wise linear regression between the serial positions of the
images and their probabilities confirmed this impression. In all
speed conditions, the mean slope coefficients initially increased
above zero (reflecting higher probabilities of earlier compared to
later items) and decreased below zero afterwards (Fig. 3b and
Supplementary Fig. 6a). Considering mean regression coefficients
during the predicted forward and backward periods, we found
significant forward ordering in the forward period at ISIs of 128,
512, and 2048 ms (ts ≥ 2.85, ps ≤ 0.009, ds ≥ 0.47) and significant
backward ordering in the backward period in all speed conditions
(ts ≥ 3.89, ps < 0.001, ds ≥ 0.65, FDR-corrected; Fig. 3c). Notably,
the observed time course of regression slopes on sequence trials
(Fig. 3b) closely matched the time course predicted by our
modeling approach (Fig. 2d), as indicated by strong correlations
for all speed conditions between model predictions and the
averaged time courses (Fig. 3d; Pearson’s rs ≥ 0.81, ps < 0.001) as
well as significant within-participant correlations (Fig. 3e; mean

Pearson’s rs ≥ 0.23, ts ≥ 3.76, ps < 0.001, compared to zero, ds ≥
0.63, FDR-corrected).

Choosing a different index of association like rank correlation
coefficients (Supplementary Figs. 5a, b and 6c) or the mean step
size between probability-ordered events within TRs (Supplemen-
tary Figs. 5c, d and 6d) produced qualitatively similar results (for
details, see SI). Removing the sequence item with the highest
probability at every TR also resulted in similar effects, with
backward sequentiality remaining significant at all speeds (p ≤
0.002) except the 32 and 128ms conditions (p ≥ 0.20), and
forward sequentiality still being evident at speeds of 512 and
2048 ms (p ≤ 0.004; Supplementary Fig. 7a, b). To identify the
drivers of the apparent asymmetry in detecting forward and
backward sequentiality, we ran two additional control analyses
and either removed the probability of the first or the last sequence
item (forward and backward periods adjusted accordingly).
Removal of the first sequence item had little impact on
sequentiality detection (Supplementary Fig. 7c, d and SI), but
removing the last sequence item markedly affected the results
such that significant forward and backward sequentiality was only
evident at speeds of 512 and 2048 ms (Supplementary Fig. 7e, f
and SI).

Fig. 2 Classification accuracy and multivariate response functions. a Cross-validated classification accuracy in decoding the five unique visual objects in
occipito-temporal data during task performance (in %; N= 36, t(35)= 26.41, 95% CI [66.07, +∞], p < 0.001, d= 4.40, one one-sided one-sample t-test,
no multiple comparisons). Chance level is 20% (dashed line). Each dot corresponds to averaged data from one participant. Error bar represents ±1 SEM.
b Time courses (in TRs from stimulus onset) of probabilistic classification evidence (in %) for all five stimulus classes. Substantial delayed and extended
probability increases for the stimulus presented (black lines) on a given trial (gray panels) were found. Each line represents one participant (N= 36, ts≥
17.95, ps < 0.001, ds≥ 2.99, 35 two-sided two-sample t-tests, Bonferroni-corrected). c Average probabilistic classifier response for the five stimulus
classes (gray lines) and fitted sine-wave response model using averaged parameters (black line). d Illustration of sinusoidal response functions following
two neural events (blue and red lines) time-shifted by delta seconds (dashed horizontal line). The resulting difference between event probabilities (black
line) establishes a forward (blue area) and backward (red area) time period, split into early and late phases. The sine-wave approximation without flattened
tails is shown in gray. e Probability differences between two time-shifted events predicted by the sinusoidal response functions depending on the event
delays (delta) as they occurred in the five different sequence speed conditions (colors), based on Eq. (6). All statistics have been derived from data of N=
36 human participants who participated in one experiment. Source data are provided as a Source Data file.
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Next, we investigated evidence of pattern sequentiality across
successive measurements, similar to Schuck and Niv54. Specifi-
cally, for each TR we only considered the decoded image with the
highest probability and asked whether earlier images were
decoded primarily in earlier TRs, and whether later images were
primarily decoded in later TRs. In line with this prediction, the
average serial position fluctuated in a similar manner as the
regression coefficients, with a tendency of early positions to be
decoded in early TRs, and later positions in later TRs (Fig. 3f).

The average serial position of the decoded images was therefore
significantly different between the predicted forward and back-
ward period at all sequence speeds (all ps < 0.001, Fig. 3g,
Supplementary Fig. 6d). Compared to baseline (mean serial
position of 3), the average serial position during the forward
period was significantly lower for speeds of 512 and 2048 ms (all
ps < 0.001). The average decoded serial position at later time
points was significantly higher compared to baseline in all speed
conditions, including the 32 ms condition (all ps < 0.001). Thus,
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earlier images were decoded earlier after sequence onset and later
images later, as expected.

This sequential progression through the involved sequence
elements had implications for transitions between consecutively
decoded events. The transitions will be a direct function of the
slope of the average decoded position shown in Fig. 3f. When the
slope is negative, the steps between successive sequence items are
backward and reflect the transition from a later position to an
earlier position. When the slope is positive, the steps are forward,
reflecting a progression from an earlier event position to a later
event position. This can be verified by computing the step sizes
between consecutively decoded serial events as in Schuck and
Niv54. For example, observing a 2→ 4 transition of decoded
events in consecutive TRs would correspond to a forward step of
size +2, while a 3→ 2 transition would reflect a backward step of
size −1. As can be seen from Fig. 3f, both the early and late phase
of the response (see phases in Fig. 2d) included periods with a
negative and a positive slope, in line with our predictions
(formally, the prediction can be obtained by taking the derivative
with respect to time of Eq. (6), see Methods, i.e., the function
shown in Fig. 2e). We therefore considered the periods with a
positive and negative position slope separately for the early and
late phase. As expected, the early transitions were mainly forward
during the period of a positive slope as compared to the negative
slope periods for speed conditions of 512 and 2048 ms (ps ≤ 0.01,
Fig. 3h). Similarly, the late transitions were also forward and
backward during the positive and negative slope periods,
respectively, and differed in all speed conditions (ps ≤ 0.01,
Fig. 3h), except the 64 and 128 ms conditions (p= 0.12 and p=
0.10; FDR-corrected). This analysis suggests that transitions
between decoded items reflect the ordered progression from early
to late and then from late to early sequence events, even when
events were separated only by tens of milliseconds.

Detecting sequence elements: asymmetries and interference effects.
We next turned to our second main question, asking whether we
can detect which patterns were part of a fast sequence and which
were not. One important reason why detecting which patterns
were activated during sequence events might be more difficult
than in a standard setting is that co-activation of multiple pat-
terns close in time could lead to interference. We therefore
investigate such interference in detail below.

We analyzed classification time courses in repetition trials, in
which only two out of the five possible images were shown. One
of the two images was repeated, while the other one was shown
only once. This setup allowed us to study to what extent another
activation (the repeated image) can interfere with the detection of
a brief activation pattern of interest (the image shown only once).
The repeating image was shown eight times, which created
maximally adverse effects for the detection of the single image. To

ask if detection of brief activations is differently affected by events
occurring before versus after the single event, we varied whether
the single item was preceded or followed by the repeated item.
We pose this question because the backward effects were
consistently larger than forward effects in our sequentiality
analyses reported above (Fig. 3c), suggesting asymmetric detec-
tion sensitivity. This implies that one briefly presented item at the
end of a sequence will be easier to detect than a briefly presented
item at the beginning of a sequence, even though both were
equally close in time to another strong activation signal. To test
this idea, we considered the two order conditions described
above. We will term the case in which the first image was shown
briefly once and followed immediately by eight repetitions of a
second image the forward interference condition, because the
forward phase of the sequential responses suffers from inter-
ference. Correspondingly, trials in which the first image was
repeated eight times and the second image was shown once will
be termed the backward interference condition. In all cases,
images were separated by only 32 ms. Participants were kept
attentive by the same cover task used in sequence trials (Fig. 1c).
Average behavioral accuracy was high on repetition trials (M=
73.46%, SD= 9.71%; Fig. 1f and Supplementary Fig. 1a) and
clearly differed from a 50% chance level (t(35)= 14.50, 95% CI
[70.72, +∞], p < 0.001, d= 2.42). Splitting up performance into
forward and backward interference trials showed performance
above chance level in both conditions (M= 82.22% and M=
63.33%, respectively, ts ≥ 2.94, ps ≤ 0.003, ds ≥ 0.49, Fig. 1f).

As before, we applied the classifiers trained on slow trials to the
data acquired in repetition trials and obtained the estimated
probability of every class given the data for each TR (Fig. 4a and
Supplementary Fig. 9). The expected relevant time period was
determined to be from TRs 2 to 7 and used in all analyses (see
rectangular areas in Fig. 4a).

We first asked whether our classifiers indicated that the two
events that were part of the sequence were more likely decoded
than items that were not part of the sequence. Indeed, the event
types (first, second, non-sequence) had significantly different
mean decoding probabilities, with sequence items having a higher
probability (first: M= 20.19%; second: M= 24.78%) compared to
non-sequence items (M= 7.72%; both ps < 0.001, corrected; main
effect: F2,57.78= 110.13, p < 0.001; Fig. 4b). Moreover, the prob-
ability of decoding within-sequence items depended on the
condition and whether the item was repeated or not. Considering
both interference conditions (forward/backward) in the same
analysis revealed a main effect of condition, F2,41.64= 146.15, p <
0.001, as well as an interaction between condition and whether
the item was repeated, F2,140.00= 122.59, p < 0.001. This indicated
that the forward phase suffered from much stronger interference
than the backward phase. In the forward interference condition,
the repeated second event had an approximately 18% higher

Fig. 3 Sequence order is reflected in probability time courses. a Time courses (TRs from sequence onset) of classifier probabilities (%) per event (colors)
and sequence speed (panels). Forward (blue) and backward (red) periods shaded as in Fig. 2d. b Time courses of mean regression slopes between event
position and probability for each speed (colors). Positive/negative values indicate forward/backward sequentiality, respectively. c Mean slope coefficients
for each speed (colors) and period (forward vs. backward; N= 36, ts≥ 2.85, ps≤ 0.009, ds≥ 0.47 (significant tests only), ten two-sided one-sample t-
tests against zero, FDR-corrected). Asterisks indicate significant differences from baseline. d Between-participant correlation between predicted (Fig. 2e,
Eq. (6)) and observed (b) time courses of mean regression slopes (13 TRs per correlation, Pearson’s rs≥ 0.81, ps < 0.001). Each dot represents one TR.
e Mean within-participant correlations between predicted and observed slopes as in (d) (N= 36, mean Pearson’s rs≥ 0.23, ts ≥ 3.76, ps≤ 0.001,
compared to zero, ds≥ 0.63, FDR-corrected). f Time courses of mean event position for each speed, as in (b). g Mean event position for each period and
speed, as in (c) (N= 36, ts≥ 4.78, ps < 0.001, ds≥ 0.75 (significant tests only), ten two-sided one-sample t-tests against baseline, FDR-corrected).
h Mean step sizes of early and late transitions for each period and speed (N= 36, ts≥ 2.88, ps ≤ 0.006, ds≥ 0.48 (significant tests only), ten two-sided
one-sample t-tests against zero, FDR-corrected). Asterisks indicate differences between periods, otherwise as in (c). Each dot represents data of one
participant. Error bars/shaded areas represent ±1 SEM. All statistics have been derived from data of N= 36 human participants who participated in one
experiment. Effect sizes indicated by Cohen’s d. Asterisks indicate p < 0.05, FDR-corrected. 1 TR= 1.25 s. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21970-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1795 | https://doi.org/10.1038/s41467-021-21970-2 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


probability than the single first event (31.55% vs. 13.50%, p <
0.001). In the backward interference condition, the repeated first
event had only 9% higher probability than the single second event
(26.87% vs. 18.00%, p < 0.001, corrected). This means that the

item shown only once was easier to detect when it followed a
sustained activation of a different pattern, compared to when it
preceded an interfering activation (Fig. 4c). We found no main
effect of repetition, p= 0.91 (Fig. 4c).

Fig. 4 Ordering of two-item sequences on repetition trials. a Time courses (in TRs from sequence onset) of probabilistic classifier evidence (in %) in
repetition trials, color-coded by event type (first, second and the three remaining non-sequence items, see legend). Data shown separately for forward
(left) and backward (right) interference conditions. Gray background indicates relevant time period independently inferred from response functions
(Fig. 2d). Shaded areas represent ±1 SEM. 1 TR= 1.25 s. b Mean probability of event types averaged across all TRs in the relevant time period, as in (a).
Each dot represents one participant, the probability density of the data is shown as rain cloud plots (cf.141). Boxplots indicate the median and
interquartile range (IQR, i.e., distance between the first and third quartiles). The lower and upper hinges correspond to the first and third quartiles (the 25th
and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5* IQR from the hinge. The lower whisker extends
from the hinge to the smallest value at most 1.5* IQR of the hinge. The diamond shapes show the sample mean and error bars indicate ±1 SEM (N= 36,
ts≥ 3.31, ps≤ 0.006, LME model with post hoc Tukey’s honest significant difference (HSD) tests). c Average probability of event types, separately for
forward/backward conditions as in (a), plots as in (b) (N= 36, ts≥ 4.14, ps < 0.001, LME model with post hoc Tukey’s HSD tests). d Mean trial-wise
proportion of each transition type, separately for forward/backward conditions, as in (a) (N= 36, ts≥ 4.64, ps < 0.001, four two-sided paired t-tests,
Bonferroni-corrected). e Transition matrix of decoded images indicating mean proportions per trial, separately for forward/backward conditions, as in (a).
Transition types highlighted in colors (see legend). All statistics have been derived from data of N= 36 human participants who participated in one
experiment. Source data are provided as a Source Data file.
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Importantly, however, both sequence elements still differed
from non-sequence items even under conditions of interference
(forward: 7.75% and backward: 7.69%, respectively, all ps < 0.001,
corrected), indicating that sequence element detection remains
possible under such circumstances. Using data from all TRs
revealed qualitatively similar significant effects (p ≤ 0.04 for all
but one test after correction, see SI). Repeating all analyses using
proportions of decoded classes (the class with the maximum
probability was considered decoded at every TR), or considering
all repetition trial conditions, also revealed qualitatively similar
results. Thus, brief events can be detected despite significant
interference.

We next asked which implications these findings have for the
observed pattern transitions (cf.54). To this end, we analyzed the
trial-wise proportions of transitions between consecutively
decoded events, and asked whether forward transitions between
sequence items were more likely than transitions between a
sequence and a non-sequence item (outward transitions) or
between two non-sequence items (outside transitions; for details,
see Methods). This analysis revealed that forward transitions
(5.89%) were more frequent than both outward transitions
(2.46%), and outside transitions (1.04%, both ps < 0.001, ts ≥ 4.64,
Bonferroni-corrected; Fig. 4d) in the forward interference
condition. The same was true in the backward interference
condition (forward transitions: 7.22%; outward transitions:
2.67%; outside transitions: 1.06%, all ps < 0.001, ts ≥ 5.14). The
full transition matrix is shown in Fig. 4e. Repetitions of the first or
second item are shown on the upper two diagonal elements (with
all consecutive repetitions of items labeled repetition in Fig. 4e),
and were not considered in this analysis.

Together, the results from repetition trials indicated that: (1)
within-sequence items could be clearly detected despite inter-
ference from other sequence items; (2) event detection was
asymmetric, such that items occurring at the end of sequences
can be detected more easily than those occurring at the beginning;
and (3) the detection of sequence items made it possible to
observe within-sequence transitions between decoded items.

Note that our analyses focused on the two extreme cases of
repetition trials with one versus eight repetitions of the first or
second item while the experiment also included repetition trials
with intermediate levels of repetitions (see SI). Specifically, other
repetition trials included cases in which the second item began to
appear at each possible position from 2 to 9. The other repetition
trials could therefore include, for instance, three repetitions of the
first and six repetitions of the second image, or four repetitions of
the first and five repetitions of the second item, etc. The results
reported in the SI indicate that effects in these trials show smooth
transition between the extremes shown in the main manuscript.

Detecting sparse sequence events with lower signal-to-noise ratio
(SNR). The results above indicate that detection of fast sequences
is possible if they are under experimental control. In most
applications of our method, however, this will not be the case.
When detecting replay, for instance, sequential events will occur
spontaneously during a period of noise. We therefore next
assessed the usefulness of our method under such circumstances.

We first characterized the behavior of sequence detection
metrics during periods of noise. To this end, we applied the
logistic regression classifiers to fMRI data acquired from the same
participants (n= 32 out of 36) during a 5-min (233 TRs) resting
period before any task exposure. Classifier probabilities during
rest fluctuated wildly, often with a single category having a high
probability, while all other categories had probabilities close to
zero. During fast sequence periods, in contrast, the near-
simultaneous activation of stimulus-driven activity led to reduced

probabilities, such that category probabilities tended to be closer
together and less extreme. In consequence, the average standard
deviation of the probabilities per TR during rest and slow (2048
ms) sequence periods was higher (M= 0.23 and M= 0.22,
respectively) compared to the average standard deviation in the
fast sequence condition (32 ms; M= 0.20; ts ≥ 4.17; ps < 0.001;
ds ≥ 0.74; Fig. 5a).

As before, we fitted regression coefficients through the classifier
probabilities of the rest data and, for comparison, concatenated
data from the 32 and 2048 ms sequence trials (Fig. 5b, c). As
predicted by our modeling approach (Fig. 2e), and shown in the
previous section (Fig. 3b), the time courses of regression
coefficients in the sequence conditions were characterized by
rhythmic fluctuations whose frequency and amplitude differed
between speed conditions (Fig. 5c). To quantify the magnitude of
this effect, we calculated frequency spectra of the time courses of
the regression coefficients in rest and concatenated sequence data
(Fig. 5d; using the Lomb-Scargle method, e.g.61 to account for
potential artifacts due to data concatenation, see Methods). This
analysis revealed that frequency spectra of the sequence data
differed from rest frequency spectra in a manner that depended
on the speed condition (Fig. 5d, e). As foreshadowed by our
model, power differences appeared most pronounced in the
predicted frequency ranges (Fig. 5e; ps ≤ 0.002; see Eq. (5) and
Methods). Specifically, when the 32 ms condition was considered,
the analyses revealed an increased power around 0.17 Hz, which
corresponds to the frequency predicted to occur by our model.
Data from the 2048 ms condition, in contrast, exhibited an
increased power around 0.07 Hz, as predicted.

Finally, we asked whether these differences would persist if (a)
only few sequence events occurred during a 5-min rest period,
while (b) their onset was unknown, and (c) their SNR was lower.
To this end, we synthetically generated data containing a variable
number of sequence events that were inserted at random times
into the resting-state data acquired before any task exposure.
Specifically, we inserted between 1 and 6 sequence events into the
rest period by blending rest data with TRs recorded in fast (32
ms) or slow (2048 ms) sequence trials (12 TRs per trial, random
selection of sequence trials and insertion of time points, without
replacement). To account for possible SNR reductions, the
inserted probability time courses were multiplied by a factor κ
of 4

5,
1
2,

1
4,

1
8, or 0 and added to the probability time courses of the

inversely scaled (1−κ) resting-state data. Effectively, this led to a
step-wise reduction of the inserted sequence signal from 80% to
0%, relative to the SNR obtained in the experimental conditions
reported above. Thus, here we use the term SNR to describe the
relative mixing proportion of (a) data from the task, which
contain sequential signal, with (b) data from the pre-task resting-
state session, which contain only noise. Note that this is different
from the common definition of SNR in univariate fMRI as the
ratio of average signal to standard deviation over time.

As expected, differences in the above-mentioned standard
deviation of the probability gradually increased with both the
SNR level and the number of inserted sequence events when
either fast or slow sequences were inserted (Fig. 5f). In our case,
this led significant differences to emerge with one insert and an
SNR reduced to 12.5% in both the fast and slow conditions
(Fig. 5g; comparing against zero, the expectation of no difference
with a conventional false-positive rate α of 5%; all ps FDR-
corrected).

Importantly, the presence of sequence events was also reflected
in the frequency spectrum of the regression coefficients. Inserting
fast event sequences into rest led to power increases in the
frequency range indicative of 32 ms events (~0.17 Hz, Fig. 5h, i,
left panel), in line with our findings above. This effect again got
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stronger with higher SNR levels and more sequence events.
Inserting slow (2048 ms) sequence events into the rest period
showed a markedly different frequency spectrum, with an
increase around the frequency predicted for this speed (~0.07
Hz, Fig 5h, i, right panel). Comparing the power around the
predicted frequency (±0.01 Hz) of both speed conditions
indicated significant increases in power compared to sequence-
free rest when six sequence events were inserted and the SNR was
reduced to 80% (ts ≥ 2.28, ps ≤ 0.03, ds ≥ 0.40). Hence, the

presence of spontaneously occurring sub-second sequences
during rest can be detected in the frequency spectrum of our
sequentiality measure, and distinguished from slower second-
scale sequences that might reflect conscious thinking.

Detecting fast reactivations in post-task resting-state data. Finally,
we asked whether our task elicited spontaneous replay of image
sequences in object-selective brain areas during rest after the task.
Based on the above findings, we reasoned that potentially
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reactivated sequences should become apparent in a frequency
spectrum analysis. We therefore applied this analysis to resting-
state data recorded after participants performed the task. Cru-
cially, because the true sequence of potential replay events was
not known, we repeated the analyses for all possible image orders,
averaged the resulting frequency spectra, and compared the
results to the same analysis performed on the pre-task rest session
(see Methods). As shown in Fig. 6, the frequency spectrum
analyses revealed a significant increase specifically in the power
spectrum of the high frequency range (Fig. 6a, F1,94.99= 6.17, p=
0.02 when testing pre- versus post-task data at the predicted
frequency of 0.17 Hz, as before). Directly comparing pre- versus
post-task rest revealed a large power difference at 0.17 Hz, indi-
cative of replayed sequence speeds of 32 ms, as in our fastest
sequence speed condition (Fig. 6b). In addition, we found a
second peak at around 0.04 Hz, indicating long activations of
individual items of several seconds. Thus, post-task rest seemed to
be characterized by fast sequential reactivations as well as longer
constant activations. We next asked whether specific sequences
that had been experienced slightly more often by participants
were more likely to be reactivated than less frequent sequences.
During slow trials, all participants experienced all 120 possible
sequential combinations of images. But in addition, each parti-
cipant experienced only a subset of 15 image orders during the
sequence trials. Hence, image orders experienced in sequence

trials were slightly more frequent and we asked if they were
reactivated more strongly during the post-task resting-state ses-
sion. This was not the case. A power increase in the fast frequency
range when comparing pre- to post-task rest was found for both
sets of sequences, i.e., the 15 image orders that occurred in
sequence and slow trials, and the 105 that occurred only in slow
trials (Fig. 6c, ps ≥ 0.13). In summary, applying the frequency
spectrum analyses to post-task resting-state therefore suggests
that (1) task stimuli are reactivated during post-task rest, and (2)
this reactivation happens fast, but (3) appears unspecific and not
directly related to the sequences presented more frequently to
participants during the task.

Discussion
Here, we demonstrated that BOLD fMRI in combination with
multivariate probabilistic decoding can be used to detect sub-
second sequences of closely timed neural events non-invasively in
humans. We combined probabilistic multivariate pattern analysis
with time course modeling and investigated human brain activity
recorded following the presentation of sequences of visual objects
at varying speeds, as well as activity during rest. In the fastest case
a sequence of five images was displayed within 628 ms (32 ms
between pictures). Stimulus sequences were not masked. Even
when using a TR of 1.25 s, achievable with conventional multi-

Fig. 5 Detecting sparse sequence events with lower SNR. aMean standard deviation of classifier probabilities in rest and sequence data (n= 32, ts≥ 4.17,
ps < 0.001, ds≥ 0.74, two two-sided paired t-tests comparing rest and 2048ms conditions against 32ms condition, FDR-corrected). b Mean absolute
regression slopes, as in (a) (n= 32, ts≥ 4.64, ps < 0.001, ds≥ 0.82, two two-sided paired t-tests comparing rest and 2048ms conditions against 32ms
condition, FDR-corrected). c Time courses of the regression slopes (signed values, not magnitudes) in rest and sequence data. Vertical lines indicate trial
boundaries. d Normalized frequency spectra of regression slopes in rest and sequence data. Annotations indicate predicted frequencies based on Eq. (5).
e Mean power of predicted frequencies in rest and sequence data, as in (a). Each dot represents data from one participant (n= 32, ts ≥ 3.10, ps≤ 0.002,
two-sided paired t-tests, FDR-corrected). f Mean standard deviation of rest data including a varying number of SNR-adjusted sequence events (fast or
slow). Dashed line indicates indifference from sequence-free rest (n= 32, ts≥ 2.22, ps≤ 0.04, 30 two-sided one-sample t-tests against chance, FDR-
corrected). g Base-20 log-transformed p values of t-tests comparing the standard deviation of probabilities in (f) with sequence-free rest. Dashed line
indicates p= 0.05 (N= 32, ts ≥ 2.22, ps≤ 0.04, 30 two-sided one-sample t-tests against chance, FDR-corrected). h Frequency spectra of regression
slopes in SNR-adjusted sequence-containing rest relative to sequence-free rest. Rectangles indicate predicted frequencies, as in (d). i Mean relative power
of predicted frequencies in SNR-adjusted sequence-containing rest (n= 32, ts≥ 2.28, ps≤ 0.03, two-sided t-tests against baseline, FDR-corrected).
Shaded areas/error bars represent ±1 SEM. All statistics have been derived from data of n= 32 human participants who participated in one experiment. 1
TR= 1.25 s. Source data are provided as a Source Data file.

Fig. 6 Detecting fast task-related reactivations in post-task resting-state data. a Normalized frequency spectra of regression slopes in pre- and post-task
resting-state data. Annotations indicate predicted frequencies based on Eq. (5). Shaded areas represent ±1 SEM. b Relative power (difference between pre-
and post-task rest) of normalized frequency spectra shown in (a) (n= 32, F1,94.99= 6.17, p= 0.02, LME model comparing pre- vs. post-task resting-state
data at 0.17 Hz). c Mean power at predicted fast frequency (0.17 Hz) in pre- and post-task resting-state data for less and more frequent stimulus
sequences (n= 32, ts≥ 4.17, ps < 0.001, ds≥ 0.74, two two-sided paired t-tests comparing rest and 2048ms conditions against 32ms condition, FDR-
corrected). Each dot corresponds to averaged data from one participant. Error bars represent ±1 SEM. All statistics have been derived from data of n= 32
human participants who participated in one experiment. Source data are provided as a Source Data file.
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band (MB) echo-planar imaging (EPI), the image order could be
detected from activity patterns in visual and ventral temporal
cortex. Detection of briefly presented sequence items was also
possible when their activation was affected by interfering signals
from a preceding or subsequent sequence item and could be
differentiated from images that were not part of the sequence.
Our results withstood several robustness tests, and also indicated
that detection is biased to most strongly reflect the last event of a
sequence. Analyses of augmented resting data, in which neural
event sequences occurred rarely, at unknown times, and with
reduced signal strength, showed that our method could detect
sub-second sequences even under such adverse conditions.
Moreover, we showed that frequency spectrum analyses can be
used to distinguish sub-second from supra-second sequences
under such circumstances. Our approach therefore promises to
expand the scope of BOLD fMRI to fast, sequential neural
representations by extending multivariate decoding approaches
into the temporal domain, in line with our previous findings54.

Importantly, we applied this method not only to experimen-
tally controlled data, but also used it to ask whether task
experience might elicit spontaneous replay of sequential stimuli in
post-task resting-state data, as suggested by previous studies, for
reviews, see, e.g.33,35,62,63. Indeed, our results indicate that such
reactivations occur during post-task rest and can be detected
using the proposed analysis. Our analyses suggest that the reac-
tivated sequences were fast and occurred at replay-like speeds,
similar to the fastest sequence trials used in our task (32 ms
between activations). Evidence for fast sequential replay was
accompanied by a relative increase in power in the slower fre-
quency range (peaking at 0.04 Hz). This could reflect an increase
of slower long-lasting activations, possibly reflecting conscious
thinking about the task. This supports our conclusion that the
frequency spectrum of the sequentiality metric is a useful
approach to detect fast replay and to distinguish it from slow
activations. Our analysis did not find any evidence that only those
sequences were replayed that were more frequent than others or
that were presented at a fast speed during the task. Rather, our
results suggest that replay seemed to equally involve all stimulus
orders. However, it is important to note that our task was not
optimized to elicit replay of particular sequences at all. In fact, the
more frequent sequences were arranged such that the same sti-
muli appeared equally often at the first and last position, which
makes it difficult to distinguish them from other sequences.

Of note, replay during post-task rest reflected cortical reacti-
vations in occipito-temporal brain regions. Given that we were
not able to decode on-task stimulus representations in the hip-
pocampus, it remains unclear if reactivations occurred indepen-
dently from (task-related) involvement of the hippocampus or if
we were simply not able to detect concurrent reactivation in the
hippocampus. This possibility of hippocampus-independent
cortical reactivations raises important questions regarding the
functional significance of such events. One potential reason why
we found no hippocampus involvement could be that the oddball
detection paradigm used for slow trials to train the classifiers
involved no mnemonic task component, and therefore was not
suitable to activate the hippocampus. Our previous work54 has
already demonstrated the success of our methods in hippocampal
data. Taken together, our results indicate that our method allows
the uncovering of fast task-related reactivations during rest and
highlight the importance of task design for detecting replay in
humans using fMRI.

This contrasts with previous fMRI studies in humans (for
reviews see, e.g.24,64) that measured non-sequential reactivation
as increased similarity of multi-voxel patterns during experience
and extended post-encoding rest compared to pre-encoding
baseline49–51,53,65–69 or functional connectivity of hippocampal,

cortical, and dopaminergic brain structures that support post-
encoding systems-level memory consolidation66–68,70–72. In the
current study we open the path toward a better understanding of
the speed and sequential nature of the observed phenomena.

The fastest sequences studied in our experiments lasted 628 ms
and were therefore longer than the average hippocampal replay
event of about 300 ms, e.g.17. Yet, several factors support the idea
that our method is still relevant for the study of replay. First,
previous studies have shown that a significant proportion of
replay events indeed lasts much longer than 300 ms. Davidson
et al.7 report sequence lengths of up to 1000 ms and the data by
Kaefer et al.17 indicate that about 20% of events in the hippo-
campus are longer than 500 ms. In addition, the median duration
of replay events in medial prefrontal cortex (PFC) reported in
Kaefer et al.17 was 740 ms. This indicates that a significant pro-
portion of replay events will be covered by our method. Second,
our ISI was as fast as 32 ms, which corresponds to the time lag
between activations reported in magnetoencephalography (MEG)
studies (e.g.,47) and therefore might capture the important aspect
of temporal separation between activation patterns well. Third,
while effect sizes showed a pronounced decrease when comparing
the slower conditions (2048 ms: 3.13; 512 ms: 1.36; 128 ms: 0.75,
for the backwards effect of regression slopes, Fig. 3c, effect sizes
indicate Cohen’s d), accelerating sequence speeds beyond 128 ms
seemed not to be associated with a comparable decrease in effect
sizes (64 ms: 0.65, 32 ms: 1.00). This indicates that the sensitivity
of our methods for even faster event sequences might not be
catastrophically diminished. Fourth, the sequence duration of
628 ms was to a large extent due to the stimulus duration of 100
ms. Evidence from previous work using electroencephalography
(EEG) suggests that the neural response to successive visual sti-
muli is more strongly influenced by the ISI than the stimulus
duration73,74. Hence, we speculate that our methods may also
work in cases with shorter pattern activations and thereby overall
shorter sequences.

Our results deepen the understanding of our previous
findings54 in two ways. First, we provide additional empirical
evidence that our sequentiality analyses based on multivariate
fMRI pattern classification are indeed sensitive to fast neural
event sequences. To this end, we used an experimental setup
where the order of sequential events is known—in contrast to
analyses of resting-state data in Schuck and Niv54 where the order
and speed of event sequences can only be assumed. Second,
Schuck and Niv54 observed forward-ordered replay. Our present
study clarifies the origins of forward and backward ordering of
fMRI activation patterns. We show that probabilistic classifier
evidence in earlier TRs reflects the forward order of the sequences
while this pattern reverses in later TRs. Importantly, we
demonstrate an asymmetry in decoding early versus late
sequential events. This can therefore lead fMRI pattern sequences
to appear in the reverse order relative to the underlying neural
sequences. This represents a crucial insight, given the different
functional roles assigned to forward and backward replay (see
e.g.33). We note that future research should be careful when
interpreting directionality, as the relationship between decoded
and true directionality is not straightforward. One approach in
this context could be to investigate the order of sequence direc-
tion itself. If items appear to be ordered first in direction A, and a
few TRs later in direction B, then direction A seems to be the true
one. Probabilistic classifiers might prove particularly useful for
such analyses as they make it possible to characterize sequential
ordering within a single measurement. The origins of this
asymmetry are not entirely clear. It seems possible that they
reflect the benefits of the last item not being followed by another
activation that could impede its detection. A relation to the
asymmetric shape of the HRF, to changing HRF variability with
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time and even to inhibitory retrograde neurotransmitters (e.g.75)
cannot be ruled out. Third, we have shown that the interference
of activation patterns of fast sequential neural events is stronger
for early events compared to late events. Importantly, early events
remained detectable despite this interference, demonstrating that
our method can detect the elements of a replay event with fMRI
despite interference effects. The prominence of the last sequence
item implies that the apparent over-occurrence of one particular
item might reflect that this item was a frequent start or end point
of replayed trajectories. Past research has shown that task aspects,
such as goals, heavily influence which items the
replayed sequences start or end with76.

In addition, our study introduces important methodological
advancements that go beyond our original publication54. We
show that the analyses of classifier probabilities provide major
statistical improvements compared to analyses focused on the
decoded category with the highest classification probability (as in
Schuck and Niv54). The key advantage is that probabilistic clas-
sifiers provide a continuous metric of classification evidence and
thereby allow the detection of sequential ordering within a single
measurement (i.e., within a single TR). This results in significant
information gain compared to the assessment of sequential
ordering that considers only a single label per TR. Moreover, we
leverage frequency spectrum analysis in an approach to make
inferences about the speed of the sequential neural process.
Although the sampling rate (i.e., the TR) of fMRI is usually less
than the speed of replay events, frequency spectrum analyses can
characterize the speed of fast sequential events during rest.
Together, these methodological advances offer insights into pre-
vious fMRI studies investigating hippocampal replay in humans,
including our own work54.

Additionally, some caveats have to be noted. Our results
indicate that the sequentiality in fMRI analyses is mainly influ-
enced by the first and last element of a fast sequence. Given that
replay events are often structured by task-relevant features like
the start and goal location in a spatial environment (e.g.,76),
analyzing the transitions between the corresponding decoded
events will offer insights into the content and functional role of
fast replay events. Moreover, it is important to keep in mind that
the benefits of our experimental setting came at the cost that they
also introduced important differences from a replay study in
various regards, including the focus on extra-hippocampal acti-
vations and sensory stimulation.

Our fMRI-based approach has advantages as well as disadvantages
compared to existing EEG and MEG approaches44,46,47. In particular,
it seems likely that our method has limited resolution of sequence
speed. While we could distinguish between supra- and sub-second
sequences, a much finer distinction might prove difficult in practice.
Yet, EEG and MEG investigations suggest that the extent of temporal
compression of previous experience is an important aspect of replay
and other reactivation phenomena45,77–80. In addition, the differ-
ential sensitivity to activity depending on sequence position com-
plicates interpretations of findings, and can lead to statistical aliasing
of sequences with the same start and end elements but different
elements in the middle. Finally, because a single sequence causes
forward and backward ordering of signals, it can be difficult to
determine the direction of a hypothesized sequence. One major
advantage of fMRI is that it does not suffer from the low sensitivity to
hippocampal activity and limited ability to anatomically localize
effects that characterizes EEG and MEG. This is particularly
important in the case of replay, which is hippocampus-centered but
co-occurs with fast neural event sequences in other parts of the brain
including primary visual cortex12, auditory cortex15, PFC13,14,16,17,81,
entorhinal cortex22,82,83, and ventral striatum84. Importantly, replay
events occurring in different brain areas might not be mere copies of
each other, but can differ regarding their timing, content, and

relevance for cognition, e.g.16,17. Precise characterization of replay
events occurring in different anatomical regions is therefore para-
mount. The present finding of fast and slow reactivations in visual
cortex underlines the importance of knowing the anatomical origin
of replay events. Because EEG and MEG cannot untangle the co-
occurring events and animal research is often restricted to a single
recording site, much remains to be understood about the distributed
and coordinated nature of replay. One particular problem is that
localizer tasks frequently used to train classifiers in MEG studies
might only partially reflect hippocampal activity. In fact, our own
data here show that simple visual tasks do not elicit reliable hippo-
campal activation patterns. Thus, EEG or MEG classifiers trained on
such data risk to not reflect any hippocampal activity.

Finally, our study provides additional insights for future
research. We have shown that the mere fact that detecting which
elements were part of a sequence is beneficial if sequences mostly
contain a local subset of all possible events. Thus, experimental
setups with a larger number of possible events will be insightful.
At the same time, a larger number of to-be-decoded events will
likely impair baseline classification accuracy, which in turn
impairs sequence detection. Researchers should thus take the
trade-off between these two aspects into account. Moreover,
several other factors could influence the success of future inves-
tigations: the sampling rate (the TR); the choice of brain region;
and the properties of the resulting HRFs23. Whether an increased
sampling rate would be beneficial for the detection of fast event
sequences is difficult to predict. First, longer TRs provide better
SNR as they allow more time for longitudinal magnetization. In
addition, faster sampling will not affect the underlying (slow)
HRF dynamics that impede the identification of temporal order
of fast neural event sequences. Sampling the activation time
courses at a faster rate might not reveal more information about
the sequential process under investigation. Whether shorter TRs
can make up for the downsides in spatial resolution and SNR
therefore seems an empirical question. Moreover, the choice of
brain region will impact results only if the stability of the HRF
within that brain region is low, whereas between-region differ-
ences between HRF parameters might have less impact. But HRF
stability is generally high30,85–87, and previous research noting
this fact has therefore already indicated possibilities of disen-
tangling temporally close events28–31,88,89. Further, increased
spatial resolution might improve detection due to less partial
volume averaging of non-activation-related signals. Our approach
has shown how multivariate and modeling approaches can help
exploit these HRF properties in order to enhance our under-
standing of the human brain.

Methods
Participants. In all, 40 young and healthy adults were recruited from an internal
participant database or through local advertisement and fully completed the
experiment. No statistical methods were used to predetermine the sample size but
it was chosen to be larger than similar previous neuroimaging studies, e.g.51,52,54.
Four participants were excluded from further analysis because their mean beha-
vioral performance was below the 50% chance level in either or both the sequence
and repetition trials suggesting that they did not adequately process the visual
stimuli used in the task. Please note that this exclusion was based on mean
behavioral performance across all conditions of sequence and repetition trials. This
means that participants who, for example, performed below chance in only one of
the conditions of either the sequence or the repetition trials, but above chance in all
other conditions, might still be included in the final sample because their mean
behavioral performance across all conditions ended up to be above the level of
chance performance. Thus, the final sample consisted of 36 participants (age: M=
24.61 years, SD= 3.77 years, range: 20–35 years, 20 female, 16 male). All partici-
pants were screened for magnetic resonance imaging (MRI) eligibility during a
telephone screening prior to participation and again at the beginning of each study
session according to standard MRI safety guidelines (e.g., asking for metal
implants, claustrophobia, etc.). None of the participants reported to have any major
physical or mental health problems. All participants were required to be right-
handed, to have corrected-to-normal vision, and to speak German fluently. Fur-
thermore, only participants with a head circumference of 58 cm or less could be
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included in the study. This requirement was necessary as participants’ heads had to
fit the MRI head coil together with MRI-compatible headphones that were used
during the experimental tasks. The ethics commission of the German Psychological
Society (DGPs) approved the study protocol (reference number: NS 012018). All
volunteers gave written informed consent prior to the beginning of the experi-
ments. Every participant received 40.00 Euro and a performance-based bonus of up
to 7.20 Euro upon completion of the study. None of the participants reported to
have any prior experience with the stimuli or the behavioral task.

Task
Stimuli. All stimuli were gray-scale images of a cat, chair, face, house, and shoe
taken from Haxby et al.55 with a size of 400 × 400 pixels each, which have been
shown to reliably elicit object-specific neural response patterns in several previous
studies, e.g.55,58–60. Participants received auditory feedback to signal the accuracy
of their responses. A high-pitch coin sound confirmed correct responses, whereas a
low-pitch buzzer sound signaled incorrect responses. The sounds were the same for
all task conditions and were presented immediately after participants entered a
response or after the response time had elapsed. Auditory feedback was used to
anatomically separate the expected neural activation patterns of visual stimuli and
auditory feedback. While auditory feedback is more likely to engage primarily
temporal brain regions, visual stimuli are more likely to activate primarily occipital
brain regions. We recorded the presentation time stamps of all visual stimuli and
confirmed that all experimental components were presented as expected. The task
was programmed in MATLAB (version R2012b; Natick, MA, USA; The Math-
Works Inc.) using the Psychophysics Toolbox extensions (Psychtoolbox; version
3.0.11)90–92 and run on a Windows XP computer with a monitor refresh-rate of
16.7 ms.

Slow trials. The slow trials of the task were designed to elicit object-specific
neural response patterns of the presented visual stimuli. The resulting patterns of
neural activation were later used to train the classifiers. In order to ensure that
participants maintained their attention and processed the stimuli adequately,
they were asked to perform an oddball detection task (for a similar approach,
see44,47). Specifically, participants were instructed to press a button each time an
object was presented upside-down. Participants could answer using either the
left or the right response button of an MRI-compatible button box. In contrast to
similar approaches, e.g.,44,47, we intentionally did not ask participants for a
response on trials with upright stimuli to avoid neural activation patterns of
motor regions in our training set which could influence later classification
accuracy on the test set.

Participants were rewarded with 3 cents for each oddball (i.e., stimulus
presented upside-down) that was correctly identified (i.e., hit) and punished with
a deduction of 3 cents for (incorrect) responses (i.e., false alarms) on non-
oddball trials (i.e., when stimuli were presented upright). In case participants
missed an oddball (i.e., miss), they also missed out on the reward. Auditory
feedback (coin and buzzer sound for correct and incorrect responses,
respectively) was presented immediately after the response (in case of hits and
false alarms) or at the end of the response time limit (in case of misses) using
MRI-compatible headphones (VisuaStimDigital, Resonance Technology
Company Inc., Northridge, CA, USA). Correct rejections (i.e., no responses to
upright stimuli) were not rewarded and were consequently not accompanied by
auditory feedback. Together, participants could earn a maximum reward of 3.60
Euro in this task condition.

Across the entire experiment, all five unique images were presented in all
possible sequential combinations which resulted in 5!= 120 sequences with each of
the five unique visual objects in a different order. Thus, across the entire
experiment, participants were shown 120 × 5= 600 visual objects in total for this
task condition. Of all visual objects, 20% were presented upside-down (i.e., 120
oddball stimuli). All unique visual objects were shown upside-down equally often,
which resulted in 120/5= 24 oddballs for each individual visual object category.
The order of sequences as well as the appearances of oddballs were randomly
shuffled for each participant and across both study sessions.

Each trial (for the trial procedure, see Fig. 1a) started with a waiting period of
3.85 s during which a blank screen was presented. This ITI ensured a sufficient time
delay between each slow trial and the preceding trial (either a sequence or a
repetition trial). The five visual object stimuli of the current trial were then
presented as follows: after the presentation of a short fixation dot for a constant
duration of 300 ms, a stimulus was shown for a fixed duration of 500 ms followed
by a variable ISI during which a blank screen was presented again. The duration of
the ISI for each trial was randomly drawn from a truncated exponential
distribution with a mean of 2.5 s and a lower limit of 1 s. We expected that neural
activation patterns elicited by the stimuli can be well recorded during this average
time period of 3 s (for a similar approach, see55). Behavioral responses were
collected during a fixed time period of 1.5 s after each stimulus onset. In case
participants missed an oddball target, the buzzer sound (signaling an incorrect
response) was presented after the response time limit had elapsed. Only neural
activation patterns related to correct trials with upright stimuli were used to train
the classifiers. Slow trials were interleaved with sequence and repetition trials such
that each of the 120 slow trials was followed by either one of the 75 sequence trials
or 45 repetition trials (details on these trial types are given below).

Sequence trials. In the sequence trials of the task, participants were shown
sequences of the same five unique visual objects at varying presentation speeds. In
total, 15 different sequences were selected for each participant. Sequences were
chosen such that each visual object appeared equally often at the first and last
position of the sequence. Given five stimuli and 15 sequences, for each object
category this was the case for 3 out of the 15 sequences. Furthermore, we ensured
that all possible sequences were chosen equally often across all participants. Given
120 possible sequential combinations in total, the sequences were distributed across
eight groups of participants. Sequences were randomly assigned to each participant
following this pseudo-randomized procedure.

To investigate the influence of sequence presentation speed on the
corresponding neural activation patterns, we systematically varied the ISI between
consecutive stimuli in the sequence. Specifically, we chose five different speed levels
of 32, 64, 128, 512, and 2048 ms, respectively (i.e., all exponents of 2 for good
coverage of faster speeds). Each of the 15 sequences per participant was shown at
each of the 5 different speed levels. The occurrence of the sequences was randomly
shuffled for each participant and across sessions within each participant. This
resulted in a total of 75 sequence trials presented to each participant across the
entire experiment. To ensure that participants maintained attention to the stimuli
during the sequence trials, they were instructed to identify the serial position of a
previously cued target object within the shown stimulus sequence and indicate
their response after a delay period without visual input.

During a sequence trial (for the trial procedure, see Fig. 1b) the target cue (the
name of the visual object, e.g., shoe) was shown for a fixed duration of 1000 ms,
followed by a blank screen for a fixed duration of 3850 ms. A blank screen was used
to reduce possible interference of neural activation patterns elicited by the target
cue with neural response patterns following the sequence of visual objects. A short
presentation of a gray fixation dot for a constant duration of 300 ms signaled the
onset of the upcoming sequence of visual objects. All objects in the sequence were
presented briefly for a fixed duration of 100 ms. The ISI for each trial was
determined based on the current sequence speed (see details above) and was the
same for all stimuli within a sequence. The sequence of stimuli was followed by a
delay period with a gray fixation dot that was terminated once a fixed duration of
16 s since the onset of the first sequence object had elapsed. This was to ensure
sufficient time to acquire the aftereffects of neural responses following the sequence
of objects even at a sequence speed of 2048 ms. During this waiting period,
participants were listening to bird sounds in order to keep them moderately
entertained without additional visual input. Subsequently, the name of the target
object as well as the response mapping was presented for a fixed duration of 1.5 s
(same fixed response time limit as for the slow trials, see above). In this response
interval, participants had to choose the correct serial position of the target object
from two response options that were presented on the left and right side of the
screen. The mapping of the response options was balanced for left and right
responses (i.e., the correct option appeared equally often on the left and right side;
37 times each with the mapping of the last trial being determined randomly) and
shuffled randomly for every participant. The serial position of the target for each
trial was randomly drawn from a Poisson distribution with λ= 1.9 and truncated
to an interval from 1 to 5. Thus, across all trials, the targets appeared more often at
the later compared to earlier positions of the sequence. This was done to reduce the
likelihood that participants stopped to process stimuli or diverted their attention
after they identified the position of the target object. The serial position of the
alternative response option was drawn from the same distribution as the serial
position of the target. As for the slow trials, auditory feedback was presented
immediately following a response. The coin sound indicated a reward of 3 cents for
correct responses, whereas the buzzer sound signaled incorrect or missed responses
(however, there was no deduction of 3 cents for incorrect responses or misses).
Together, participants could earn a maximum reward of 2.25 Euro in this task
condition.

Repetition trials. We included so-called repetition trials to investigate how decoding
time courses would be affected by (1) the number of fast repetitions of the same
neural event and (2) their interaction with the position of the switch to a sub-
sequent stimulus category. Repetition trials included varying repetitions of two
images in a sequence of nine items in total. All analyses reported in the Results
section focused on the two most extreme cases, (1) the first image shown once
followed by eight repetitions of the second image, and (2) eight repetitions of the
first image followed by the second image shown once. Analyses of all intermediate
levels of repetitions are reported in the SI. Each of the five stimulus categories was
selected as the preceding stimulus for eight sequences in total. For each of these
eight sequences, we systematically varied the position of the switch to the second
stimulus category from serial position 2 to 9. Overall, the transition to the second
stimulus happened five times at each serial position with varying stimulus material
on each trial. Across the eight trials for each stimulus category, we ensured that
each preceding stimulus category was followed by each of the remaining four
stimulus categories equally often. Specifically, a given preceding stimulus category
was followed by each of the remaining four stimulus categories two times. Also, the
average serial position of the first occurrence of each of the subsequent stimuli was
the same for all subsequent stimuli. That is to say, the same subsequent stimulus
appeared either on position 9 and 2, 8 and 3, 7 and 4, or 6 and 5, resulting in an
average first occurrence of the subsequent stimulus at position 5.5. All stimulus
sequences of the repetition trials were presented with a fixed ISI of 32 ms. Note that
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this is the same presentation speed as the fastest ISI of the sequence trials. Similar
to the sequence trials, participants were instructed to remember the serial position
at which the second stimulus within the sequence appeared for the first time. For
example, if the switch to the second stimulus happened at the fifth serial position,
participants had to remember this number.

Similar to the trial procedure of the sequence trials, each repetition trial (Fig. 1c)
began with the presentation of the target cue (name of the visual object, e.g., cat),
which was shown for a fixed duration of 500 ms. The target cue was followed by a
blank screen that was presented for a fixed duration of 3.85 s. A briefly presented
fixation dot announced the onset of the sequential visual stimuli. Subsequently, the
fast sequence of visual stimuli was presented with a fixed duration for visual stimuli
(100 ms each) and the ISI (32 ms on all trials). As for sequence trials, the sequence
of stimuli on repetition trials was followed by a variable delay period until 16 s
from sequence onset had elapsed. On repetition trials, participants had to choose
the correct serial position of the first occurrence of the target stimulus from two
response options. The incorrect response option was a random serial position that
was at least two positions away from the correct target position. For example, if the
correct option was 5, the alternative target position could either be earlier (1, 2, or
3) or later (7, 8, or 9). This was done to ensure that the task was reasonably easy to
perform. Finally, we added five longer repetition trials with 16 elements
per sequence. Here, the switch to the second sequential stimulus always occurred at
the last serial position. Each of the five stimulus categories was the preceding
stimulus once. The second stimulus of each sequence was any of the other four
stimulus categories. In doing so, in the long repetition trials each stimulus category
was the preceding and subsequent stimulus once. Repetition trials were randomly
distributed across the entire experiment and (together with the sequence trials)
interleaved with the slow trials.

Study procedure. The study consisted of two experimental sessions. During the
first session, participants were informed in detail about the study, screened for MRI
eligibility, and provided written informed consent if they agreed to participate in
the study. Then they completed a short demographic questionnaire (assessing age,
education, etc.) and a computerized version of the Digit-Span Test, assessing
working memory capacity93. Next, they performed a 10-min practice of the main
task. Subsequently, participants entered the MRI scanner. After a short localizer, we
first acquired a 5-min resting-state scan for which participants were asked to stay
awake and focus on a white fixation cross presented centrally on a black screen.
Then, we acquired four functional task runs of about 11 min during which parti-
cipants performed the main task in the MRI scanner. After the functional runs, we
acquired another 5-min resting-state, 5-min fieldmaps, as well as a 4-min anato-
mical scan. The second study session was identical to the first session, except that
participants entered the scanner immediately after another short assessment of
MRI eligibility. In total, the study took about 4 h to complete (2.5 and 1.5 h for
Session 1 and 2, respectively).

MRI data acquisition. All MRI data were acquired using a 32-channel head coil on
a research-dedicated 3-Tesla Siemens Magnetom TrioTim MRI scanner (Siemens,
Erlangen, Germany) located at the Max Planck Institute for Human Development
in Berlin, Germany. The scanning procedure was exactly the same for both study
sessions. For the functional scans, whole-brain images were acquired using a
segmented k-space and steady-state T2*-weighted multi-band (MB) echo-planar
imaging (EPI) single-echo gradient sequence that is sensitive to the BOLD contrast.
This measures local magnetic changes caused by changes in blood oxygenation that
accompany neural activity (sequence specification: 64 slices in interleaved
ascending order; anterior-to-posterior (A–P) phase-encoding direction; TR= 1250
ms; echo time (TE)= 26 ms; voxel size= 2 × 2 × 2mm; matrix= 96 × 96; field of
view (FOV)= 192 × 192 mm; flip angle (FA)= 71°; distance factor= 0%; MB
acceleration factor 4). Slices were tilted for each participant by 15° forwards relative
to the rostro-caudal axis to improve the quality of fMRI signal from the hippo-
campus (cf.94) while preserving good coverage of occipito-temporal brain regions.
Each MRI session included four functional task runs. Each run was about 11 min in
length, during which 530 functional volumes were acquired. For each functional
run, the task began after the acquisition of the first four volumes (i.e., after 5 s) to
avoid partial saturation effects and allow for scanner equilibrium. We also recorded
two functional runs of resting-state fMRI data, one before and one after the task
runs. Each resting-state run was about 5 min in length, during which 233 func-
tional volumes were acquired. After the functional task runs, two short acquisitions
with six volumes each were collected using the same sequence parameters as for the
functional scans but with varying phase-encoding polarities, resulting in pairs of
images with distortions going in opposite directions between the two acquisitions
(also known as the blip-up/blip-down technique). From these pairs the displace-
ment maps were estimated and used to correct for geometric distortions due to
susceptibility-induced field inhomogeneities as implemented in the fMRIPrep
preprocessing pipeline95. In addition, a whole-brain spoiled gradient recalled (GR)
field map with dual echo-time images (sequence specification: 36 slices; A–P phase-
encoding direction; TR= 400 ms; TE1= 4.92 ms; TE2= 7.38 ms; FA= 60°; matrix
size= 64 × 64; FOV= 192 × 192 mm; voxel size= 3 × 3 × 3.75 mm) was obtained
as a potential alternative to the method described above. However, as this field map
data were not successfully recorded for four participants, we used the blip-up/blip-
down technique for distortion correction (see details on MRI data preprocessing

below). Finally, high-resolution T1-weighted (T1w) anatomical Magnetization
Prepared Rapid Gradient Echo (MPRAGE) sequences were obtained from each
participant to allow registration and brain-surface reconstruction (sequence spe-
cification: 256 slices; TR= 1900 ms; TE= 2.52 ms; FA= 9°; inversion time (TI)=
900 ms; matrix size= 192 × 256; FOV= 192 × 256 mm; voxel size= 1 × 1 × 1mm).
We also measured respiration and pulse during each scanning session using pulse
oximetry and a pneumatic respiration belt.

MRI data preparation and preprocessing. Results included in this manuscript
come from preprocessing performed using fMRIPrep 1.2.2 (Esteban et al.95,96;
RRID:SCR_016216), which is based on Nipype 1.1.5 (Gorgolewski et al.97,98; RRID:
SCR_002502). Many internal operations of fMRIPrep use Nilearn 0.4.299; RRID:
SCR_001362, mostly within the functional processing workflow. For more details
of the pipeline, see https://fmriprep.readthedocs.io/en/1.2.2/workflows.html the
section corresponding to workflows in fMRIPrep’s documentation.

Conversion of data to the brain imaging data structure (BIDS) standard. The
majority of the steps involved in preparing and preprocessing the MRI data
employed recently developed tools and workflows aimed at enhancing standardi-
zation and reproducibility of task-based fMRI studies, for a similar preprocessing
pipeline, see100. Following successful acquisition, all study data were arranged
according to the BIDS specification101 using the HeuDiConv tool (version 0.6.0.
dev1; freely available from https://github.com/nipy/heudiconv) running inside a
Singularity container102,103 to facilitate further analysis and sharing of the
data. Dicoms were converted to the NIfTI-1 format using dcm2niix (version
1.0.20190410 GCC6.3.0)104. In order to make identification of study participants
unlikely, we eliminated facial features from all high-resolution structural images
using pydeface (version 2.0; available from https://github.com/poldracklab/
pydeface). The data quality of all functional and structural acquisitions was eval-
uated using the automated quality assessment tool MRIQC (for details, see105, and
the https://mriqc.readthedocs.io/en/stable/MRIQC documentation). The visual
group-level reports of the estimated image quality metrics confirmed that the
overall MRI signal quality of both anatomical and functional scans was highly
consistent across participants and runs within each participant.

Preprocessing of anatomical MRI data. A total of two T1-weighted images were
found within the input BIDS dataset, one from each study session. All of them were
corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection
(Advanced Normalization Tools (ANTs) 2.2.0)106. A T1w-reference map was
computed after registration of two T1w images (after INU-correction) using
mri_robust_template (FreeSurfer 6.0.1)107. The T1w reference was then
skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using OASIS
as target template. Brain surfaces were reconstructed using recon-all (Free-
Surfer 6.0.1,RRID:SCR_001847)108, and the brain mask estimated previously was
refined with a custom variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle
(RRID:SCR_002438)109. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c110 (RRID:SCR_008796) was performed
through nonlinear registration with antsRegistration (ANTs 2.2.0,RRID:
SCR_004757)111, using brain-extracted versions of both T1w volume and template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM), and
gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL
5.0.9,RRID:SCR_002823)112.

Preprocessing of functional MRI data. For each of the BOLD runs found per par-
ticipant (across all tasks and sessions), the following preprocessing was performed.
First, a reference volume and its skull-stripped version were generated using a
custom methodology of fMRIPrep. The BOLD reference was then co-registered to
the T1w reference using bbregister (FreeSurfer) which implements boundary-
based registration113. Co-registration was configured with nine degrees of freedom
to account for distortions remaining in the BOLD reference. Head-motion para-
meters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9)114. BOLD runs were slice-time-
corrected using 3dTshift from AFNI 20160207115 (RRID:SCR_005927). The
BOLD time-series (including slice-timing correction) were resampled onto their
original, native space by applying a single, composite transform to correct for head-
motion and susceptibility distortions. These resampled BOLD time-series will be
referred to as preprocessed BOLD in original space, or just preprocessed BOLD.
The BOLD time-series were resampled to MNI152NLin2009cAsym standard space,
generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a
reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. Several confounding time-series were calculated based
on the preprocessed BOLD: frame-wise displacement (FD), DVARS, and three
region-wise global signals. FD and DVARS are calculated for each functional run,
both using their implementations in Nipype (following the definitions by Power
et al.)116. The three global signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction (CompCor)117. Principal components
are estimated after high-pass filtering the preprocessed BOLD time-series (using a
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discrete cosine filter with 128 s cut-off) for the two CompCor variants: temporal
(tCompCor) and anatomical (aCompCor). Six tCompCor components are then
calculated from the top 5% variable voxels within a mask covering the subcortical
regions. This subcortical mask is obtained by heavily eroding the brain mask, which
ensures it does not include cortical GM regions. For aCompCor, six components
are calculated within the intersection of the aforementioned mask and the union of
CSF and WM masks calculated in T1w space, after their projection to the native
space of each functional run (using the inverse BOLD-to-T1w transformation). The
head-motion estimates calculated in the correction step were also placed within the
corresponding confounds file. The BOLD time-series were resampled to surfaces
on the following spaces: fsnative, fsaverage. All resamplings can be performed with
a single interpolation step by composing all the pertinent transformations (i.e.,
head-motion transform matrices, susceptibility distortion correction when avail-
able, and co-registrations to anatomical and template spaces). Gridded (volu-
metric) resamplings were performed using antsApplyTransforms (ANTs),
configured with Lanczos interpolation to minimize the smoothing effects of other
kernels118. Non-gridded (surface) resamplings were performed using mri_-
vol2surf (FreeSurfer). Following preprocessing using fMRIPrep, the fMRI
data were spatially smoothed using a Gaussian mask with a standard deviation
(full-width at half-maximum (FWHM) parameter) set to 4 mm using an example
Nipype smoothing workflow (see the Nipype documentation for details) based on
the SUSAN algorithm as implemented in the FMRIB Software Library (FSL)119.

Multivariate fMRI pattern analysis
Leave-one-run-out cross-validation procedure. All fMRI pattern classification ana-
lyses were conducted using open-source packages from the Python (Python
Software Foundation, Python Language Reference, version 3.7) modules Nilearn
(version 0.5.0)99 and scikit-learn (version 0.20.3)120. fMRI pattern classifi-
cation was performed using a leave-one-run-out cross-validation procedure for
which data from seven task runs were used for training and data from the left-out
run (i.e., the eighth run) were used for testing. This procedure was repeated eight
times so that each task run served as the testing set once. We trained an ensemble
of five independent classifiers, one for each of the five stimulus classes (cat, chair,
face, house, and shoe). For each class-specific classifier, labels of all other classes in
the data were relabeled to a common other category. In order to ensure that the
classifier estimates were not biased by relative differences in class frequency in the
training set, the weights associated with each class were adjusted inversely pro-
portional to the class frequencies in each training fold. Given that there were five
classes to decode, the frequencies used to adjust the classifiers’ weights were 1/5 for
the class of interest, and 4/5 for the other class, comprising any other classes.
Adjustments to minor imbalances caused by the exclusion of erroneous trials were
performed in the same way. Training was performed on data from all trials of the
seven runs in the respective cross-validation fold using only the trials of the slow
task where the visual object stimuli were presented upright and participants did not
respond correctly (i.e., correct rejection trials). In each iteration of the classification
procedure, the classifiers trained on seven out of eight runs were then applied
separately to the data from the left-out run. Specifically, the classifiers were applied
to (1) data from the slow trials of the left-out run, selecting volumes capturing the
expected activation peaks to determine classification accuracy, (2) data from the
slow trials of the left-out run, selecting all volumes from stimulus onset to the end
of the trial (seven volumes in total per trial) to identify temporal dynamics of
classifier predictions on a single trial basis, (3) data from the sequence trials of the
left-out run, selecting all volumes from sequence onset to the end of the delay
period (13 volumes in total per trial), and (4) data from the repetition trials of the
left-out run, also selecting all volumes from sequence onset to the end of the delay
period (13 volumes in total per trial). When the classifiers were applied to sequence
and repetition trials, data from both accurate and inaccurate trials were used to
allow for an equal number of test trials across participants and maximize statistical
power within the current study design. As shown in Fig. 1e, f, behavioral perfor-
mance on sequence and repetition trials was high and significantly above chance.

We used separate multinomial logistic regression classifiers with identical
parameter settings. All classifiers were regularized using L2 regularization. The C
parameter of the cost function was fixed at the default value of 1.0 for all
participants. The classifiers employed the lbfgs algorithm to solve the multi-class
optimization problem and were allowed to take a maximum of 4000 iterations to
converge. Pattern classification was performed within each participant separately,
never across participants. For each stimulus in the training set, we added 4 s to the
stimulus onset and chose the volume closest to that time point (i.e., rounded to the
nearest volume) to center the classifier training on the expected peaks of the BOLD
response (for a similar approach, see, e.g.49). At a TR of 1.25 s, this corresponded to
the fourth MRI volume which thus compromised a time window of 3.75–5 s after
each stimulus onset. We detrended the fMRI data separately for each run across all
task conditions to remove low-frequency signal intensity drifts in the data due to
signal noise from the MRI scanner. For each classifier and run, the features were
standardized (z-scored) by removing the mean and scaling to unit variance
separately for each test set.

For fMRI pattern classification analysis performed on resting-state data, we
created a new mask for each participant through additive combination of the
eight masks used for cross-validation (see above). This mask was then applied to
all task and resting-state fMRI runs which were then separately detrended and

standardized (z-scored). The classifiers were trained on the peak activation patterns
from all slow trials combined.

Feature selection. Feature selection is commonly used in multi-voxel pattern ana-
lysis (MVPA) to determine the voxels constituting the activation patterns used for
classification in order to improve the predictive performance of the classifier121,122.
Here, we combined a functional ROI approach based on thresholded t-maps with
anatomical masks to select image-responsive voxels within a predefined anatomical
brain region.

We ran eight standard first-level general linear models (GLMs) for each
participant, one for each of the eight cross-validation folds using SPM12 (version
12.7219; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) running inside a
Singularity container built using neurodocker (version 0.7.0; https://github.
com/ReproNim/neurodocker) implemented in a custom analysis workflow using
Nipype (version 1.4.0)97. In each cross-validation fold, we fitted a first-level GLM
to the data in the training set (e.g., data from run 1 to 7) and modeled the stimulus
onset of all trials of the slow task when a stimulus was presented upright and was
correctly rejected (i.e., participants did not respond correctly). These trial events
were modeled as boxcar functions with the length of the modeling event
corresponding to the duration of the stimulus on the screen (500 ms for all events).
If present in the training data, we also included trials with hits (correct response to
upside-down stimuli), misses (missed response to upside-down stimuli), and false
alarms (incorrect response to upright stimuli) as regressors of no interest, thereby
explicitly modeling variance attributed to these trial types (cf.123). Finally, we
included the following nuisance regressors estimated during preprocessing with
fMRIPrep: the frame-wise displacement for each volume as a quantification of
the estimated bulk-head-motion, the six rigid-body motion-correction parameters
estimated during realignment (three translation and rotation parameters,
respectively), and six noise components calculated according to the anatomical
variant of CompCorr (for details, see95, and the https://fmriprep.readthedocs.io/en/
stable/fMRIPrep documentation). All regressors were convolved with a canonical
HRF and did not include model derivatives for time and dispersion. Serial
correlations in the fMRI time-series were accounted for using an autoregressive AR
(1) model. This procedure resulted in fold-specific maps of t-values that were used
to select voxels from the left-out run of the cross-validation procedure. Note that
this approach avoids circularity (or so-called double-dipping) as the selective
analysis (here, fitting of the GLMs to the training set) is based on data that are fully
independent from the data that voxels are later selected from (here, testing set from
the left-out run; cf.124).

The resulting brain maps of voxel-specific t-values resulting from the estimation
of the described t-contrast were then combined with an anatomical mask of
occipito-temporal brain regions. All participant-specific anatomical masks were
created based on automated anatomical labeling of brain-surface reconstructions
from the individual T1w-reference image created with Freesurfer’s recon-all108

as part of the fMRIPrep workflow95, in order to account for individual variability
in macroscopic anatomy and to allow reliable labeling125,126. For the anatomical
masks of occipito-temporal regions we selected the corresponding labels of the
cuneus, lateral occipital sulcus, pericalcarine gyrus, superior parietal lobule, lingual
gyrus, inferior parietal lobule, fusiform gyrus, inferior temporal gyrus,
parahippocampal gyrus, and the middle temporal gyrus (cf.55). Only gray-matter
voxels were included in the generation of the masks as BOLD signal from non-
gray-matter voxels cannot be generally interpreted as neural activity122. However,
note that due to the whole-brain smoothing performed during preprocessing, voxel
activation from brain regions outside the anatomical mask but within the sphere of
the smoothing kernel might have entered the anatomical mask (thus, in principle,
also including signal from surrounding non-gray-matter voxels).

Finally, we combined the t-maps derived in each cross-validation fold with the
anatomical masks. All voxels with t-values above or below a threshold of t= 3 (i.e.,
voxels with the most negative and most positive t-values) inside the anatomical
mask were then selected for the left-out run of the classification analysis and set to
1 to create the final binarized masks (M= 11,162 voxels on average, SD= 2,083).

Classification accuracy and multivariate decoding time courses. In order to assess
the classifiers’ ability to differentiate between the neural activation patterns of
individual visual objects, we compared the predicted visual object of each example
in the test set to the visual object that was actually shown to the participant on the
corresponding trial. We obtained an average classification accuracy score for each
participant by calculating the mean proportion of correct classifier predictions
across all correctly answered, upright slow trials (Fig. 2a). The mean accuracy
scores of all participants were then compared to the chance baseline of 100%/5=
20% using a one-sided one-sample t-test, testing the a priori hypothesis that
classification accuracy would be higher than the chance baseline. The effect size
(Cohen’s d) was calculated as the difference between the mean of accuracy scores
and the chance baseline, divided by the standard deviation of the data127. Fur-
thermore, we assessed the classifiers’ ability to accurately detect the presence of
visual objects on a single trial basis. For this analysis, we applied the trained
classifiers to seven volumes from the volume closest to the stimulus onset and
examined the time courses of the probabilistic classification evidence in response to
the visual stimuli on a single trial basis (Fig. 2b). In order to test if the time series of
classifier probabilities reflected the expected increase of classifier probability for the
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stimulus shown on a given trial, we compared the time series of classifier prob-
abilities related to the classified class with the mean time courses of all other classes
using a two-sided paired t-test at every time point (i.e., at every TR). Here, we used
the Bonferroni-correction method128 across time points and stimulus classes to
adjust for multiple comparisons of 35 observations (7 TRs and 5 stimulus classes).
In the main text, we only report the results for the peak in classification probability
of the true class, corresponding to the fourth TR after stimulus onset. The effect
size (Cohen’s d) was calculated as the difference between the means of the prob-
abilities of the current versus all other stimuli, divided by the standard deviation of
the difference127.

Response and difference function modeling. As reported above, analyzing prob-
abilistic classifier evidence on single slow trials revealed multivariate decoding time
courses that can be characterized by a slow response function that resembles single-
voxel hemodynamics. For simplicity, we modeled this response function as a sine
wave that was flattened after one cycle, scaled by an amplitude, and adjusted to
baseline. The model was specified as follows:

hðtÞ ¼ A
2
sinð2πft � 2πfd � 0:5πÞ þ bþ A

2
ð1Þ

whereby t is time, A is the response amplitude (the peak deviation of the function
from baseline), f is the angular frequency (unit: 1/ TR, i.e., 0.8 Hz), d is the onset
delay (in TRs), and b is the baseline (in %). The restriction to one cycle was
achieved by converting the sine wave in accordance with the following piece-wise
function:

HðtÞ ¼ hðtÞ if d ≤ t ≤ ðd þ 1
f Þ

b otherwise

(
ð2Þ

We fitted the four model parameters (A, f, d, and b) to the mean probabilistic
classifier evidence of each stimulus class at every TR separately for each participant.
For convenience, we count time t in TRs. To approximate the time course of the
difference between two response functions, we utilized the trigonometric identity
for the subtraction of two sine functions, e.g.129:

cosðz1Þ � cosðz2Þ ¼ �2 sin
z1 þ z2

2

� �
sin

z1 � z2
2

� �
ð3Þ

Considering the case of two sine waves with identical frequency but differing by a
temporal shift δ one obtains

cosð2πftÞ � cosð2πft � 2πf δÞ ¼ �2 sin
4πft � 2πf δ

2

� �
sin

2πf δ
2

� �

¼ �2 sin 2πf
δ

2

� �
sin 2πft � 2πf

δ

2

� � ð4Þ

which corresponds to a flipped sine function with an amplitude scaled by
2 sinð2πf δ

2Þ, a shift of δ
2 and an identical frequency f.

To apply this equation to our scenario, two adjustments have to be made since
the single-cycle nature of our response function is not accounted for in Eq. (3).
First, one should note that properties of the amplitude term in Eq. (4) only hold as
long as shifts of no greater than half a wavelength are considered (the wavelength λ
is the inverse of the frequency f). The term sinð2πf δ

2Þ can be written as sinð2π δ
2λÞ,

which illustrates that the term monotonically increases until δ > λ
2. Second, the

frequency term has to be adapted as follows: The flattening of the sine waves to the
left implies that the difference becomes positive at 0 rather than δ

2, thus undoing the
phase shift and stretching the wave by 1

2 δ TRs. The flattening on the right also leads
to a lengthening of the wave by an additional 12 δ TRs, since the difference becomes
0 at 2πf+ 2πfδ, instead of only 2πf þ 2πf δ

2. Thus, the total wavelength has to be
adjusted by a factor of δ TRs, and no phase shift relative to the first response is
expected. The difference function therefore has frequency

f δ ¼ f �1 þ δ
� ��1 ¼ f

1þ f δ
ð5Þ

instead of f, and Eq. (4) becomes �2A sinð2πf δ
2Þ sinð2π f

1þf δ tÞ. We can now apply

Eq. (3) to the fitted response function as follows:

hδðtÞ ¼
1
2
Â cosð2πf̂ t � 2πf̂ d̂ � 0:5πÞ þ b̂þ 1

2
Â

� �

� 1
2
Â cosð2πf̂ t � 2πf̂ d̂ � 2πf̂ δ � 0:5πÞ þ b̂þ 1

2
Â

� �

¼ �Â sin 2πf̂
δ

2

� �
sin 2π

f̂

1þ f̂ δ
t � 2π

f̂

1þ f̂ δ
d � π

 !

¼ Â sin 2πf̂
δ

2

� �
sinð2πf̂ δt � 2πf̂ δdÞ

ð6Þ

whereby f̂ , d̂, b̂, and Â indicate fitted parameters.
We determined the relevant TRs in the forward and backward periods for

sequence trials by calculating δ depending on the sequence speed (the ISI). The
resulting values for δ and corresponding forward and backward periods are shown

in Table 1. Model fitting was performed using NLoptr, an R interface to the
NLopt library for nonlinear optimization130 employing the COBYLA (Constrained
Optimization BY Linear Approximation) algorithm (version 1.2.2.1)131,132. The
resulting parameters were then averaged across participants, yielding the mean
parameters reported in the main text. To assess if the model fitted the data
reasonably, we inspected the fits of the sine-wave response function for each
stimulus class and participant using individual parameters (Supplementary Fig. 4).

Detecting sequentiality in fMRI patterns on sequence trials. In order to analyze the
neural activation patterns following the presentation of sequential visual stimuli for
evidence of sequentiality, we first determined the true serial position of each
decoded event for each trial. Specifically, applying the trained classifiers to each
volume of the sequence trials yielded a series of predicted event labels and cor-
responding classification probabilities that were assigned their sequential position
within the true sequence that was shown to participants on the corresponding trial.

The main question we asked for this analysis was to what extent we can infer
the serial order of image sequences from relative activation differences in fMRI
pattern strength within single measurements (a single TR). To this end, we applied
the trained classifiers to a series of 13 volumes following sequence onset (spanning
a total time window of about 16 s) on sequence trials and analyzed the time courses
of the corresponding classifier probabilities related to the five image categories
(Fig. 3a). Classification probabilities were normalized by dividing the probabilities
by their trial-wise sum for each image class. As detailed in the task description, the
time window was selected such that the neural responses to the image sequences
could be fully captured without interference from upcoming trials. We examined
relative differences in decoding probabilities between serial events at every time
point (i.e., at every TR) and quantified the degree of sequential ordering in two
different analyses.

First, we conducted a linear regression between the serial position of the five
images and their classification probabilities at every TR in the relevant forward and
backward period (adjusted by sequence speed) and extracted the slope of the linear
regression as an index of linear association. The slopes were then averaged at every
TR separately for each participant and sequence speed across data from all
15 sequence trials (Fig. 3b). Here, if later events have a higher classification
probability compared to earlier events, the slope coefficient will be negative. In
contrast, if earlier events have a higher classification probability compared to later
events, the slope coefficient will be positive. Note that, for convenience, we flipped
the sign of the mean regression slopes so that positive values indicate forward
ordering and negative values indicate backward ordering. To determine if we can
find evidence for significant sequential ordering of classification probabilities in the
forward and backward periods, we conducted a series of ten separate two-tailed
one-sample t-tests comparing the mean regression slope coefficients of each speed
condition against zero (the expectation of no order information). All p values were
adjusted for ten comparisons by controlling the FDR (Fig. 3c;133). As an estimate of
the effect size, we calculated Cohen’s d as the difference between the sample mean
and the null value in units of the sample standard deviation127. As reported in the
main text, we conducted the same analysis using rank correlation coefficients
(Kendall’s τ) and the mean step size between probability-ordered events within TRs
as alternative indices of linear association (for details, see SI). In order to directly
compare the predicted time courses of regression slopes based on our modeling
approach with the observed time courses, we computed the Pearson’s correlation
coefficient between the two time series, both on data averaged across participants
and within each participant (Fig. 2d, e). The mean within-participant correlation
coefficients were tested against zero (the expectation of no correlation) using a
separate two-sided one-sample t-test for each speed condition. All p values were
adjusted for five comparisons by controlling the FDR133.

We hypothesized that sequential order information of fast neural events will
translate into order structure in the fMRI signal and successively decoded events in
turn. Therefore, we analyzed the fMRI data from sequence trials for evidence of
sequentiality across consecutive measurements. The analyses were restricted to the

Table 1 Relevant time periods depending on sequence
speed.

Speed (in ms) δ (in TRs) Forward period Backward period

32 0.42 TRs 2–4 TRs 5–7
64 0.52 TRs 2–4 TRs 5–7
128 0.73 TRs 2–4 TRs 5–8
512 1.96 TRs 2–5 TRs 6–9
2048 6.87 TRs 2–7 TRs 8–13

Forward periods were calculated as [0.56; 0.5 ∗ λδ+ d= 0.5 ∗ (5.24+ δ)+ 0.56]. Backward
period were calculated as [0.5 ∗ λδ+ d= 0.5 ∗ (5.24+ δ)+ 0.56; λδ+ d= 5.24+ δ+ 0.56]. δ
reflects the interval between the onsets of the first and last of five sequence items that is
dependent on the sequence speed (the ISI) and the stimulus duration (here, 100ms). For
example, for an ISI of 32 ms, δ (in TRs) is calculated as (0.032 ∗ 4+ 0.1 ∗ 4)/1.25= 0.42 TRs. d
reflects the fitted onset delay (here, 0.56 TRs). All values were then rounded to the closest TRs
resulting in the speed-adjusted time periods (two rightmost columns).
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expected forward and backward periods which were adjusted depending on the
sequence speed. For each TR, we obtained the image with the most likely fMRI
signal pattern based on the classification probabilities. First, we asked if we are
more likely to decode earlier serial events earlier and later serial events later in the
decoding time window of 13 TRs. To this end, we averaged the serial position of
the most likely event at every TR, separately for each trial and participant, resulting
in a time course of average serial event position across the decoding time window
(Fig. 3d). We then compared the average serial event position against the mean
serial position (position 3) as a baseline across participants at every time point in
the forward and backward period using a series of two-sided one-sample t-tests,
adjusted for 38 multiple comparisons (across all five speed conditions and TRs in
the forward and backward period) by controlling the FDR133. These results are
reported in the SI. Next, in order to assess if the average serial position differed
between the forward and backward period for the five different speed conditions,
we conducted a linear mixed effects (LME) model and entered the speed condition
(with five levels) and trial period (forward versus backward) as fixed effects
including by-participant random intercepts and slopes. Finally, we conducted a
series of two-sided one-sample t-tests to assess whether the mean serial position in
the forward and backward periods differed from the expected mean serial position
(baseline of 3) for every speed condition (all p values adjusted for 10 comparisons
using FDR-correction133).

Second, we analyzed how this progression through the involved sequence
elements affected transitions between consecutively decoded serial events. As
before, we extracted the most likely pattern for each TR (i.e., the pattern with the
highest classification probability), and calculated the step sizes between
consecutively decoded serial events, as in Schuck and Niv54. For example, decoding
Event 2→ Event 4 in consecutive TRs would correspond to a step size of +2,
while a Event 3→ Event 2 transition would reflect a step size of −1, etc. We then
calculated the mean step-size of the first (early) and second (late) halves of the
forward and backward periods, respectively, which were adjusted for sequence
speed. Specifically, the transitions were defined as follows: at speeds of 32, 64, and
128 ms these transitions included the 2→ 3 (early forward), 3→ 4 (late forward),
5→ 6 (early backward), and 6→ 7 (late backward); at speeds of 512 ms these
transitions included 2→ 3 (early forward), 4→ 5 (late forward), 6→ 7 (early
backward), and 8→ 9 (late backward); at 2048 ms these transitions included 2→
3→ 4 (early forward), 5→ 6→ 7 (late backward) 8→ 9→ 10 (early backward),
and 11→ 12→ 13 (late backward). Finally, we compared the mean step size in the
early and late half of the forward versus backward period for every speed condition
using ten separate two-sided one-sample t-tests. All p values were adjusted for
multiple comparisons by controlling the FDR (cf.133).

Analysis of repetition trials for sensitivity of within-sequence items. Applying the
classifiers trained on slow trials to data from repetition trials yielded a classification
probability estimate for each stimulus class given the data at every time point (i.e.,
at every TR; Fig. 4a and Supplementary Fig. 9). As described in the main text, we
then analyzed the classification probabilities to answer which fMRI patterns were
activated during a fast sequence under conditions of extreme forward or backward
interference. Specifically, sequences with forward interference entailed a brief
presentation of a single image that was followed by eight repetitions of a second
image; whereas backward interference was characterized by a condition where eight
image repetitions were followed by a single briefly presented item. As predicted by
the sine-based response functions, the relevant time period included TRs 2–7. All
analyses reported in the Results section were conducted using data from these
selected TRs as described. Results based on data from all TRs are reported in the SI.

First, we calculated the mean probability of each event type (first, second, and
non-sequence events) across all selected TRs and trials in the relevant time period
separately for each repetition condition across participants. In order to examine
whether the event type (first, second, and non-sequence events) had an influence
on the mean probability estimates on repetition trials, we conducted a LME
model134 and entered the event type (with three factor levels: first, second, and
non-sequence events) as a fixed effect and included by-participant random
intercepts and slopes (Fig. 4b). Post hoc comparisons between the means of the
three factor levels were conducted using Tukey’s honest significant difference
(HSD) test135.

Second, in order to jointly examine the influence of event duration (number of
repetitions) and event type (first, second, and non-sequence events), we conducted
a LME model134 with fixed effects of event type (with three factor levels: first,
second, and non-sequence events) and repetition condition (number of individual
event repetitions with two factor levels: (1) forward interference trials, where one
briefly presented event is followed by eight repetitions of a second event, and
(2) backward interference trials, where eight repetitions of a first event are followed
by one briefly presented second event), also adding an interaction term for the two
effects. Again, the model included both by-participant random intercepts and
slopes (Fig. 4c). Post hoc multiple comparisons among interacting factor levels
were performed separately for each repetition condition by conditioning on each
level of this factor (i.e., forward interference versus backward interference trials),
using Tukey’s HSD test.

Third, we asked if we are more likely to find transitions between decoded events
that were part of the sequence (the two within-sequence items) compared to items
that were not part of the sequence (non-sequence items). To this end, we classified
each transition as follows: forward (from Event 1 to Event 2), backward (from

Event 2 to Event 1), repetitions of each sequence item, outwards (from sequence
items to any non-sequence item), inwards (from non-sequence items to sequence
items), outside (among non-sequence items), and repetitions among non-sequence
events (the full transition matrix is shown in Fig. 4e). We then compared the
average proportion of forward transitions within the sequence (i.e., decoding Event
1→ Event 2) with the average proportions of (1) transitions from sequence items
to items that were not part of the sequence (outwards transitions), and (2)
transitions between events not part of the sequence (outside transitions) using
paired two-sample t-tests with p values adjusted for four comparisons using
Bonferroni correction (Fig. 4d).

Analysis of sparse sequence events with lower SNR. We only used resting-state data
from the first study session before participants had any experience with the task
(except a short training session outside the scanner). These resting-state data could
not be successfully recorded in four participants. Therefore, the analyses were
restricted to N= 32 of 36 participants. Participants were instructed to rest as
calmly as possible with eyes opened while focusing on a white fixation cross that
was presented centrally on the screen. For decoding on resting-state data, we used
the union of all eight masks created for the functional task runs during the cross-
validation procedure. Logistic regression classifiers were trained on masked data
from slow trials of all eight functional runs and applied to all TRs of the resting-
state data, similar to our sequence trial analysis. We assigned pseudo serial posi-
tions to each class randomly for every participant, assuming one fixed event
ordering. We first characterized and compared the behavior of sequence detection
metrics on resting-state and concatenated sequence trial data. For sequence trials,
we only considered data from TRs within the expected forward and backward
periods (TRs 2–13) and focused on the fastest (32 ms) and slowest (2048 ms) speed
condition. Accordingly, we restricted the resting-state data to the first 180 TRs to
match it to the length of concatenated sequence trial data (15 concatenated trials of
12 TRs each). For both fast and slow sequence trials and rest data, we then cal-
culated the standard deviation of the probabilities (Fig. 5a) as well as the slope of a
linear regression between serial position and their classification probabilities
(Fig. 5b, c) at every TR. We then compared both the standard deviation of
probabilities and the mean regression slopes over the entire rest period with the
mean regression slopes in fast (32 ms) sequence trials using two-sided paired t-tests
(Fig. 5a, b; ps adjusted for four comparisons using Bonferroni correction). The
effect sizes (Cohen’s d) were calculated as the difference between the means of the
resting and sequence data, divided by the standard deviation of the differences127.
Given the rhythmic fluctuations of the regression slope dynamics (Fig. 2e), we
calculated the frequency spectra across the resting-state and concatenated sequence
trial data using the Lomb-Scargle method (using the lsp function from the R
package lomb, e.g.,61 that is suitable for unevenly sampled data, and therefore
accounts for potential artifacts due to data concatenation (Fig. 5d). The resulting
frequency spectra were smoothed with a running average filter with width 0.005.
Next, we extracted the mean power of the frequencies for fast and slow event
sequences as predicted by Eq. (5) in both resting and sequence data. For example,
for a 32 ms sequence with δ= 0.032 ∗ 4+ 0.1 ∗ 5= 0.628, one obtains the pre-
dicted frequency as f δ ¼ f

1þf � 0:628 ¼ 0:17, whereby f equals the fitted single trial

frequency f= 1/5.24. The mean power at the predicted frequencies were then
compared between resting as well as fast and slow sequence data using two-sided
paired t-tests with p values adjusted for multiple comparisons using FDR-
correction133.

We then inserted 1–6 sequence events into the pre-task resting-state period by
blending TRs during resting state with TRs recorded during fast (32 ms) or slow
(2048 ms) sequence trials. Specifically, we randomly selected six sequence trials for
each speed condition, without replacement. Only TRs from the relevant time
period (see above; 12 TRs for both speed conditions, respectively) were blended
into the resting-state data. To investigate the effects of a reduced SNR, we
systematically multiplied the probabilities of the inserted sequence TRs by a factor
κ of 4

5,
1
2,

1
4,

1
8, or 0, step-wise reducing the signal from 80% to 0% and added these

scaled probabilities to the probability time courses of the resting-state data. The
resting-state data used for blending were independently sampled from non-
overlapping random locations within the resting-state data of the same participant.
This ensured that even in the 0 SNR condition, potential artifacts due to data
concatenation were present and would therefore not impact our comparisons
between SNR levels. For each combination of the number of inserts and SNR levels,
we then compared the mean standard deviation of the probabilities during
sequence-inserted rest with sequence-free rest using a series of two-sided paired t-
tests. p values were adjusted accordingly for 30 comparisons using FDR-
correction133 and log-transformed (base 20) to make them easier to visualize (here,
a log-transformed p value of 1 corresponds to p < 0.05).

Finally, we calculated the frequency spectra of sequence-inserted rest data as
before, separately for data with fast and slow sequence inserts. To achieve
comparable resolution obtained in the above analyses, we over-sampled the
frequency space by a factor of 2. Smoothing was then applied again as before. We
then calculated the relative power of each frequency compared to sequence-free
rest and averaged the relative frequency spectra across participants (Fig. 5h). As
before, we extracted the mean power within the predicted fast and slow frequency
range (± 0.01 Hz, given the smoothing) and compared them between fast and slow
sequence-inserted rest and for different numbers of inserts and SNR levels. We
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then compared the relative power for each sequence-inserted rest dataset, number
of inserts, and SNR level against zero (no difference from sequence-free rest) using
a series of two-sided one-sample t-tests (p values uncorrected).

Analysis of task-related reactivations in post-task resting-state data. We investigated
whether the frequency spectrum analyses described above could be used to detect
task-related reactivations of stimulus sequences in post-task resting-state data in
Session 1 (i.e., after participants performed four runs of the task). As the pre-task
resting-state acquisition, post-task resting-state data consisted of a 5-min fMRI run
during which participants rested calmly with eyes open but without any additional
task. We calculated the frequency spectra (using the Lomb-Scargle method) across
the pre- and post-task resting-state data as described above (see Fig. 6a). To this
end, we calculated the slopes and frequency spectra in the two resting-state runs
considering all permutations of possible sequential orderings of classification
probabilities at every TR, rather than assuming a random ordering (as for the
sequence-inserted rest analyses described above), then averaging across all data
from all permutations. We then compared pre- and post-task rest directly by
calculating the relative power of the frequency spectra as the difference between
pre- and post-task rest (Fig. 6b). Finally, we assessed if the power difference in the
fast frequency range (0.17 Hz), indicative of fast sequential neural events, between
pre- and post-task rest was specific to the sequential combinations of stimuli that
participants experienced during the task. To this end, we split the data depending
on whether they were created based on sequences the participants experienced
more or less frequently during the task. As described above, the 15 sequences that
were selected for the sequence trials for each participant were considered more
frequent compared to all other sequential permutations that participants experi-
ence during the slow trials. Lastly, to examine if the increases in power in the fast
frequency range were specific to the more frequent sequences, we conducted a LME
model with the resting-state run (pre- vs. post-task) and the sequence frequency
(less vs. more frequent) as the main fixed effects of interest, and by-participant
random intercepts and slopes (Fig. 6c). Post hoc multiple comparisons among the
interacting factors were performed using Tukey’s HSD test.

Statistical analysis. Main statistical analyses were conducted using LME models
employing the lmer function of the lme4 package (version 1.1.21134) in R
(version 3.6.1136). If not stated otherwise, all models were fit with participants
considered as a random effect on both the intercept and slopes of the fixed effects,
in accordance with results from Barr et al.137 who recommend to fit the most
complex model consistent with the experimental design137. If applicable, expla-
natory variables were standardized to a mean of 0 and a standard deviation of 1
before they entered the models. If necessary, we removed by-participant slopes
from the random effects structure to achieve a non-singular fit of the model137.
Models were fitted using the BOBYQA (Bound Optimization BY Quadratic
Approximation) optimizer138,139 with a maximum of 500,000 function evaluations
and no calculation of gradient and Hessian of nonlinear optimization solution. The
likelihoods of the fitted models were assessed using Type III analysis of variance
(ANOVA) with Satterthwaite’s method. A single-step multiple comparison pro-
cedure between the means of the relevant factor levels was conducted using Tukey’s
HSD test135, as implemented in the emmeans package in R (version 1.3.4136,140).
In all other analyses, we used one-sample t-tests if group data were compared to,
e.g., a baseline, or paired t-tests if two samples from the same population were
compared. If applicable, correction for multiple hypothesis testing was performed
using the FDR-correction method133. If not stated otherwise, t-tests were two-sided
and the α level set to 0.05.

Analysis of behavioral data. The main goal of the current study was to investigate
the statistical properties of BOLD activation patterns following the presentation of
fast visual object sequences. Therefore, attentive processing of all visual stimuli was
a prerequisite to ensure that we would be able to decode neural representations of
the stimuli from occipito-temporal fMRI data. If behavioral performance was low,
we could expect that participants did not attend well to the stimuli. We thus
calculated the mean behavioral accuracy on sequence and repetition trials and
excluded all participants that had a mean behavioral accuracy below the 50%
chance level (Supplementary Fig. 1a). Mean behavioral accuracy scores of the
remaining participants in the final sample are reported in the main text (Fig. 1e, f)
and the SI (Supplementary Fig. 1). In order to assess how well participants detected
upside-down stimuli on slow trials, we conducted a one-sided one-sample t-test
against the 50% chance level, testing the a priori hypothesis that mean behavioral
accuracy would be higher than chance. Cohen’s d quantified the effect size and was
calculated as the difference between the mean of the data and the chance level,
divided by the standard deviation of the data127. As low performance in this task
condition could be indicated by both false alarms (incorrect response to upright
stimuli) and misses (missed response to upside-down stimuli), we also checked
whether the frequency of false alarms and misses differed (Supplementary Fig. 1b).
Furthermore, we assessed if behavioral accuracy on slow trials used for classifier
training was stable across task runs (Supplementary Fig. 1c). In order to examine
the effect of sequence speed on behavioral accuracy in sequence trials, we con-
ducted a LME model including the sequence speed condition as the main fixed
effect of interest, and by-participant random intercepts and slopes (Fig. 1e). We
then examined whether performance was above chance for all five speed conditions

and conducted five separate one-sided one-sample t-tests testing the a priori
hypothesis that mean behavioral accuracy would be higher than a 50% chance level.
All p values were adjusted for multiple comparisons using FDR-correction133. The
effect of serial position of the cued target image on behavioral accuracy is reported
in the SI (Supplementary Fig. 1d). For repetition trials with forward and backward
interference we conducted separate one-sided one-sample t-test for each repetition
condition to test the a priori hypothesis that behavioral accuracy would be higher
than the 50% chance level (Fig. 1f). Results for all repetition conditions are reported
in the SI (Supplementary Fig. 1e). The effect sizes (Cohen’s d) were calculated as for
slow trials.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We publicly share all data used in this study. Data and code management was realized
using DataLad [version 0.13.0142, for details, see https://www.datalad.org/]. An overview
of all the resources is publicly available on our project website: https://wittkuhn.mpib.
berlin/highspeed/. All individual datasets can be found at https://gin.g-node.org/
lnnrtwttkhn. Please note that each dataset is associated with a unique URL and Digital
Object Identifier (DOI). We share all MRI and behavioral data adhering to the BIDS
standard (cf.101) (https://github.com/lnnrtwttkhn/highspeed-bids; https://gin.g-node.org/
lnnrtwttkhn/highspeed-bids; https://doi.org/10.12751/g-node.4ivuv8), all MRI quality
metrics and reports based on MRIQC (cf.105) (https://github.com/lnnrtwttkhn/
highspeed-mriqc; https://gin.g-node.org/lnnrtwttkhn/highspeed-mriqc; https://doi.org/
10.12751/g-node.0vmyuh), all preprocessed MRI data using fMRIPrep (cf.96,143) (https://
github.com/lnnrtwttkhn/highspeed-fmriprep; https://gin.g-node.org/lnnrtwttkhn/
highspeed-fmriprep; https://doi.org/10.12751/g-node.0ft06t), all binarized anatomical
masks used for feature selection (https://github.com/lnnrtwttkhn/highspeed-masks;
https://gin.g-node.org/lnnrtwttkhn/highspeed-masks; https://doi.org/10.12751/g-node.
omirok), all first-level GLM results used for feature selection (https://github.com/
lnnrtwttkhn/highspeed-glm; https://gin.g-node.org/lnnrtwttkhn/highspeed-glm; https://
doi.org/10.12751/g-node.d21zpv), all results of the multivariate decoding approach
(https://github.com/lnnrtwttkhn/highspeed-decoding; https://gin.g-node.org/
lnnrtwttkhn/highspeed-decoding; https://doi.org/10.12751/g-node.9zft1r), and the
unprocessed data of the behavioral task acquired during MRI acquisition (https://github.
com/lnnrtwttkhn/highspeed-data-behavior; https://gin.g-node.org/lnnrtwttkhn/
highspeed-data-behavior; https://doi.org/10.12751/g-node.p7dabb). Bird sounds used as
stimuli can be downloaded from https://audiojungle.net/item/british-bird-song-dawn-
chorus/98074. The visual stimulus material is freely available from http://data.pymvpa.
org/datasets/haxby2001/. The original authors of55 hold the copyright of this dataset and
made it available under the terms of the Creative Commons Attribution-Share Alike 3.0
license (see http://creativecommons.org/licenses/by-sa/3.0/for details). The images
selected for the task were not modified. Source Data to reproduce the main parts of all
figures are provided with this paper.

Code availability
We share all code used in this study. An overview of all the resources is publicly available
on our project website: https://wittkuhn.mpib.berlin/highspeed/. All code for the main
statistical analyses can be found at https://github.com/lnnrtwttkhn/highspeed-analysis;
https://gin.g-node.org/lnnrtwttkhn/highspeed-analysis; https://doi.org/10.12751/g-node.
eqqdtg). All code to run the behavioral task can be found at (https://github.com/
lnnrtwttkhn/highspeed-task; https://doi.org/10.5281/zenodo.4305888), Please note that
we share all data listed in the Data availability section in modularized units alongside the
code that created the data, usually in a dedicated code directory in each dataset, instead
of separate data and code repositories. This approach allows to better establish the
provenance of data (i.e., a better understanding which code and input data produced
which output data), loosely following the DataLad YODA principles (for details, see the
chapter “YODA: Best practices for data analyses in a dataset” in the DataLad handbook
(version 0.13144), available at https://handbook.datalad.org/).
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