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Abstract

Small sample sizes combined with high person-to-person variability can make it difficult

to detect significant gene expression changes from transcriptional profiling studies. Subtle,

but coordinated, gene expression changes may be detected using gene set analysis

approaches. Meta-analysis is another approach to increase the power to detect biologically

relevant changes by integrating information from multiple studies. Here, we present a frame-

work that combines both approaches and allows for meta-analysis of gene sets. QuSAGE

meta-analysis extends our previously published QuSAGE framework, which offers several

advantages for gene set analysis, including fully accounting for gene-gene correlations and

quantifying gene set activity as a full probability density function. Application of QuSAGE

meta-analysis to influenza vaccination response shows it can detect significant activity that

is not apparent in individual studies.

This is a PLOS Computational Biology Software paper.

Introduction

Whole-genome transcriptional profiling, using DNA microarray technology or next-genera-

tion sequencing (RNA-seq), is widely used to gain insights into disease pathophysiology and

response to therapy. While it is important to identify individual genetic associations, the high

level of variation between individuals due to genetic and phenotypic heterogeneity can result

in inconsistent biological insights [1]. With the availability of biological annotation for known

genes [2–5], the focus of gene analysis has shifted from individual genes to gene sets. Gene set

analysis can be used to detect and compare the activity of pre-defined lists of genes that can be

related directly to the underlying biological processes. Compared to differential expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006899 April 2, 2019 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Meng H, Yaari G, Bolen CR, Avey S,

Kleinstein SH (2019) Gene set meta-analysis with

Quantitative Set Analysis for Gene Expression

(QuSAGE). PLoS Comput Biol 15(4): e1006899.

https://doi.org/10.1371/journal.pcbi.1006899

Editor: Mihaela Pertea, Johns Hopkins University,

UNITED STATES

Received: July 17, 2018

Accepted: February 24, 2019

Published: April 2, 2019

Copyright: © 2019 Meng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data and R code

can be found at: https://bitbucket.org/kleinstein/

qusage.

Funding: This work has been supported by

National Institutes of Science (NIH) grant

U19AI117873 Grant website: https://www.nih.gov/

grants-funding Steven H. Kleinstein and United

States–Israel Binational Science Foundation grant

2013395 Grant website: http://www.bsf.org.il/

BSFPublic/Default.aspx PIs: Steven H. Kleinstein &

Gur Yaari The funders had no role in study design,

http://orcid.org/0000-0001-9311-9884
http://orcid.org/0000-0003-4957-1544
https://doi.org/10.1371/journal.pcbi.1006899
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006899&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006899&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006899&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006899&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006899&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006899&domain=pdf&date_stamp=2019-04-12
https://doi.org/10.1371/journal.pcbi.1006899
http://creativecommons.org/licenses/by/4.0/
https://bitbucket.org/kleinstein/qusage
https://bitbucket.org/kleinstein/qusage
https://www.nih.gov/grants-funding
https://www.nih.gov/grants-funding
http://www.bsf.org.il/BSFPublic/Default.aspx
http://www.bsf.org.il/BSFPublic/Default.aspx


(DE) analysis of individual genes, gene set analysis examines the cumulative effect of multiple

related genes, and thus offers the possibility to detect more subtle, but coordinated, expression

changes [6–10]. Despite this increased power, gene set analysis can still be limited by the small

sample sizes of many current studies. Combining multiple related studies through meta-analy-

sis offers the possibility of increased power and improved reproducibility [11]. Such studies

can leverage the large and growing number of transcriptional profiling data sets available in

public repositories, such as GEO [12]. However, combining information from multiple studies

and performing meta-analysis at the gene set level remains challenging. Meta-Analysis of Path-

way Enrichment (MAPE), including MAPE-P, MAPE-G, and MAPE-I, use maximum, mini-

mum, or Fisher’s statistics to combine P values from each individual study for meta-analysis

[13]. Instead of combining P values, MetaPath leverages a Bayesian model and was developed

to perform gene set meta-analysis by simultaneously modeling gene expression data and gene

set information from multiple studies [14]. Recently, Lu et al. developed iGSEA that uses an

adaptive testing method for choosing either random Effects (RE) or fixed effects (FE) model to

integrate gene set analysis from multiple studies [15].

We previously proposed Quantitative Set Analysis for Gene Expression (QuSAGE) [16] as a

computational framework for gene set analysis. QuSAGE quantifies gene set activity with a

complete probability density function (PDF), and improves power by accounting for gene-

gene correlations. The QuSAGE R package is available on Bioconductor [17], and is widely

used with 1554 downloads from distinct IPs in 2017. In 2015, Turner et al. extended the appli-

cability of QuSAGE to longitudinal studies by adding functionality for general linear mixed

models [18]. In this study, we further extend the applicability of QuSAGE to include meta-

analysis of gene sets. QuSAGE meta-analysis was adopted by the NIH/NIAID Human

Immunology Project Consortium (HIPC)–Center for Human Immunology (CHI) Signature

Project Team to successfully detect baseline transcriptional predictors of influenza vaccination

responses from multiple studies [19].

As an alternative gene set meta-analysis method, QuSAGE meta-analysis has several advan-

tages: 1) It is a natural extension of QuSAGE, so it facilitates gene set meta-analysis for the

large number of existing QuSAGE users, 2) QuSAGE improves power by accounting for gene-

gene correlations and QuSAGE meta-analysis inherits this advantage, and 3) Since QuSAGE

quantifies a gene set activity with a PDF, it is capable of performing complicated post hoc com-

parisons that other gene set meta-analysis methods cannot achieve easily, as we demonstrate

in our case study.

Design & implementation

QuSAGE quantifies gene set activity with a complete probability density function (PDF). The

QuSAGE meta-analysis pipeline proceeds in three steps (Fig 1).

Frist, gene set analysis is performed with gene expression data separately for each individual

study using QuSAGE. Differential gene expression of individual gene is quantified by a full

PDF rather than a single P value. Then all PDFs of genes within the gene set of interest are

combined into a single activity (PDF) using numerical convolution. The variance of the com-

bined PDF is corrected for gene-gene correlation by calculating a variance inflation factor

(VIF).

Next, the meta-analysis is performed through the function combinePDFs (Table 1). To

carry out meta-analysis of S studies, the PDFs from each individual study are combined into a

single PDF using a weighted numeric convolution algorithm [20]. The sample sizes of each

study are considered as weight factors. In short, the continuous PDFs are sampled within an

interval that spans their individual ranges. Each PDF is sampled by a finite number of points
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that is proportional to its weight. These discretized PDFs are then convoluted and the result is

resampled and transformed back to the initial interval. P values and confidence intervals can

be easily extracted from the resulting combined PDF.

Finally, the results of QuSAGE meta-analysis can be visualized by the function

plotCombinedPDF.

Fig 1. Overview of the QuSAGE meta-analysis pipeline. Gene expression data of each study is first analyzed separately by QuSAGE to

produce gene set activity PDFs. Next, meta-analysis is performed through the function combinePDFs, where PDFs from each individual

study are combined into a single PDF using a weighted numeric convolution algorithm. The results of QuSAGE meta-analysis can then

be visualized by the function plotCombinedPDF.

https://doi.org/10.1371/journal.pcbi.1006899.g001

Gene set meta-analysis with QuSAGE

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006899 April 2, 2019 3 / 10

https://doi.org/10.1371/journal.pcbi.1006899.g001
https://doi.org/10.1371/journal.pcbi.1006899


Results

To illustrate how QuSAGE meta-analysis works, we analyzed three influenza vaccination tran-

scriptional profiling studies of young adults [21]. The data from these studies is available in

GEO (GSE59635, GSE59654, and GSE59743) and ImmPort (SDY63, SDY404, and SDY400).

The goal of the analysis was to detect gene sets associated with successful (i.e., high) antibody

responses using the transcriptional response data measured from blood samples taken pre- and

7 days post-vaccination. Subjects were categorized as high-responders (HR) and low-respond-

ers (LR) based on their adjusted maximum fold change (adjMFC) from hemagglutination inhi-

bition assay (HAI) measurements taken pre- and 28 days post-vaccination [22]. GSE59635

(SDY63) included 7 young subjects (3 LR and 4 HR); GSE59654 (SDY404) contained 13 young

subjects (7 LR and 6 HR); GSE59743 (SDY400) had 15 young subjects (7 LR and 8 HR). The

data and R code of this case study can be found from: https://bitbucket.org/kleinstein/qusage.

The analysis consisted of two major steps:

1. Identify candidate vaccination response gene sets. First, the set of 346 blood transcription

modules (BTMs) described in Li et al. [4] was filtered to a smaller list of “response” sets that

showed significant activity following influenza vaccination in the set of HR subjects. To

define these response gene sets, QuSAGE meta-analysis was used to compare day 7 post-

vaccination with pre-vaccination transcriptional profiles in HR subjects across all three

studies. This analysis identified 62 response gene sets with a Benjamani-Hochberg false dis-

covery rate (FDR) cutoff of 5%.

2. Detect gene sets associated with successful antibody responses. For each response gene

set selected in step 1, QuSAGE was first used to carry out a two-way comparison on each

study independently. A PDF reflecting the response difference between HR and LR was

quantified by calculating the difference of two PDFs, one representing the temporal gene

set activity in HR (day 7 vs. pre-vaccination) and the other representing LR (day 7 vs. pre-

vaccination). Next, QuSAGE meta-analysis was used to combine the PDFs from the three

studies into one single PDF. Statistical significance of the meta-analysis was calculated by

testing whether the central tendency of the final PDF is zero using a two-sided test with

15% FDR cutoff.

As expected from the known biology, "plasma cells, immunoglobulins (M156.1)" was one of

top-ranked gene sets from QuSAGE meta-analysis (Fig 2), and was significantly more up-regu-

lated (day 7 vs. pre-vaccination) in HR compared to LR. In total, QuSAGE meta-analysis iden-

tified 11 gene sets associated with a successful antibody response (Table 2). In most cases (8 of

Table 1. Pseudocode for QuSAGE meta-analysis.

Algorithm Pseudocode for QuSAGE Meta-Analysis

Input: G gene sets and S studies

Output: A combined PDF for each gene set g denoted as PDFMeta
g

1: G number of gene sets

2: S number of studies

3: for g in 1:G do

4: for s in 1:S do

5: PDF�gs  SampleðPDFgsÞ // Sample in proportion to size of s

6: PDFMeta
g  ConvolutionðPDF�g1

; PDF�g2
; . . . ;PDF�gSÞ

https://doi.org/10.1371/journal.pcbi.1006899.t001
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11; 73%), the QuSAGE meta-analysis of these gene sets yielded a lower P value compared with

the individual studies.

We next compared QuSAGE meta-analysis with other meta-analysis approaches. Existing

gene set meta-analysis methods were designed to perform pairwise comparisons between two

phenotypes/conditions and cannot be easily applied to the four-way comparison in our case

study. For our comparative analysis, we first used Fisher’s method [23] and Stouffer’s method

[24] to combine P values from QuSAGE single gene set analysis from each study and com-

pared the results with QuSAGE meta-analysis. Using the same FDR cutoff of 15%, Fisher’s

Fig 2. QuSAGE meta-analysis of gene set “plasma cells, immunoglobulins (M156.1)”. The differential response between HR and LR

subjects was first calculated for each individual study (colored lines). QuSAGE meta-analysis was then used to combine these

individual PDFs into a single meta-analysis PDF (black line).

https://doi.org/10.1371/journal.pcbi.1006899.g002

Table 2. Nominal P values for individual studies and meta-analyses of gene sets significantly associated with successful influenza vaccination responses

(FDR< 15%).

Gene Sets SDY63 SDY404 SDY400 Meta-analysis

QuSAGE Fisher Stouffer

plasma cells, immunoglobulins (M156.1) 0.001 0.044 0.304 0.004� 0.001� 0.007

mitotic cell cycle in stimulated CD4 T cells (M4.11) 0.918 0.085 0.016 0.010� 0.038 0.028

respiratory electron transport chain (mitochondrion) (M219) 0.028 0.043 0.456 0.011� 0.020 0.038

Plasma cell surface signature (S3) 0.227 0.022 0.504 0.011� 0.062 0.069

plasma cells & B cells, immunoglobulins (M156.0) 0.002 0.139 0.326 0.011� 0.004� 0.025

respiratory electron transport chain (mitochondrion) (M216) 0.108 0.072 0.241 0.014� 0.051 0.035

transcription elongation, RNA polymerase II (M234) 0.115 0.036 0.652 0.016� 0.066 0.109

Memory B cell surface signature (S9) 0.125 0.050 0.510 0.016� 0.074 0.084

cell cycle (I) (M4.1) 0.527 0.106 0.065 0.017� 0.082 0.034

respiratory electron transport chain (mitochondrion) (M238) 0.044 0.083 0.464 0.019� 0.047 0.068

enriched in antigen presentation (I) (M71) 0.711 0.728 0.000 0.020� 0.001� 0.009

MHC-TLR7-TLR8 cluster (M146) 0.469 0.082 0.001 0.306 0.003� 0.001�

� Gene sets significantly associated with successful responses (FDR 15%), using QuSAGE, Fisher’s method or Stouffer’s method for meta-analysis,

Underlined: Gene sets where QuSAGE meta-analysis yielded lower P values compared with the individual studies

https://doi.org/10.1371/journal.pcbi.1006899.t002
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method and Stouffer’s method identified fewer gene sets than QuSAGE. Fisher’s method and

Stouffer’s method identified 4 and 1 significant gene sets, respectively, including only a single

gene set not found by QuSAGE (Fig 3A, Table 2). It is possible that QuSAGE meta-analysis

was more sensitive, and identified additional significant gene sets, compared with Fisher’s

method or Stouffer’s method at the cost of decreased specificity. To investigate the specificity

of QuSAGE meta-analysis, we permutated the labels of LR and HR individuals 2000 times and

applied the same meta-analyses using all three approaches. With the same FDR cutoff 15%

applied to each permutation, only 134 out of 2000 permutations generated even a single false

Fig 3. Comparison of QuSAGE with Fisher’s method and Stouffer’s method. A) Significant genes sets identified by QuSAGE meta-analysis,

Fisher’s method and Stouffer’s method. Using the same FDR cutoff of 15%, QuSAGE meta-analysis, Fisher’s method and Stouffer’s method

identified 11, 4 and 1 significant gene sets respectively. B) Permutation analysis of QuSAGE meta-analysis demonstrates higher specificity than

Fisher’s method and Stouffer’s method. The labels of LR and HR subjects were permutated 2000 times, and meta-analysis was carried out for

each of these permuted data sets. For each permutation, the number of false positive gene sets (defined at FDR< 15%) was determined for

QuSAGE meta-analysis, Fisher’s method and Stouffer’s method (left, middle and right panels, respectively). The counts of permutations with

and without any false positive results is indicated in the pie charts.

https://doi.org/10.1371/journal.pcbi.1006899.g003
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positive gene set result using QuSAGE meta-analysis; while 380 and 384 permutations pro-

duced false positives when using Fisher’s and Stouffer’s method, respectively (Fig 3B). These

results suggest that QuSAGE meta-analysis is conservative and the increased number of signif-

icant gene sets identified by QuSAGE in the real data was not due to QuSAGE simply generat-

ing lower P values (i.e., QuSAGE meta-analysis is not trading off specificity for sensitivity).

However, a limitation of Fisher’s method and Stouffer’s method is that neither accounts for

the direction of gene set activity (e.g., higher in HR vs. higher in LR), but simply combines the

resulting P values from each individual study. As a consequence, low P values may be pro-

duced by cases where the change for the individual studies is significant but in different direc-

tions, leading to false positives. To account for the directionality of gene set activity differences

when applying Fisher’s method and Stouffer’s method, we carried out a three-step analysis,

which were referred to directional Fisher’s method and directional Stouffer’s method. First,

separate one-tailed tests were carried out for each study to test for (1) higher gene set activity

in HR, and (2) higher gene set activity in LR. In this way, lower P values in each type of one-

tailed test, have a consistent meaning. Second, in the meta-analysis, Fisher’s method or Stouf-

fer’s method was applied to the set of P values from each type of one-tailed test to generate a

combined P values. Third, the final P value of the meta-analysis was the smaller of the two

combined P value from each of the one-tailed tests, corrected by multiplying by 2. We also

tested another popular meta-analysis method in which effect sizes (Hedges’ g) are calculated

for every gene set in each study separately and then combined using linear (mixed-effects)

models (implemented in the rma() function from the metafor R package, and hereafter

referred to as the “effect-size” method) [25]. Using the same FDR cutoff of 15%, directional

Fisher’s method, Stouffer’s method and the effect-size method identified 16, 27 and 40 signifi-

cant gene sets respectively (S1 Table). All 11 gene sets detected by QuSAGE meta-analysis

were found by directional Fisher’s method and directional Stouffer’s method, and 10 of the 11

gene sets were found by the effect-size method, suggesting a high level of confidence in the

QuSAGE results (Fig 4A). To quantify the specificity of the three approaches, we permutated

the labels of LR and HR individuals 2000 times and applied the same meta-analyses on each

permuted data set. With the same FDR cutoff 15% applied to each permutation, QuSAGE

meta-analysis generated false positive results in only 8% (159 out of 2000) of the permutations

(Fig 4B). In contrast, directional Fisher’s method, directional Stouffer’s method and the effect-

size method generated at least one false positive gene set in 17%, 14% and 63% (337, 280 and

1267 out of 2000) of the permutations, respectively (Fig 4B).This higher false positive rate

may account, at least partially, for the additional gene sets identified by directional Fisher’s

method, directional Stouffer’s method and the effect-size method. Overall, the results on this

case study show that QuSAGE meta-analysis is comparable with existing methods, but has bet-

ter specificity.

In this study, we describe an extension of QuSAGE to enable meta-analysis of gene sets.

Instead of summarizing P values, QuSAGE integrates gene set activity and estimates a full PDF

of activity across multiple studies, thus easing the process of post hoc comparisons. Further-

more, by integrating information from a larger pool of samples, QuSAGE meta-analysis

increases the power of analysis, and allows detection of biologically-relevant gene sets that

would not be detectable in single studies. Existing common meta-analysis methods, such as

Fisher’s method, Stouffer’s method, or the effect-size method, are limited by the fact that the

gene set activity from each study is represented by a single P value (Stouffer weighs P values by

sample size from each study) or a single statistic (effect size). However, QuSAGE describes the

gene set activity using a PDF and the meta-analysis of QuSAGE fully takes the advantage of the

richer information provided from PDFs. QuSAGE meta-analysis combines PDFs from multi-

ple studies using a weighted numeric convolution algorithm, and thus implicitly considers not

Gene set meta-analysis with QuSAGE
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only the differences but also directions and confidence intervals of gene set activities, leading

to a more accurate estimation of combined gene set activity. The QuSAGE algorithm is also

computationally efficient. It took totally only 4 minutes to run the whole case study in our

manuscript on a single PC with a 2.80GHz Intel Core i7 CPU and 16G memory. Our case

study suggests that QuSAGE is comparable or better than the commonly used Fisher and

Stouffer methods. In the future, performing comparisons of QuSAGE with other existing

meta-analysis methods [13–15, 26]would be desirable.

Availability and Future Directions

The QuSAGE R package is available in Bioconductor and can be accessed from: http://

bioconductor.org/packages/release/bioc/html/qusage.html. QuSAGE meta-analysis is

included in version 2.12.0 or later. The data and R code of this case study can be found from:

https://bitbucket.org/kleinstein/qusage.

Supporting information

S1 Table. Nominal P values of gene sets significantly associated with successful influenza

vaccination responses from four meta-analysis approaches.

(DOCX)

Fig 4. Comparison of QuSAGE with directional Fisher’s method, directional Stouffer’s method and the effect-size method. A) Significant

genes sets identified by QuSAGE meta-analysis, directional Fisher’s method, directional Stouffer’s method and the effect-size method. Using the

same FDR cutoff of 15%, QuSAGE meta-analysis, directional Fisher’s method, directional Stouffer’s method and the effect-size method

identified 11, 16, 27 and 40 significant gene sets respectively. B) Permutation analysis of QuSAGE meta-analysis demonstrates higher specificity

than directional Fisher’s method, directional Stouffer’s method and effect-size method. The labels of LR and HR subjects were permutated 2000

times, and meta-analysis was carried out for each of these permuted data sets. For each permutation, the number of false positive gene sets

(defined at FDR< 15%) was determined for QuSAGE meta-analysis, directional Fisher’s method, directional Stouffer’s method and the effect-

size method. The counts of permutations with and without any false positive results is indicated in the pie charts.

https://doi.org/10.1371/journal.pcbi.1006899.g004
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