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Abstract
Aggregation of ubiquitinated cargo by oligomers of the protein p62 is an important
preparatory step in cellular autophagy. In this work a mathematical model for the
dynamics of these heterogeneous aggregates in the form of a system of ordinary
differential equations is derived and analyzed. Three different parameter regimes are
identified, where either aggregates are unstable, or their size saturates at a finite value,
or their size grows indefinitely as long as free particles are abundant. The boundaries
of these regimes as well as the finite size in the second case can be computed explicitly.
The growth in the third case (quadratic in time) can also be made explicit by formal
asymptotic methods. In the absence of rigorous results the dynamic stability of these
structures has been investigated by numerical simulations. A comparison with recent
experimental results permits a partial parametrization of the model.

Mathematics Subject Classification 92C40 Biochemistry, molecular biology

1 Introduction

Autophagy is an intracellular pathway, which targets damaged, surplus, and harmful
cytoplasmic material for degradation. This is mediated by the sequestration of cyto-
plasmic cargo material within double membrane vesicles termed autophagosomes,
which subsequently fuse with lysosomes wherein the cargo is hydrolyzed. Defects in
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autophagy result in various diseases including neurodegeneration, cancer, and uncon-
trolled infections (Levine and Kroemer 2008). The selectivity of autophagic processes
is mediated by cargo receptors such as p62 (also known as SQSTM1), which link the
cargo material to the nascent autophagosomal membrane (Danieli andMartens 2018).
p62 is an oligomeric protein and mediates the selective degradation of ubiquitinated
proteins. Its interaction with ubiquitin is mediated by its C-terminal UBA domain,
while it attaches the cargo to the autophagosomal membrane due to its interaction
with Atg8 family proteins such as LC3B, which decorate the membrane (Pankiv et al.
2007). Additionally, p62 serves to condensate ubiquitinated proteins into larger con-
densates or aggregates, which subsequently become targets for autophagy (Sun et al.
2018; Zaffagnini et al. 2018). It has been reported that this condensation reaction
requires the ability of p62 to oligomerize and the presence of two or more ubiquitin
chains on the substrates (Wurzer et al. 2015; Zaffagnini et al. 2018).

In this article a mathematical model for the condensation process is derived and
analyzed. It is based on cross-linking of p62 oligomers by ubiquitinated substrate
(Zaffagnini et al. 2018). A cross-linker is assumed to be able to connect two oligomers,
where each oligomer has a number of binding sites corresponding to its size. As an
approximation for the dynamics of large aggregates, a nonlinear system of ordinary
differential equations is derived.

The oligomerization property of p62 has been shown to be necessary in the forma-
tion of aggregates (Zaffagnini et al. 2018): too small oligomers of Ubiquitin do not
form aggregates (Wurzer et al. 2015).

The dynamics of protein aggregation has been studied by mathematical modelling
for several decades, but most models consider the aggregation of only one type of
protein, which gives rise to models belonging to the class of nucleation–coagulation–
fragmentation equations, see e.g. Bishop and Ferrone (1984), Prigent et al. (2012)
and Xue et al. (2008) for examples in the biophysical literature, and Collet et al.
(2002), Laurençot and Mischler (2002), Banasiak and Lamb (2006) and Dubovskiı̆
and Stewart (1996) for a sample of the mathematical literature. Contrary to these
studies, the present work considers aggregates composed of two different types of
particles with varying mixing ratios, which drastically increases the complexity of the
problem.

In the following section themathematicalmodel is derived. It describes an aggregate
by three numbers: the number of p62 oligomers, the number of cross-linkers bound
to one oligomer, and the number of cross-linkers bound to two oligomers. The model
considers an early stage of the aggregation process where the supply of free p62
oligomers and of free cross-linkers is not limiting. Since no other information about
the composition of the aggregate is used, assumptions on the binding and unbinding
rates are necessary. In the limit of large aggregates, whose details are presented in an
appendix, themodel takes the form of a system of three ordinary differential equations.
Section 3 starts with a result on the well posedness of the model, and it is mainly
devoted to a study of the long-time behaviour by a combination of analytical and
numerical methods. Depending on the parameter values, three different regimes are
identified, where either aggregates are unstable and completely dissolved, or their size
tends to a limiting value, or they keep growing (as long as they do not run out of free
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oligomers and cross-linkers). In Sect. 4 we discuss the parametrization of the model
and a comparison with data from Zaffagnini et al. (2018).

2 Presentation of themodel

2.1 Discrete description of aggregates

We consider two types of basic particles:

1. Oligomers of the protein p62, where we assume for simplicity that all oligomers
contain the same number n ≥ 3 of molecules (see Sect. 4 for a discussion of this
assumption). These oligomers are denoted by p62n and are assumed to possess n
binding sites for ubiquitin each,

2. Cross-linkers in the form of ubiquitinated cargo, denoted by Ubi and assumed to
have two ubiquitin ends each. When one end of a Ubi is bound to a p62n , we call
it one-hand bound, when both ends are bound we call it both-hand bound.

An aggregate is represented by a triplet (i, j, k) ∈ N
3
0, where i denotes the number

of one-hand boundUbi , j denotes the number of both-hand boundUbi , and k denotes
the number of p62n . An aggregate will be assumed to contain at least two p62n , i.e.
k ≥ 2, and enough both-hand boundUbi to be connected, i.e. j ≥ k−1. Furthermore,
an aggregate contains nk binding sites for Ubi , implying i + 2 j ≤ nk. A triplet
(i, j, k) ∈ N

3
0 satisfying the three inequalities

k ≥ 2, j ≥ k − 1, i + 2 j ≤ nk, (1)

will be called admissible. It is a rather drastic step to describe an aggregate only by
these three numbers, since the same triplet might represent aggregates with various
shapes. An example of an admissible triplet describing a unique aggregate topology is
(0, k − 1, k), representing a chain of p62n . Adding one both-hand boundUbi already
creates a topological ambiguity: The triplet (0, k, k) can be realized by a circular
aggregate or by an open chain, where one connection is doubled. Apart from missing
topological information, the triplet (i, j, k) also lacks any information on the geome-
try of an aggregate. The reaction rates described below should be interpreted as mean
values taken over all possible aggregate shapes described by a triplet (i, j, k). An
extension of the model to include the shape information would require knowledge on
the conformations of oligomers and cross-linkers, including chemical and mechanical
properties, which is only partially available in the literature [see, e.g., Ciuffa et al.
(2015) for p62 oligomers]. The modeling of aggregation reactions would then require
molecular dynamics simulations, whichwould be rather complex even for small aggre-
gates. For our goal of describing the dynamics of large aggregates such an approach
seems to be prohibitively complex.
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Fig. 1 Examples for Reactions 1 (left) and 2 (right) with p625 in black, one-hand bound Ubi in green,
two-hand bound Ubi in red, free particles in blue. Reaction 1: Ubi + (1, 3, 3) → (2, 3, 3). Reaction 2:
p625 + (2, 3, 3) → (1, 4, 4)

2.2 The reaction scheme

Basically there are only two types of reactions: binding and unbinding ofUbi to p62n .
However, depending on the situation these may have various effects on the aggregate,
whence we distinguish between three binding and three unbinding reactions.

1. Addition of a freeUbi , requiring at least one free binding site, i.e. nk−i−2 j ≥ 1,
(see Fig. 1):

Ubi + (i, j, k)
κ ′
1−→ (i + 1, j, k)

The reaction rate (number of reactions per time) is modeled bymass action kinetics
for a second-order reaction with reaction constant κ ′

1 and with the number [Ubi] of
free Ubi . Since free Ubi and free p62 oligomers will be assumed abundant, their
numbers [Ubi] and [p62n] will be kept fixed and the abbreviation κ1 = κ ′

1[Ubi]
will be used (see Sect. 5 for a short discussion of the effect of lifting the abundancy
assumption). This leads to a first-order reaction rate

r1 = κ1(nk − i − 2 j). (2)

2. Addition of a free p62n , requiring at least one one-hand bound Ubi , i.e. i ≥ 1:

p62n + (i, j, k)
κ ′
2−→ (i − 1, j + 1, k + 1)

Analogously to above, we set κ2 = κ ′
2[p62n] and

r2 = κ2i . (3)

3. Compactification of the aggregate by a Ubi binding its second hand, requiring
at least one one-hand bound Ubi , i.e. i ≥ 1, and at least one free binding site, i.e.
nk − i − 2 j ≥ 1:

(i, j, k)
κ ′
3−→ (i − 1, j + 1, k)
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This is a second-order reaction with rate

r3 = κ ′
3i(nk − i − 2 j). (4)

4. Loss of aUbi , requiring at least one one-handedUbi , i.e. i ≥ 1. This is the reverse
reaction to 1:

(i, j, k)
κ−1−−→ Ubi + (i − 1, j, k)

Its rate is modeled by

r−1 = κ−1i . (5)

5. Loss of a p62n (leading to loss of the whole aggregate if k = 2):

(i, j, k)
κ−α j,k−−−−→ p62n + �Ubi + (i + 1 − �, j − 1, k − 1)

This and the following reaction need some comments. They are actually both the
same reaction, namely breaking of a cross-link, which we assume to occur with rate
κ− j . However, this can have different consequences. Here we consider something
close to the reverse of reaction 2. This means we assume that the broken cross-link
has been the only connection of a p62 oligomer with the aggregate, such that the
oligomer falls off. This requires the condition nk − 2 j ≥ n − 1, meaning the
possibility that the other n − 1 binding sites of the lost oligomer are free of two-
hand boundUbi . It is not quite the reverse of reaction 2, since we have to consider
the possibility that � one-hand bound Ubi , 0 ≤ � ≤ n − 1, are bound to the lost
oligomer. The conditional probability α j,k to be in this case, when a cross-link
breaks, is zero for a very tightly connected aggregate where each oligomer is cross-
linked at least twice, i.e. nk − 2 j ≤ n − 2, and it is one for a very loose aggregate,
i.e. a chain with j = k − 1. This motivates the model

α j,k = (nk − 2 j − n + 2)+
(n − 2)k + 4 − n

, (6)

which is, as a function of j ∈ [k−1, (nk−n+2)/2], the linear interpolant between
the values 1 and 0; notation: a+ = max{a, 0}, leading to the rate

r−2 = κ−α j,k j . (7)

In the framework of our model, � should be a random number satisfying the restric-
tions

(n − 1 − nk + i + 2 j)+ ≤ � ≤ min{i, n − 1}, (8)

where the upper bound should be obvious and the lower bound implies that the last
condition in (1) is satisfied by the post-reaction state (i + 1− �, j − 1, k − 1). We
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shall use the choice

� = �i, j,k :=
⌊

(n − 1)i

nk − 2 j

⌉
, (9)

which can be interpreted as the rounded (�·� denotes the closest integer) expecta-
tion value for the number of one-hand bound Ubi on the lost oligomer in terms of
the ratio between the number n − 1 of available binding sites on the lost oligomer
and the total number nk − 2 j of available binding sites for one-hand bound Ubi
in the whole aggregate. It is easily seen that in the relevant situation α j,k > 0, i.e.
nk − 2 j ≥ n − 1, the choice (9) without the rounding satisfies the conditions (8).
Since the bounds in (8) are integer, the same is true for the rounded version.

Note that we neglect the possibility to lose more than one oligomer by breaking
a cross-link, i.e. the fragmentation of the aggregate into two smaller ones. On
the one hand, this is a serious and actually questionable modeling assumption.
Dropping it, on the other hand, would induce serious difficulties in the further
development of our model. First, a decision would be required, which of the two
post-fragmentation aggregates to follow. Second and more importantly, it would
mean to allow for large jumps in the state of the aggregate, ruling out a differential
equation model (as derived below), which is based on gradual state changes. An
a posteriori justification of the no-fragmentation assumption will be provided by
some of the results of the following section, showing that growing aggregates are
tightly connected, making fragmentation very unlikely (Fig. 2).

6. Loosening of the aggregate by breaking a cross-link, requiring at least one excess
both-hand bound Ubi , i.e. j ≥ k:

(i, j, k)
κ−(1−α j,k )−−−−−−→ (i + 1, j − 1, k).

This is the reverse of reaction 3 with the rate

r−3 = κ−(1 − α j,k) j, (10)

which respects the requirement j ≥ k for a positive rate, because of

1 − α j,k = min

{
1,

2( j − k + 1)

(n − 2)k + 4 − n

}
.

2.3 A deterministic model for large aggregates

The next step is the formulation of an evolution problem for a probability density on
the set of admissible states (i, j, k). In this problem the discrete state is scaled by a
typical value k0 of κ1/κ

′
3 and κ2/κ

′
3, assumed of the same order of magnitude. We

also assume k0 to be large, which means that we assume the concentrations [Ubi] and
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Fig. 2 Examples for Reaction 3 (left, (2, 3, 3) → (1, 4, 3)), Reaction 5 (right, up, (1, 3, 3) → p625 +
(2, 2, 2), � = 0), and Reaction 6 (right, down, (1, 3, 3) → (2, 2, 3))

[p62n] of free particles to be large enough (see Sect. 4 for a further discussion of these
assumptions):

p := i

k0
, q := j

k0
, r := k

k0
. (11)

This choice means that the orders of magnitude κ1k0, κ2k0, and κ ′
3k

2
0 of the forward

reaction rates (2), (3), (4) are the same. It is then consistent with these definitions
to introduce κ3 := κ ′

3k0 and to assume that κ3 takes moderate values. In the large
aggregate limit k0 → ∞, the new unknowns become continuous, and the equation
for the probability density becomes a transport equation (see “Appendix A” for the
details). It possesses deterministic solutions governedby theODE initial value problem

ṗ = (κ1 − κ3 p)(nr − p − 2q) + κ−q
(
1 − (n−1)p

(n−2)r

)
− (κ2 + κ−1)p, p(0) = p0,

q̇ = κ2 p + κ3 p(nr − p − 2q) − κ−q, q(0) = q0,
ṙ = κ2 p − κ−qα(q, r), r(0) = r0,

(12)

where

α(q, r) := nr − 2q

(n − 2)r
(13)

is the limit of α j,k as k0 → ∞. The conditions for admissible states (p, q, r) ∈
[0,∞)2 × (0,∞) are obtained in the limit of (1):

s := nr − p − 2q ≥ 0, q ≥ r , (14)

implying, as expected,

0 ≤ α(q, r) ≤ 1. (15)
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The equations satisfied by s and q − r ,

ṡ = (n − 1)κ2 p + κ−1 p + κ−q
2(q − r)

(n − 2)r
− s

(
κ3 p + κ1 + κ−q

n − 1

(n − 2)r

)
, (16)

(q − r )̇ = κ3 ps − 2κ−q
(n − 2)r

(q − r), (17)

show that the conditions (14) are propagated by (12).

3 Analytic results

3.1 Global existence

Since the right hand sides of (12) contain quadratic nonlinearities, it seems possible
that solutions blow up in finite time. On the other hand, the right hand sides are not
well defined for r = 0. The essence of the following global existence result is that
neither of these difficulties occurs.

Theorem 1 Let 3 ≤ n ∈ N and κ1, κ2, κ3, κ−1, κ− ≥ 0. Let (p0, q0, r0) ∈
(0,∞)3 satisfy (14). Then problem (12) has a unique global solution satisfying
(p(t), q(t), r(t)) ∈ (0,∞)3 as well as (14) for any t > 0. Also the following estimates
hold for t > 0:

p(t) + q(t) + r(t) ≤ (p0 + q0 + r0) exp (t max{κ1n, κ2}) , (18)

r(t) ≥ 2

n
q(t) ≥ 2q0

n
exp(−κ−t). (19)

Proof Local existence and uniqueness is a consequence of the Picard–Lindelöf theo-
rem. Global existence will follow from the bounds stated in the theorem. Positivity of
the solution components, of s = nr− p−2q, and of q−r is an immediate consequence
of the form of the equations (12), (16), (17). This also implies

ṗ + q̇ + ṙ ≤ κ1nr + κ2 p ≤ max{κ1n, κ2}(p + q + r),

which shows (18) by theGronwall lemma.With (14), the equation for q in (12) implies

q̇ ≥ −κ−q,

and another application of the Gronwall lemma and of (14) proves (19) and, thus,
completes the proof of the theorem. 
�

3.2 Long-time behaviour

The first step in the long-time analysis is the investigation of steady states. Although
the right hand sides of (12) are not well defined for r = 0, the origin p = q = r = 0
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A mathematical model of p62-ubiquitin aggregates in… Page 9 of 24 3

can be considered as a steady state since

0 ≤ α(q, r) ≤ 1 and
p

r
≤ n

hold for admissible states satisfying (14) and, thus, the right hand sides of (12) tend
to zero for admissible (p, q, r) → (0, 0, 0). The following result shows that at most
one other steady state is possible which, somewhat miraculously, can be computed
explicitly.

Theorem 2 Let 3 ≤ n ∈ N, κ1, κ2, κ3, κ−1, κ− > 0, and let

ᾱ := n

n − 2
+ κ−1 + κ1 − √

(κ1 + κ−1)2 + 4κ1κ2(n − 1)

κ−(n − 1)
(20)

satisfy 0 < ᾱ < 1. Then there exists an admissible steady state ( p̄, q̄, r̄) ∈ (0,∞)3 of
(12) given by

p̄ = κ1κ2(n − 2)

κ3(κ−q̂(n − 1) + κ−1(n − 2))

1 − ᾱ

ᾱ
,

q̄ = κ1κ
2
2 (n − 2)

κ3κ−(κ−q̂(n − 1) + κ−1(n − 2))

1 − ᾱ

ᾱ2 ,

r̄ = κ1κ
2
2 (n − 2)

q̂κ3κ−(κ−q̂(n − 1) + κ−1(n − 2))

1 − ᾱ

ᾱ2 ,

with ᾱ = α(q̄, r̄) and q̂ = (n − (n − 2)ᾱ)/2 ∈ (1, n/2). There exists no other steady
state (besides the origin).

Proof The origin is the only steady state with r = 0, since by (14), i.e. p + 2q ≤ nr ,
r = 0 implies p = q = 0. Assuming r̄ > 0, we introduce

p̂ = p̄

r̄
, q̂ = q̄

r̄
, (21)

and rewrite the steady state equations in terms of p̂ and q̂:

0 = (κ1 − κ3 p̄)(n − p̂ − 2q̂) + κ−q̂
(
1 − p̂

n − 1

n − 2

)
− (κ2 + κ−1) p̂, (22)

0 = κ2 p̂ + κ3 p̄(n − p̂ − 2q̂) − κ−q̂, (23)

0 = κ2 p̂ − κ−q̂ᾱ, with ᾱ = n − 2q̂

n − 2
. (24)

From (24) we obtain

p̂ = κ−q̂
κ2

ᾱ = κ−q̂(n − 2q̂)

κ2(n − 2)
, (25)
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which is substituted into the sum of (22) and (23):

(n − 2q̂)

(
κ1 − κ1κ−

κ2(n − 2)
q̂ − κ2−(n − 1)

κ2(n − 2)2
q̂2 − κ−1κ−

κ2(n − 2)
q̂

)
= 0.

The option n = 2q̂ leads to ᾱ = 0, implying p̂ = 0 and, thus, p̄ = 0, which contradicts
(23). Therefore the second paranthesis has to vanish, leading to a quadratic equation
for q̂ with the only positive solution

q̂ =
(n − 2)

(
−κ−1 − κ1 + √

(κ1 + κ−1)2 + 4κ1κ2(n − 1)
)

2κ−(n − 1)
.

Now (24) implies the formula for ᾱ stated in the theorem and we note that 0 < ᾱ < 1
implies 1 < q̂ < n/2. We compute p̂ from q̂ by (25) and note that p̂ > 0 since ᾱ > 0.
We then compute ŝ = s̄/r̄ = n − p̂ − 2q̂ from the sum of (22) and (23):

ŝ = p̂
κ−1(n − 2) + κ−q̂(n − 1)

(n − 2)κ1
= κ−q̂

(
κ−1(n − 2) + κ−q̂(n − 1)

)
(n − 2)κ1κ2

ᾱ,

which proves ŝ > 0. Finally we obtain the formula for p̄ from (23) as well as r̄ = p̄/ p̂
and q̄ = r̄ q̂. 
�

For convenience below, the conditions in the theorem are made more explicit in
terms of the parameters by

ᾱ < 1 ⇔ q̂ > 1 ⇔ κ1κ2 >
κ−

n − 2

(
κ1 + n − 1

n − 2
κ− + κ−1

)
, (26)

ᾱ > 0 ⇔ q̂ <
n

2
⇔ κ1κ2 <

κ−n
2(n − 2)

(
κ1 + n(n − 1)

2(n − 2)
κ− + κ−1

)
. (27)

The steady state approaches the origin p = q = r = 0 as ᾱ → 1, whereas all its
components become unbounded as ᾱ → 0. This motivates the following.

Conjecture 1 With the notation of Theorem 2,

1. if 0 < ᾱ < 1, then all solutions of (12) converge to ( p̄, q̄, r̄) as t → ∞,
2. if ᾱ ≥ 1, then all solutions of (12) converge to (0, 0, 0) as t → ∞,
3. if ᾱ ≤ 0, then for all solutions of (12) we have p(t), q(t), r(t) → ∞ as t → ∞.

The conjecture has been supported by numerical simulations. Figures 3 and 4 show
typical simulation results corresponding to the three cases. Partial rigorous results on
the conjecture have been proven in the parallel work (Delacour et al. 2020). These
include local stability of the zero steady state for ᾱ > 1. Since the right hand side of (12)
lacks sufficient smoothness, this result cannot be proven by the standard linearization
approach.

Plotting log p(t)/ log t , log q(t)/ log t , and log r(t)/ log t (not shown) for the solu-
tions depicted in Fig. 4 suggests log p(t)/ log t → 1, log q(t)/ log t, log r(t)/ log t →
2 as t → ∞. This is in agreement with the following formal result.
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Fig. 3 Left: Convergence to the non-trivial steady state of Theorem2. Simulation of an aggregate (p, q, r) of
initial size (2, 4, 3) with parameters κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.6, implying 0 < ᾱ < 1. Right:
Instability of the aggregate. Simulation of an aggregate (p, q, r) of initial size (2, 4, 3) with parameters
κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.93, implying ᾱ > 1

Fig. 4 Growth of the aggregate.
Simulation of an aggregate
(p, q, r) of initial size (2, 4, 3)
with parameters
κ1 = κ2 = κ3 = κ−1 = 1 and
κ− = 0.2, implying ᾱ < 0
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Proposition 1 With the notation of Theorem 2, if ᾱ < 0, then there exists a formal
approximation of a solution of (12) of the form

p(t)= p1t+o(t), q(t)=q2t
2+o(t2), r(t)=r2t

2+o(t2), as t → ∞, (28)

with

p1 = κ−n
κ3(2nκ2+κ−n+4κ−1)

(
κ1κ2 − κ−n

2(n−2)

(
κ1 + κ−1 + κ−n(n−1)

2(n−2)

))
> 0,

q2 = n
2 r2 = κ3(n−2)(2nκ2+κ−n+4κ−1)

κ−(4κ1(n−2)+κ−n2) p21 .
(29)

The approximation is (from a formal point of view) unique, including the choice of the
exponents of t , among solutions with polynomially or exponentially growing aggregate
size r .
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Remark (a) The precise meaning of the uniqueness statement is best understood from
the proof below. The attempt to find an exponentially growing approximation for a
solution by formal asymptotic expansions fails. A polynomial ansatz, on the other
hand, leads to the result of the theorem, and the exponents and coefficients are
determined uniquely by the asymptotics.

(b) Another result of the parallel work (Delacour et al. 2020) is a rigorous version of
Proposition 1. It confirms the existence of solutions with the asymptotic behavior
stated in the theorem, and it shows that they are locally attracting. The proof
involves advanced techniques from dynamical systems theory such as Poincaré
compactification and geometric singular perturbation theory.

Proof In the formal arguments below we shall assume that the solution components
behave asymptotically as t → ∞ either like eλt with λ > 0 or like tγ with γ > 0.
This includes the assumption that solution derivatives also behave like the derivatives
of these functions.

Since 2r ≤ 2q ≤ nr holds for admissible states, when r(t) tends to infinity, then
also q(t) tends to infinity at the same rate, which we write with the sharp order symbol
Os as

q(t) = Os(r(t)) as t → ∞. (30)

With α = s+p
(n−2)r , we write the equations for r and for p + q as

ṙ = κ2 p − (s + p)
κ−q

(n − 2)r
, ṗ + q̇ = κ1s − p

(
κ−(n − 1)q

(n − 2)r
+ κ−1

)
. (31)

Since the right hand sides have to be asymptotically nonnegative by the growth of q
and r , taking (30) into account, the first equation implies s(t) = O(p(t)), and the
second implies p(t) = O(s(t)), i.e.

s(t) = Os(p(t)) as t → ∞. (32)

If the growth were exponential, i.e. r(t), q(t) ≈ ceλt , λ > 0, then the exponential
growth on the left hand sides of (31) would have to be balanced by terms of the
same order of magnitude on the right hand sides, i.e. p(t), s(t) = Os(eλt ). Then the
quadratic negative term −κ3 p(t)s(t) = Os(e2λt ) on the right hand side of the first
equation in (12) could not be balanced by any of the linear positive terms, and would
eventually drive p to negative values. This contradiction excludes exponential growth.

For polynomial growth, i.e. r(t), q(t) ≈ ctγ , the term ṙ(t) ≈ cγ tγ−1 in (31)
needs to be balanced, implying p(t), s(t) = Os(tγ−1). In the equation for q in (12),
q̇(t), p(t) = Os(tγ−1) are small compared to q(t) = Os(tγ ). Therefore it is nec-
essary that s(t)p(t) = Os(q(t)), implying 2(γ − 1) = γ and, thus, γ = 2. This
justifies the ansatz (28) with the addition s(t) = s1t + o(t). Substitution into the dif-
ferential equations and comparison of the leading-order terms gives equations for the
coefficients:

2nd equ. in (12) : 0 = κ3 p1s1 − κ−q2,
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(17) : 0 = κ3 p1s1 − κ−q2 (1 − α(q2, r2)) ,

1st equ. in (31) : 2r2 = κ2 p1 − (s1 + p1)
κ−q2

(n − 2)r2
,

2nd equ. in (31) : 2q2 = κ1s1 − p1

(
κ−(n − 1)q2
(n − 2)r2

+ κ−1

)
,

This system can be solved explicitly by first noting that the first two equations imply
α(q2, r2) = 0 and, thus, 2q2 = nr2. Using this in the third and fourth equation gives
a linear relation between p1 and s1. This again can be used in the fourth equation to
write q2 as a linear function of s1. The division of the first equation by s1 then gives
the formula for p1 in (29). The positivity of p1 is a consequence of (27). 
�

For all the results so far the positivity of the rate constant κ− for breaking cross-links
has been essential. Therefore it seems interesting to consider the special case κ− = 0
separately. It turns out that the dynamics is much simpler. The aggregate size always
grows linearly with time.

Theorem 3 Let 3 ≤ n ∈ N, κ1, κ2, κ3, κ−1 > 0, and κ− = 0. Let (p0, q0, r0) ∈
(0,∞)3 satisfy (14). Then the solution of (12) satisfies

lim
t→∞ p(t) = p∞ := (n − 2)κ1κ2

κ3(κ2(n − 2) + κ−1)
, lim

t→∞ s(t) = s∞ := (n − 2)κ2
2κ3

,

q(t) = p∞(κ2 + κ3s∞)t + o(t), r(t) = κ2 p∞t + o(t), as t → ∞.

Proof For κ− = 0 the right hand sides in (12) depend only on p and s = nr −2q − p,
meaning that these two variables solve a closed system:

ṗ = κ1s − (κ2 + κ−1 + κ3s)p,

ṡ = ((n − 1)κ2 + κ−1)p − (κ1 + κ3 p)s.

The unique nontrivial steady state (p∞, s∞) can be computed explicitly. We prove
that it is globally attracting by constructing a Lyapunov functional. Let a ≥ 1 and

Ra :=
[ p∞

a
, ap∞

]
×

[ s∞
a

, as∞
]
.

For each point (p, s) ∈ (0,∞)2 there is a unique value ofa ≥ 1 such that (p, s) ∈ ∂Ra .
Therefore the Lyapunov function

L(p, s) := a − 1 for (p, s) ∈ ∂Ra,

is well defined and definite in the sense L(p, s) ≥ 0 with equality only for (p, s) =
(p∞, s∞). It remains to prove that the flow on ∂Ra is strictly inwards. For example,
for the left boundary part,

ṗ
∣∣
p=p∞/a = (κ2 + κ−1 + κ3s)

(
κ1s

κ2 + κ−1 + κ3s
− p∞

a

)
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≥ 1

a
(κ2 + κ−1 + κ3s)

(
κ1s∞

κ2 + κ−1 + κ3s∞/a
− p∞

)
> 0,

where the first inequality follows from s ≥ s∞/a, and the second inequality from
a > 1 and from the fact that the last parenthesis vanishes for a = 1, since (p∞, s∞)

is an equilibrium. Analogously, for the right boundary part,

ṗ
∣∣
p=ap∞ = (κ2 + κ−1 + κ3s)

(
κ1s

κ2 + κ−1 + κ3s
− ap∞

)

≤ a(κ2 + κ−1 + κ3s)

(
κ1s∞

κ2 + κ−1 + κ3as∞
− p∞

)
< 0,

for the top boundary part,

ṡ
∣∣
s=as∞ = (κ1 + κ3 p)

(
((n − 1)κ2 + κ−1)p

κ1 + κ3 p
− as∞

)

≤ a(κ1 + κ3 p)

(
((n − 1)κ2 + κ−1)p∞

κ1 + κ3ap∞
− s∞

)
< 0,

and for the bottom boundary part,

ṡ
∣∣
s=s∞/a = (κ1 + κ3 p)

(
((n − 1)κ2 + κ−1)p

κ1 + κ3 p
− s∞

a

)

≥ 1

a
(κ1 + κ3 p)

(
((n − 1)κ2 + κ−1)p∞

κ1 + κ3 p∞/a
− s∞

)
> 0.

This shows that the Lyapunov functional is strictly decreasing along solutions, com-
pleting the proof of global asymptotic stability of the equilibrium.

The linear growth of q and r follows from

lim
t→∞ q̇(t) = κ2 p∞ + κ3 p∞s∞, lim

t→∞ ṙ(t) = κ2 p∞.


�

This result shows that the breakage of cross-links has somewhat contradictory
effects, depending on the parameter regime: It can speed-up the aggregation dynam-
ics, producing a quadratic rather than linear growth of the aggregate size (Case 3 of
Conjecture 1 and Proposition 1). This is linked to the fact that it allows the aggregates
to rearrange in a more compact way. On the other hand, it may slow down the dynam-
ics, such that the aggregate only reaches a finite size (Case 1) or even disintegrates
completely (Case 2), again compared to the linear growth without cross-link breaking
(Theorem 3).
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Fig. 5 Number of aggregates in terms of [Ubi] (or more precisely (4 × Ubi − GST − GFP)2) at fixed
[p62] = 2µM (Zaffagnini et al. 2018). Average and SD among three independent replicates are shown.
The dashed line represents a fitted sigmoidal (more precisely, logistic) function, centered around [Ubi] =
1.6µM. Note that here p62 monomers are counted. Under the assumption that p62 only occurs in oligomers
of size n we have [p62]=n[p62n]. The regression coefficient R2 measures the quality of the fit

4 Comparison with experimental data: discussion

4.1 Comparison with experimental data

There are only limited options for a serious comparison of the theoretical results
with experimental data. We shall use the data shown in Fig. 5, which have been
published in Zaffagnini et al. (2018). It provides observed numbers of aggregates in
dependence of ubiquitin for a fixed concentration of p62. Our results do not permit a
direct comparison with this curve, which would require modelling of the process of
nucleation of aggregates. However, the data provide at least some information about
concentration levels of ubiquitin and p62, such that stable aggregates exist.

For meaningful quantitative comparisons with these scarce data we need to reduce
the number of parameters in our model. As a first step, we fix the value n = 5 of the
size of p62 oligomers, following Zaffagnini et al. (2018) where values between 5 and 6
for GFP-p62 have been found (althoughwe note that inWurzer et al. (2015) an average
of about n = 24 has been reported for mCherry-p62 in vitro). Since the experiment in
Zaffagnini et al. (2018) has been carried out with a fixed p62 concentration [p62] =
2µM, this corresponds to an oligomer concentration of [p625] = [p62]/5 = 0.4µM.

Concerning the rate constants, wemake the assumption that the binding and, respec-
tively, the unbinding rate constants are equal, i.e. κ ′

1 = κ ′
2 and κ−1 = κ−. This will

allow to express all our results in terms of one dissociation constant Kd := κ−1/κ
′
1.

From Fig. 5 we conclude that for an oligomer concentration of [p625] = 0.4µM
the growth of stable aggregates requires a minimal cross-linker concentration [Ubi]
roughly between 0.6 and 2.6µM ((1.6 ± 1)µM, where 1.6µM and 1µM are rough
estimates of the inflection point and, respectively, the spread of the curve). According
to the results of the preceding section, these values should correspond to situations
with either ᾱ = 0 or ᾱ = 1, depending on the question, if the equilibrium aggregate
sizes of Case 1 in Conjecture 1 are large enough to be detected in the experiment, or if
we need to be in Case 3 of growing aggregates. Therefore, with the above assumptions,
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with κ1 = κ ′
1[Ubi], κ2 = κ ′

2[p625], and with (26), (27), we obtain for ᾱ = 1:

[p62n] [Ubi] = Kd

n − 2

(
[Ubi] + (2n − 3)Kd

n − 2

)
, (33)

and for ᾱ = 0:

[p62n] [Ubi] = nKd

2(n − 2)

(
[Ubi] + (n2 + n − 4)Kd

2(n − 2)

)
. (34)

Solving these equations for Kd with n = 5, [p62n] = 0.4µM, andwith [Ubi] between
0.6µMand 2.6µM, gives estimates for Kd between 0.44µMand 0.73µM for ᾱ = 1,
and between 0.20µM and 0.31µM for ᾱ = 0. So we claim that at least the order
of magnitude is significant. It differs by three orders of magnitude from published
data on the reaction between ubiquitin and the UBA domain of p62 [Kd ≈ 540µM
(Long et al. 2010)]. This should not be so surprising, since in the context of growing
aggregates the reactions can be strongly influenced by avidity effects.

4.2 Discussion

We return to Conjecture 1, where the long-time behaviour is described in terms of
the value of the parameter ᾱ defined in (20). With the simplifying assumptions on
the reaction rate constants from above, the statements of the conjecture are depicted
in Fig. 6 for the fixed values n = 5 and Kd = 0.5µM (motivated by the estimates
above) in a bifurcation diagram in terms of the concentrations [Ubi] and [p62n]. In
the derivation of the model we have stated the assumption that [Ubi] and [p62n] are
of the same order of magnitude, meaning that their ratio has been kept fixed when
taking asymptotic limits (k0, t → ∞). The bifurcation diagram gives some indication
of what happens when they take extreme values. The right hand sides of (33) and
(34) indicate that smallness of [Ubi] or [p62n] can be compensated by largeness of
the other, to obtain stable or growing aggregates. However, the occurrence of [Ubi]
on the right hand sides produces an unsymmetry. If [p62n] <

Kd
n−2 aggregates are

unstable, no matter how large [Ubi] is. Similarly, polynomial growth never happens
for [p62n] <

nKd
2(n−2) .

There is a significant uncertainty concerning the oligomer size n, which has so far
been assumed to be 5, according to observations in Zaffagnini et al. (2018). Actually, a
distribution of oligomer sizes should be expected in the experiments of Fig. 5 with the
occurrence of much larger oligomers. An extension of our model to a situation with
a given size distribution of free oligomers would be feasible. Because of the fact that
the rate of adding oligomers to the aggregate is independent of the oligomer size [see
(3)] it would then be reasonable to assume that also within the aggregate the relative
oligomer size distribution is the same as for free oligomers. Without having carried
out the computations in detail, we expect a model of the same form as ours, where
quantities depending on the oligomer size have to be replaced by suitably computed
mean values. There does not seem to be any reason for a different qualitative behavior
of the modified model. As an indication of the effects of varying the oligomer size the
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Fig. 6 Bifurcation diagram
corresponding to Conjecture 1
for n = 5, Kd = 0.5µM with
the bifurcation curves given by
(33) and (34)
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Fig. 7 The dissociation constant
Kd determined from (33) (solid
line) and (34) (dashed line),
depending on the p62 oligomer
size n. Ubiquitin and p62
oligomer concentrations from
Fig. 5 at the onset of
aggregation: [Ubi] = 1.6µM,
[p62n ] = 0.4µM
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computation of Kd from (33) has been repeated for a range of values of n between
n = 3 and n = 100. The results are depicted in Fig. 7, which shows that the predicted
values of Kd might be larger by up to an order of magnitude compared to the case
n = 5, but still small compared to Long et al. (2010), if larger oligomer sizes are
considered and ᾱ = 1 is relevant. The asymptotic behaviour for large oligomer sizes
is easily seen to be Kd = O(n1/2). On the other hand, if ᾱ = 0 is relevant, the value
of Kd becomes smaller by up to an order of magnitude for large oligomers with the
asymptotic behaviour Kd = O(n−1/2). These asymptotic behaviors are easily seen
from the explicit solutions of the quadratic equations (33) and (34).

5 Conclusion

In this article, we have proposed anODEmodel for the growth and decay of aggregates
of p62 oligomers cross-linked by ubiquitin chains. Under the assumption of unlimited
supply of free oligomers and cross-linkerswe found three possible asymptotic regimes:
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complete degradation of aggregates, convergence towards a finite aggregate size, and
unlimited growth (quadratic in time) of the aggregate size. In the latter case, growing
aggregates are asymptotically tightly packedwith themaximumnumber of cross-links.
These statements are supported by a mixture of explicit steady state computations,
formal asymptotic analysis, and numerical simulations. The three regimes, which can
be separated explicitly in terms of the reaction constants, have been illustrated by the
simulation results. Rigorous proofs of some results on the long-time behaviour in the
three regimes are the subject of the parallel work (Delacour et al. 2020).

A comparison of the theoretical results with data from Zaffagnini et al. (2018) has
provided an estimate for the dissociation constant of the elementary reaction between
ubiquitin and the UBA domain of p62 in the context of growing aggregates.

There are several possible extensions of this work. A limitation of the original dis-
crete model is that the description of aggregates by triplets (i, j, k) is very incomplete.
Typically, very different configurations are described by the same triplet. For exam-
ple, we could imagine very homogeneous or very heterogeneous aggregates, i.e. fully
packed in certain regions and very loose in others. Reaction rates will strongly depend
on the configuration, including information about the geometry of the aggregate. In
principle one can imagine an attempt to overcome these difficulties based on a random
graph model (Frieze and Karonski 2015), but the resulting model describing proba-
bility distributions on the sets of all possible aggregate shapes would be prohibitively
complex. An intermediate solution would be a more serious approach to finding for-
mulas for quantities like the probability α of losing an oligomer, when a cross-link
breaks, based on typical probability distributions.

The model (12) describes an intermediate stage of the aggregation process. On the
one hand, the large aggregate assumptionmeans that we are dealing with the growth of
already developed aggregates, neglecting the nucleation process, which is important
for the number of established aggregates. A model of the nucleation process would
be based on the discrete representation and it would have to be stochastic. On the
other hand, we neglect two effects important for a later stage of the process. The first
and obvious one is the limited availability of free p62 oligomers and ubiquitin cross-
linkers. It would be rather straightforward to incorporate this into the model, however
at the expense of increased complexity. It would also eliminate the dichotomy between
the Cases 1 and 3 of Conjecture 1 since unbounded growth would be impossible. For
relatively large initial concentrations of free particles, one could imagine a two-time-
scale behaviour with an initial quadratic growth and saturation on a longer time scale.
The other effect, which is neglected here but definitely present in experiments, is
coagulation of aggregates. This is the subject of ongoing work, based on the PDE
model (38) derived in the Appendix and enriched by an account of the coagulation
process. A more complete model for a distribution of aggregates, including nucleation
and coagulation, would permit a more substantial comparison with experiments as in
Zaffagnini et al. (2018), whose output should be extended to provide information about
aggregate size distributions. A new experimental challenge suggested by our model is
to detect the oligomer-to-crosslinker ratio in aggregates, which could be compared to
our theoretical predictions.

More generally, it is very common that protein aggregates contain different types of
molecules. In particular, the occurrence of ubiquitinated aggregates has been observed
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in pathological conditions [e.g. in neurodegenerative diseases (Donaldson et al. 2003)
or in diabetes (Kaniuk et al. 2007)]. Existing mathematical models of these aggrega-
tion processes (see, e.g. Prigent et al. 2014) could be extended by the approach of this
work. Finally, various cytoskeletal structures can be seen as heterogeneous protein
aggregates, for example actin filament networks with filamin, fascin, or Arp2/3 com-
plex as cross-linkers (Vinzenz et al. 2012), or focal adhesions, containing integrins,
talin, vinculin, and several other protein species (Zamir and Geiger 2001). The lat-
ter seems particularly interesting because of the dependence of the growth behaviour
on mechanical stimuli (Riveline et al. 2001). Again the approach of this work might
provide an alternative basis for mathematical modeling.
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A Large aggregate limit

We denote by ci, j,k(t) the probability of the aggregate to be in the state (i, j, k) at
time t . Its evolution will be determined by a jump process model of the reactions with
the rates given in (2), (3), (4), (5), (6), (7), (9), and (10).

For this purpose the relation between pre-reaction state (i ′, j ′, k′) and post-reaction
state (i, j, k) needs to be inverted. A simple example is Reaction 1, i.e. (i, j, k) =
(i ′ +1, j ′, k′), with the inversion (i ′, j ′, k′) = (i−1, j, k). Using (2), the equation for
ci, j,k will therefore contain the source term (r1c)i−1, j,k = κ1(nk−i+1−2 j)ci−1, j,k .

If the unique inversion fails, the source term is a sum over all pre-reaction states
producing the post-reaction state (i, j, k). This has to be considered for Reaction 5,
where we have j = j ′ − 1, k = k′ − 1, and, with (9),

i = i ′ + 1 − �i ′, j ′,k′ = i ′ + 1 −
⌊

(n − 1)i ′

nk′ − 2 j ′

⌉
. (35)

The inversion is not possible in general. Occasionally, �i ′, j ′,k′ will increase by one,
when i ′ is increased by one, implying that i might take the same value for two consec-
utive values of i ′. Even worse: For the extreme case nk′ − 2 j ′ = n − 1, where after
the loss of a p62 oligomer all binding sites are busy with two-hand boundUbi except

123

http://creativecommons.org/licenses/by/4.0/


3 Page 20 of 24 J. Delacour et al.

the one remaining after breaking the connection, i.e. nk − 2 j = 1 = i . This state is
independent from the number i ′ ∈ {0, . . . , n − 1} of one-hand boundUbi getting lost
with the oligomer. Therefore we introduce the set of pre-collisional values

Ii, j,k = {
i ′ : i = i ′ + 1 − �i ′, j+1,k+1

}

The equation for the probability distribution reads

dci, j,k
dt

= (r1c)i−1, j,k − (r1c)i, j,k + (r2c)i+1, j−1,k−1 − (r2c)i, j,k

+(r3c)i+1, j−1,k − (r3c)i, j,k

+ (r−1c)i+1, j,k − (r−1c)i, j,k +
∑

i ′∈Ii, j,k
(r−2c)i ′, j+1,k+1 − (r−2c)i, j,k

+ (r−3c)i−1, j+1,k − (r−3c)i, j,k . (36)

We introduce a typical value k0 for the number k of oligomers in the aggregate and
use it also as a reference value for i and j , leading by the definition (11) to the scaled
triplet (p, q, r). The latter lives on a grid with spacing �p = �q = �r := 1/k0 and,
thus, becomes a continuous variable in the large aggregate limit k0 → ∞. Therefore
we postulate the existence of a probability density P(p, q, r , t) such that

ci, j,k(t) ≈ k−3
0 P

(
i

k0
,
j

k0
,
k

k0
, t

)
.

The ansatz above is motivated by

1 =
∑

(i, j,k)∈Ad

ci, j,k =
∑

(i, j,k)∈Ad

P(i�p, j�q, k�r , t)�p�q �r

k0→∞−→
∫
A
P(p, q, r , t)d(p, q, r), (37)

showing that P is a probability density on the continuous set of admissible states
A, defined by (14). For the set of discrete admissible states defined by (1) we have
used the notation Ad . Multiplication of (36) by k30 and the limit k0 → ∞ (�p =
�q = �r → 0) will lead to an equation for P . This formal procedure would be
hard to justify rigorously. An alternative is to write a ’weak’ formulation of (36) by

multiplicationwith a smooth test functionφi, j,k = φ
(

i
k0

,
j
k0

, k
k0

)
and summation over

(i, j, k) ∈ Ad . The trick is to avoid the appearance of derivatives of P in the limit by
first shifting the differences in (36) to the test function by ’summation by parts’. In the
limit the sums become integrals [as in (37)] and the limiting equation is obtained by
an integration by parts. We are confident that this latter procedure could be rigorously
justified. However, the necessary estimates and functional analytic framework would
go beyond the scope of this article.

We deal with the six differences on the right hand side of (36), corresponding to
the six reactions, separately.
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Reaction 1 As an illustration we outline both procedures described above for this
simple case, and start with the direct limit:

k30
[
(r1c)i−1, j,k − (r1c)i, j,k

]
≈ 1

�p
[κ1(nr − p + �p − 2q)P(p − �p, q, r , t) − κ1(nr − p − 2q)P(p, q, r , t)]

→ −∂p(κ1(nr − p − 2q)P).

On the other hand,

∑
(i, j,k)∈Ad

[
(r1c)i−1, j,k − (r1c)i, j,k

]
φi, j,k =

∑
(i, j,k)∈Ad

(r1c)i, j,k
(
φi+1, j,k − φi, j,k

)

∑
(i, j,k)∈Ad

κ1(nr − p − 2q)P(p, q, r , t)
φ(p + �p, q, r) − φ(p, q, r)

�p
�p�q �r

→
∫
A

κ1(nr − p − 2q)P∂pφ d(p, q, r)

= −
∫
A

∂p(κ1(nr − p − 2q)P)φ d(p, q, r),

confirming the result above.
Reaction 2

k30
[
(r2c)i+1, j−1,k−1 − (r2c)i, j,k

]
≈ 1

�p
[κ2(p + �p)P(p + �p, q − �q, r − �r , t) − κ2 pP(p, q − �q, r − �r , t)]

+ 1

�q
[κ2 pP(p, q − �q, r − �r , t) − κ2 pP(p, q, r − �r , t)]

+ 1

�r
[κ2 pP(p, q, r − �r , t) − κ2 pP(p, q, r , t)]

→ ∂p(κ2 pP) − ∂q (κ2 pP) − ∂r (κ2 pP).

Reaction 3 As explained in Sect. 2, we set κ ′
3 = κ3/k0 and assume that κ3 takes

moderate values, i.e. we keep it fixed as k0 → ∞.

k30
[
(r3c)i+1, j−1,k − (r3c)i, j,k

]
≈ 1

�p

[
κ3(p + �p)(nr − p − �p − 2q + 2�q)P(p + �p, q − �q, r , t)

− κ3 p(nr − p − 2q + 2�q)P(p, q − �q, r , t)
]

+ 1

�q
[κ3 p(nr − p − 2q + 2�q)P(p, q − �q, r , t) − κ3 p(nr − p − 2q)P(p, q, r , t)]

→ ∂p(κ3 p(nr − p − 2q)P) − ∂q (κ3 p(nr − p − 2q)P).

Reaction 4

k30
[
(r−1c)i+1, j,k − (r−1c)i, j,k

]
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≈ 1

�p

[
κ−1(p + �p)P(p + �p, q, r , t) − κ−1 pP(p, q, r , t)

]
→ ∂p(κ−1 pP).

Reaction 5 In this case it is actually simpler to proceed via the weak formulation. As
a preparatory step, we recall that i ′ ∈ Ii, j,k iff i = i ′ + 1 − �i ′, j+1,k+1 with

�i, j,k =
⌊

(n − 1)i

nk − 2 j

⌉
=

⌊
(n − 1)p

nr − 2q

⌉
=: �(p, q, r).

We shall also need

α j,k → nr − 2q

(n − 2)r
=: α(q, r).

In the following computation the summation of gain terms is renumbered from
(i, j, k) ∈ Ad to (i ′, j ′, k′) ∈ Ad with i ′ ∈ Ii, j,k , j ′ = j + 1, k′ = k + 1:

∑
(i, j,k)∈Ad

⎛
⎝ ∑

i ′∈Ii, j,k
(r−2c)i ′, j+1,k+1 − (r−2c)i, j,k

⎞
⎠ φi, j,k

=
∑

(i, j,k)∈Ad

(r−2c)i, j,k
(
φi+1−�i, j,k , j−1,k−1 − φi, j,k

)

=
∑

(i, j,k)∈Ad

κ−α j,kq(� − 1)P

φ(p − �p(� − 1), q − �q, r − �r) − φ(p, q − �q, r − �r)

�p(� − 1)
�p�q �r

+
∑

(i, j,k)∈Ad

κ−α j,kq P
φ(p, q − �q, r − �r) − φ(p, q, r − �r)

�q
�p�q �r

+
∑

(i, j,k)∈Ad

κ−α j,kq P
φ(p, q, r − �r) − φ(p, q, r)

�r
�p�q �r

→ −
∫
A

κ−αqP
(
(� − 1)∂pφ + ∂qφ + ∂rφ

)
d(p, q, r)

=
∫
A

(
∂p(κ−αq(� − 1)P) + ∂q(κ−αqP) + ∂r (κ−αqP)

)
φ d(p, q, r).

Finally we introduce a simplification by dropping the rounding operation in �. This
avoids a technical difficulty with a lack of smoothness, but most likely it does not
change the qualitative properties of the model.

Reaction 6

k30
[
(r−3c)i+1, j−1,k − (r−3c)i, j,k

]
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≈ 1

�p

[
κ−(1 − α(q + �q, r))(q + �q)P(p − �p, q + �q, r , t)

− κ−(1 − α(q + �q, r))(q + �q)P(p, q + �q, r , t)
]

+ 1

�q

[
κ−(1 − α(q + �q, r))(q + �q)P(p, q + �q, r , t)

− κ−(1 − α(q, r))qP(p, q, r , t)
]

→ −∂p(κ−(1 − α)qP) + ∂q(κ−(1 − α)qP).

Collecting our results, the limiting equation for the evolution of P reads

∂t P + ∂p

((
(κ1 − κ3 p)(nr − p − 2q) − (κ2 + κ−1)p + κ−q

(
1 − (n − 1)p

(n − 2)r

))
P

)

+∂q ((κ2 p + κ3 p(nr − p − 2q) − κ−q)P) + ∂r ((κ2 p − κ−αq)P) = 0. (38)

For deterministic initial conditions of the form P(p, q, r , 0) = δ(p − p0)δ(q −
q0)δ(r − r0) the state remains deterministic: P(p, q, r , t) = δ(p − p(t))δ(q −
q(t))δ(r − r(t)), where (p(t), q(t), r(t)) solves the initial value problem (12).
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