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Abstract: Kresoxim-methyl is a high-efficiency and broad-spectrum fungicide used for the control
of rice fungal diseases; however, its residues after application potentially threaten human health.
Investigations on the dissipation of kresoxim-methyl residue in rice field systems and dietary
risk assessment of kresoxim-methyl in humans are limited. The present study employed the
QuEChERS-GC-MS/MS method for residue analysis of kresoxim-methyl in rice plants, brown
rice, and rice husks. The samples were extracted with acetonitrile and purified by PSA, C18 column,
and GCB. The average recovery of the spiked target compounds in the three matrices was between
80.5% and 99.3%, and the RSD was between 2.1% and 7.1%. The accuracy and precision of the method
is in accordance with the requirements of residue analysis methods. Dissipation dynamic testing
of kresoxim-methyl in rice plants indicated a half-life within the range of 1.8–6.0 days, and a rapid
dissipation rate was detected. Dietary intake risk assessment showed that the national estimated
daily intake (NEDI) of kresoxim-methyl in various Chinese subpopulations was 0.022–0.054 µg/(kg
bw·days), and the risk quotient (RQ) was 0.0000055–0.00014%. These findings indicate that the risk
for chronic dietary intake of kresoxim-methyl in brown rice is relatively low. The present study
provides information and theoretical basis for guiding the scientific use of kresoxim-methyl in rice
fields and evaluating its dietary risk in brown rice.
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1. Introduction

Rice (Oryza sativa) belongs to the herbaceous rice genus and is the most important rice food
crop. Rice is one of the three major food crops in China, and its planting area accounts for 27% of the
country’s total grain planting area [1]. However, the occurrence of plant diseases (e.g., sheath blight
and rice blast) has led to a sharp decline in the yield and quality of rice, thereby posing a major threat to
food security and safety. Chemical control is currently considered as the most effective way to prevent
and control rice diseases, there were some chemicals, including tebuconazole and azoxystrobin [2],
have been applied and detected in rice bio-system.

Kresoxim-methyl is a methoxy acrylate fungicide developed by BASF (Stuttgart, Germany) and
has been shown to have highly efficient and broad-spectrum antifungal activity. The EC50 values for
kresoxim-methyl in inhibiting mycelial growth of the M. oryzae isolates was 0.024–0.287 µg mL−1 [3].
It inhibits fungal pathogens such as oomycetes, and ascomycetes by regulating their mitochondrial
respiration [4,5] and is widely used in vegetables, fruits and grains [6]. In China, kresoxim-methyl
has been registered and used for the control of rice sheath blight [7], although current understanding
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of the potential risk of its resides in rice to human health after application is limited. Therefore, it is
particularly important to study the residual changes involving kresoxim-methyl in the rice field system
after the application and to assess its residual dietary risk.

Extensive studies on the residues of kresoxim-methyl in plant-derived agricultural products
have been conducted to date. GC-ECD (Gas Chromatography-Electron Capture Detector) has been
used to analyze the residues of kresoxim-methyl in plum [8] and cotton seed [9], and HPLC-UV
(High-performance liquid chromatography-Ultra Violet) has been employed to analyze the
residue of kresoxim-methyl in apple juice [10] and soil [11]. Mass spectrometry has also been
conducted for the detection of kresoxim-methyl. LC-MS/MS (Liquid chromatography coupled
with tandem mass spectrometry) has been utilized in the analysis of residues of kresoxim-methyl in
grapes [12]. Meanwhile, the sample procedure including QuEChERS, DLLME (dispersive liquid–liquid
microextraction), EADLLME (effervescence-assisted dispersive liquid–liquid microextraction) have
been used in previous reports. The dissipation dynamics of kresoxim-methyl residue in apples [13],
strawberries [14], grapes [15] and tomatoes [16]. However, residue analysis of kresoxim-methyl in the
rice field system and dietary risk assessment in rice have not been conducted to date. With the
development of determination, some advanced technologies including the QuEChERS [17] and
GC-MS/MS [18] (Gas chromatography coupled with tandem mass spectrometry), have been applied
extensively. This study builds an efficient and sensitive method for determination of kresoxim-methyl,
and provides a basis for the rational use of kresoxim-methyl on rice and its dietary safety.

2. Results and Discussion

2.1. Method Optimization

The purification adsorbents commonly used to date in the QuEChERS method include PSA
(Primary secondary amine-bonded silica), C18, and GCB (Graphitized carbon black). PSA is used
to remove polar interferences such as sugars, organic acids, and fatty acids; C18 is used to remove
non-polar organic compounds such as fats and lipids; GCB is used to remove pigment compounds
such as chlorophyll and carotenoids.

In this study, the purification effects of PSA, C18, PSA + C18, and PSA + C18 + GCB on the
complex substrates (rice plants, brown rice, and rice husks) were studied here when 0.1 mg/kg of
kresoxim-methyl was added into the substrates. The average recovery of the target compounds and the
matrix effects in different treatment groups are shown in Figure 1. When PSA is used alone, the matrix
effect is larger than other treatments, and the recovery rate of kresoxim-methyl is higher (108.2–129.5%).
The matrix effect of brown rice and rice husk is obviously reduced after C18 purification, but there is
also some certain absorption of kresoxim-methyl in both groups. The recovery rates of kresoxim-methyl
in the groups of brown rice and rice husk were less than 75%, and thus the amount of C18 was reduced
for purification. When PSA and C18 were combined to use, the recovery rate and purification effect
of kresoxim-methyl in the groups were higher than those after PSA or C18 treatment. However,
the recovery rate in rice plants group remained high, and no pigment adsorption could be detected.
When the PSA + C18 + GCB purification method was used, the matrix effect was minimal, it illustrated
that the PSA + C18 + GCB adsorbent has a better purification effect. The average recovery rates of
kresoxim-methyl in the samples of rice plants, brown rice, and rice hull were within the range of
90.7–96.1%, which met the requirements for testing pesticide residue. Based on these results, PSA +
C18 + GCB (ratio was 5:5:1, weight was 110 mg) was used as adsorbent for sample purification in
this study.

2.2. Method Validationlimit of Quantification

The linear relationship and limit of quantification (LOQ) of kresoxim-methyl in the three matrices
are shown in Table 1. Kresoxim-methyl showed a good linear relationship within the range of
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Table 1. Linear range, linear equation, correlation coefficient, recovery, and relative standard deviation
(RSD) of kresoxim-methyl.

Matrix
Linear
Range

(mg/kg)

Regression
Equation

Correlation
Coefficient

(r2)

Spiked
Level

(mg/kg)

Average
Recovery-Inter

(%)
RSD (%)

Average
Recovery-Intra

(%)
RSD (%)

Plant 0.005–0.5 2323804.0x + 5135.8 0.9996
0.005 84.1 4.1 86.2 3.2
0.05 89.5 2.7 88.2 5.6
0.5 99.3 3.2 95.2 7.5

Brown
rice

0.005–0.5 2559862.7x + 5135.8 0.9997
0.005 84.4 7.1 85.2 5.6
0.05 80.5 6.5 92.3 4.2
0.5 89.0 5.4 89.3 3.2

Rice
husk

0.005–0.5 2291345.6x − 4363.7 0.9998
0.005 86.9 2.1 95.6 6.3
0.05 91.7 3.1 89.5 5.5
0.5 85.8 4.2 82.3 6.1

2.3. Accuracy and Precision

The results of the spike-and-recovery test of kresoxim-methyl are shown in Table 1. The average
recovery of spiked kresoxim-methyl in rice plants, rice hulls, and brown rice was 84.1–99.3%,
85.8–91.7%, 80.5–89.0%, respectively. Their relative standard deviation in the groups of rice plants,
rice hulls, and brown rice were 2.72–4.21%, 2.12–4.21%, and 5.43–7.11%, respectively. The accuracy
and precision of the method met the requirements for pesticide residue analysis [19]. A typical
chromatogram of the spike-and-recovery test is shown in Figure 2.

2.4. Digestion Dynamics in Rice Plants

According to JMPR, the definition of the residue in plant origin is only maternal kresoxim-methyl,
then we could not consider the metabolites in the degradation of kresoxim-methyl in rice [20]. We set
three quality control samples with the concentration of 100 ng/g during the process of determination.
The residual amount of kresoxim-methyl on rice plants decreased with time, and the degradation
process accorded with the first-order reaction kinetics equation (The correlation coefficient ranged
from 0.8512–0.9480). The results are shown in Figure 3. The original deposition of kresoxim-methyl in
rice plants was 6.511–20.096 mg/kg. After 21 days of application, the residual dissipation rate was
over 90%, and the half-life of kresoxim-methyl was 1.8–6.0 days. The results tested in different years
showed that the dissipation trend of the three test points is basically the same in the same year. In 2016,
the dissipation rate of kresoxim-methyl was slightly faster than that of 2017, which may be related to
the weather conditions (such as temperature, humidity, wind speed, rainfall) of the year.
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2.3. Accuracy and Precision 

The results of the spike-and-recovery test of kresoxim-methyl are shown in Table 1. The average 
recovery of spiked kresoxim-methyl in rice plants, rice hulls, and brown rice was 84.1–99.3%, 85.8–
91.7%, 80.5–89.0%, respectively. Their relative standard deviation in the groups of rice plants, rice 
hulls, and brown rice were 2.72–4.21%, 2.12–4.21%, and 5.43–7.11%, respectively. The accuracy and 
precision of the method met the requirements for pesticide residue analysis [19]. A typical 
chromatogram of the spike-and-recovery test is shown in Figure 2. 
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2.5. Final Residue Test

The results of final residue test showed that the residue of kresoxim-methyl was less than
0.005–0.226 mg/kg in the rice plant, less than 0.005–0.008 mg/kg in brown rice, and less than
0.005–0.460 mg/kg in the rice husk after 14 days from the last application. The residual amount
of kresoxim-methyl is less than 0.005–0.124 mg/kg in the plant, less than 0.005–0.006 mg/kg in brown
rice, and less than 0.005–0.0455 mg/kg in rice husk at 21-days after application. The residual amount of
kresoxim-methyl is less than 0.005–0.096 mg/kg in plants, less than 0.005 mg/kg in brown rice, and less
than 0.01–0.237 mg/kg in rice husks at 28-days after application. The residual amount increases with
the increase of the application concentration and decreases with the extension of the harvesting interval.
The maximum residual amount of kresoxim-methyl is 0.008 mg/kg in brown rice, which is lower than
the maximum residue limit of 0.1 mg/kg and 0.01 mg/kg of kresoxim-methyl in brown rice according
to China [21] and EU [22], respectively.

2.6. Risk Assessment of Chronic Dietary Intake

Kresoxim-methyl is registered to be used on 20 kinds of crops in China such as rice, wheat,
strawberry, tomato, and cucumber. Here, the intake amount of kresoxim-methyl derived from rice
was evaluated. The standard pesticide residue test results showed that the median residual amount
of kresoxim-methyl in the samples collected at 14, 21, and 28 days after application was lower
than the lowest limit of quantification (0.005 mg/kg). According to the principle of maximum risk,
the STMR value of the dietary risk assessment is 0.005 mg/kg, and the ADI value of kresoxim-methyl
is 0.4 mg/kg bw. Combined with dietary patterns in different populations in China, NEDI and RQ
were also calculated. The results in Table 2 showed that the NEDI value of kresoxim-methyl in different
age groups and genders in China was within the range of 0.022–0.054 µg/(kg bw·days), and RQ of
kresoxim-methyl was 5.5 × 10−5–1.4 × 10−4, far less than 1. All the results indicate that the dietary
exposure risk of kresoxim-methyl in rice is low and acceptable for humans.
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Table 2. Average intake of brown rice by various populations and estimated exposure and risk quotient
of kresoxim-methyl.

Age (y) Sex Body Weight (kg) F (g/days) NEDI [µg/(kg
bw·days)] RQ

2–3
Male 13.2 135.5 0.051 0.00013

Female 12.3 133.7 0.054 0.00014

4–6
Male 16.8 179.7 0.053 0.00013

Female 16.2 159.5 0.049 0.00012

7–10
Male 22.9 230.8 0.050 0.00013

Female 21.7 212.0 0.049 0.00012

11–13
Male 34.1 266.2 0.039 0.000098

Female 34.0 238.4 0.035 0.000088

14–17
Male 46.7 308.7 0.033 0.000083

Female 45.2 240.7 0.027 0.000067

18–29
Male 58.4 309.6 0.027 0.000066

Female 52.1 260.9 0.025 0.000063

30–44
Male 64.9 316.2 0.024 0.000061

Female 55.7 278.6 0.025 0.000063

45–59
Male 63.1 314.9 0.025 0.000062

Female 57.0 272.8 0.024 0.000060

60–69
Male 61.5 274.0 0.022 0.000056

Female 54.3 242.9 0.022 0.000056

>70
Male 58.5 258.3 0.022 0.000055

Female 51.0 223.5 0.022 0.000055

3. Materials and Methods

3.1. Reagents and Standards

Kresoxim-methyl standard (purity 99.9%, purchased from BASF); C18, PSA (Primary secondary
amine), and GCB (Graphitized carbon black) purchased from Agela Technologies (Tianjin, China);
anhydrous magnesium sulfate, sodium chloride, acetonitrile, dichloromethane (analytical grade,
supplied by Sinopharm Chemical Reagent, China); n-hexane (chromatographical grade, purchased
from TEDIA, Woodstock, IL, USA).

Ten micrograms of kresoxim-methyl standard were accurately weighed and dissolved in acetone
to obtain a 1000 mg/L standard stock solution, which was kept at 4 ◦C in the dark. The stability of
standard stock solution and the kresoxim-methyl on the matrices were determined every ten days
during three months, and the rate of degradation was less than 5%. The standard stock solution of
kresoxim-methyl was diluted with the extract solution of rice plant, rice, and rice hull to prepare matrix
matching solutions for sample quantification at the various concentrations of 0.002, 0.005, 0.01, 0.02,
0.05, 0.1, 0.2, 0.5 mg/L.

3.2. Instrument Conditions

The sample was tested by Shimadzu TQ8040 (Shimadzu, Japan); Rxi-5Sil MS capillary
column (30 m × 0.25 mm × 0.25 µm); the initial temperature of the column oven was 60 ◦C, and the
temperature was raised to 150 ◦C at 30 ◦C/min. Later the temperature was raised to 250 ◦C at
10 ◦C/min for 3 min, and the temperature was further raised to 280 ◦C at 20 ◦C/min; the injection port
temperature was 270 ◦C; the carrier gas was helium (purity is 99.999%); the splitless injection was used
here, and the injection volume was 1 µL.

Mass spectrometry conditions: electron ionization (EI) mode; transmission temperature was
280 ◦C; ion source temperature was 230 ◦C; collision gas was argon (purity 99.999%); solvent delay was



Molecules 2019, 24, 692 7 of 9

3 min; data acquisition mode was MRM; qualitative ion (m/z): 206.1/131.1, 206.1/116.1; quantitative
ion (m/z): 206.1/131.1.

3.3. Field Experiments

The tested 23% kresoxim-methyl suspension was supplied by BASF. Field experiments were
conducted in Anhui Province, Hubei Province and Guangdong Province of China in 2016 and 2017.
The test site was not less than 30 m2 per cell. All the experiments were performed in triplicate.
A blank control was set, and a protection line was set between each cell. The application method of
kresoxim-methyl suspension was sprayed on stem and leaf using an automatic sprayer during the
BBCH code was 33. Kresoxim-methyl suspension at the concentration of 310.5 g a.i./hm2 was used in
the dissipation test here, which was sprayed once in the rice tillering stage. There was no raining at
2 h after application, and the temperature ranged 23–31 ◦C. The samples were collected at 2 h, 1 days,
3 days, 5 days, 7 days, 14 days, 21 days, and 30 days after application. The final residue test was set at
a low concentration of 207 g a.i./hm2 and a high concentration of 310.5 g a.i./hm2, which was applied
for a total of three or four times. The interval between applications was 7 days. Rice plants, rice and
rice hull samples were collected on 14 days, 21 days, and 28 days after the last application. All the
samples were preserved at –20 ◦C.

3.4. Sample Processing

Before the pretreatment, plant samples were cut into small pieces for 1cm, then the brown rice
and rice husk were broken into powder. Five grams of sample were added into 10 mL of water with
20 mL of acetonitrile. The sample was vortexed for 20 min, and then was extracted by ultrasonic for
10 min with four grams of anhydrous magnesium sulfate. The solution was centrifuged at 4500 rpm
for 5 min. The upper extract (2.5 mL) was transferred to a 10-mL centrifuge tube containing 150 mg
anhydrous magnesium sulfate, 50 mg PSA, 50 mg C18, and 10 mg GCB. The solution was vortexed for
1 min and then centrifuged at 5000 rpm for 2 min. The supernatant (2 mL) was collected in a glass
tube, and blown to dryness. The residue was dissolved in 2 mL of n-hexane. The sample solution was
purified by 0.22-µm filter (EMD Millipore, Billerica, MA, USA) under atmospheric pressure, and then
it was tested later.

3.5. Risk Assessment of Chronic Dietary Exposure

The risk of chronic dietary exposure was calculated according to formulas (1) and (2):

NEDI = (∑ STMRi × Fi)/bw (1)

RQ = NEDI/ADI (2)

In Equation (1), NEDI [µg/(kg bw·days)] is the national estimated daily intake per capita in China;
STMRi (mg/kg) refers to the median value of the standard test residue of the i-th grade agricultural
products; Fi (g) is the dietary consumption of the i-th grade agricultural products for different groups
of people in China.

In Equation (2), RQ is the risk quotient, and ADI is the allowable dietary intake of pesticide per
kilogram of body weight, mg/kg bw. When RQ ≤ 1, it indicates that the risk is acceptable. The smaller
the RQ is, the smaller the risk. When RQ > 1, it indicates that there is an unacceptable chronic risk.
The larger the RQ, the greater the risk.

4. Conclusions

The QuEChERS method combined with GC-MS/MS technology was used to determine the
residual amount of kresoxim-methyl in rice plants, brown rice, and rice husks in this study. The method
has the advantages of high sensitivity, accuracy, and precision. The results in the dissipation dynamic
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test indicated that the dissipation rate of kresoxim-methyl in rice plants was faster than the other
matrices, indicating that kresoxim-methyl is an easily degradable pesticide. Based on the residual
median value obtained in the final residue test, the chronic dietary intake risk of kresoxim-methyl in
rice was evaluated. The results showed that the residue of kresoxim-methyl in brown rice poses a low
risk to human health. The evaluation of the environmental toxicity of kresoxim-methyl to non-target
organisms will be the direction of future research.
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