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Rab29 activation of the Parkinson’s
disease-associated LRRK2 kinase
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Abstract

Parkinson’s disease predisposing LRRK2 kinase phosphorylates a
group of Rab GTPase proteins including Rab29, within the effector-
binding switch II motif. Previous work indicated that Rab29,
located within the PARK16 locus mutated in Parkinson’s patients,
operates in a common pathway with LRRK2. Here, we show that
Rab29 recruits LRRK2 to the trans-Golgi network and greatly stim-
ulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C
mutants that promote GTP binding are more readily recruited to
the Golgi and activated by Rab29 than wild-type LRRK2. We iden-
tify conserved residues within the LRRK2 ankyrin domain that are
required for Rab29-mediated Golgi recruitment and kinase activa-
tion. Consistent with these findings, knockout of Rab29 in A549
cells reduces endogenous LRRK2-mediated phosphorylation of
Rab10. We show that mutations that prevent LRRK2 from interact-
ing with either Rab29 or GTP strikingly inhibit phosphorylation of a
cluster of highly studied biomarker phosphorylation sites (Ser910,
Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master
regulator of LRRK2, controlling its activation, localization, and
potentially biomarker phosphorylation.
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Introduction

Autosomal dominant missense mutations within the leucine-rich

repeat protein kinase 2 (LRRK2) gene predispose to Parkinson’s

disease (Paisan-Ruiz et al, 2004; Zimprich et al, 2004). Mutations in

LRRK2 account for ~5% of familial Parkinson’s, and are observed in

~1% of sporadic Parkinson’s patients, making LRRK2 one of the most

commonly mutated genes linked to Parkinson’s disease (Simon-

Sanchez et al, 2009). LRRK2 is a large, multi-domain protein kinase

consisting of an armadillo repeat domain (residues 150–510), an

ankyrin domain (residues 690–860), leucine-rich repeats (residues

984–1278), a ROC-type GTPase domain (residues 1335–1510) that

closely resembles a Rab GTPase and is associated with a COR domain

(C-terminal of Roc, residues 1511–1878), a serine/threonine protein

kinase domain (residues 1879–2138), and a WD40 repeat-containing

domain (residues 2142–2496). The most common pathogenic muta-

tion lies within the catalytic domain (G2019S) and increases kinase

activity, suggesting that LRRK2 inhibitors might offer therapeutic

benefit for Parkinson’s disease (Greggio et al, 2006; Ozelius et al,

2006; Smith et al, 2006; Jaleel et al, 2007; Hatcher et al, 2017).

Members of the Rab GTPase family, including Rab8A, Rab10,

and Rab29 (also known as RAB7L1), are substrates for LRRK2

(Steger et al, 2016). Recent work has defined a subset of 14 Rab

proteins (Rab3A/B/C/D, Rab5A/B/C, Rab8A/B, Rab10, Rab12,

Rab29, Rab35, and Rab43) that are potential direct substrates for

LRRK2 (Steger et al, 2017). The LRRK2 phosphorylation site (Thr72

for Rab8A and Thr73 for Rab10) for all of these Rab proteins lies

within the effector-binding, switch II motif (Pfeffer, 2001; Cherfils &

Zeghouf, 2013). LRRK2 phosphorylation of Rab8A and Rab10

proteins blocks binding to Rab GDP-dissociation inhibitor (GDI) that

is required for Rab protein membrane delivery and recycling; phos-

phorylation also inhibits binding of Rab8A to Rabin-8, its cognate

guanine nucleotide exchange factor (GEF) (Steger et al, 2016, 2017).

Pathogenic mutations located within the GTPase (R1441G/C) and

COR (Y1699C) domains do not directly stimulate LRRK2 kinase

activity in vitro (Jaleel et al, 2007; Nichols et al, 2010); neverthe-

less, they markedly enhance phosphorylation of Rab isoforms to an

even greater extent than the G2019S mutation in vivo (Ito et al,

2016; Steger et al, 2016). These mutations promote GTP binding to

the LRRK2 Roc domain (Guo et al, 2007; Lewis et al, 2007; Li et al,

2007; Daniels et al, 2011; Webber et al, 2011; Liao et al, 2014). One
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explanation for why the R1441G/C and Y1699C LRRK2 mutants are

more active in cells is that enhanced GTP binding induces a confor-

mational change, rendering LRRK2 more susceptible to activation

by an as yet unknown, upstream activator.

Rab29 is one of five genes contained within the PARK16 locus

linked to Parkinson’s disease (Simon-Sanchez et al, 2009; Tucci

et al, 2010). It is most closely related to Rab32 and Rab38 GTPases

that are needed for lysosome-related organelle biogenesis (Bultema

& Di Pietro, 2013; Wang et al, 2014). In contrast to Rab29, Rab32

and Rab38 do not possess a LRRK2 phosphorylation site within their

Switch II effector-binding motifs. There is significant variability

within the PARK16 locus and Parkinson’s association patterns

across populations, and it is currently unclear how mutations within

the PARK16 locus are linked to Parkinson’s disease. Transcriptome

analysis has suggested that the PARK16 locus enhances expression

of Rab29 (Beilina et al, 2014). Other genetic studies of Parkinson’s

patient cohorts have found common variants within the LRRK2 and

Rab29 genes that function coordinately to increase Parkinson’s risk,

as human genetic variants at these loci impact Parkinson’s risk non-

additively (MacLeod et al, 2013; Pihlstrom et al, 2015). A haplotype

located near the 50 region of RAB29 is associated with Parkinson’s

and epistasis between Rab29 and LRRK2 gene variants has been

demonstrated (Pihlstrom et al, 2015).

Genetic investigations in Caenorhabditis elegans neurons revealed

that the RAB29 (GLO-1) orthologue acts upstream of LRRK2 (LRK-1) in

a signaling pathway controlling axon termination (Kuwahara et al,

2016). It was also reported that Rab29 and LRRK2 double-knockout

mice exhibit an enlarged kidney phenotype that was non-additive, rela-

tive to single Rab29 or LRRK2 knockout, further implying that these

genes act in a common pathway (Kuwahara et al, 2016). Others have

suggested that LRRK2 and various Rab proteins including Rab29 inter-

act, largely based on co-immunoprecipitation analysis, but binding

domains have not yet been pinpointed (Dodson et al, 2012; MacLeod

et al, 2013; Beilina et al, 2014; Waschbusch et al, 2014; Zhang et al,

2015). It has also been reported that Rab29 recruits LRRK2 to the Golgi

apparatus (MacLeod et al, 2013; Beilina et al, 2014).

LRRK2 is constitutively phosphorylated at a cluster of Ser residues

lying between the ankyrin domain and leucine-rich repeat region

(Ser910, Ser935, Ser955 and Ser973) that plays a role in regulating

14-3-3 binding and cytosolic localization (Nichols et al, 2010; Doggett

et al, 2011). These sites have received a lot of attention as they are

controlled by LRRK2 kinase activity, and therefore become rapidly

dephosphorylated in response to diverse LRRK2 inhibitors (Dzamko

et al, 2010; Doggett et al, 2011). Monitoring the dephosphorylation of

these residues, especially Ser935, has become the principal biomarker

strategy to assess the in vivo efficacy of LRRK2 inhibitors (Hatcher

et al, 2017). Despite a lot of research, it is currently unclear how

LRRK2 kinase activity influences phosphorylation of these biomarker

sites. Autophosphorylation would be the simplest model to account

for the data obtained to date. However, autophosphorylation of the

biomarker residues has not been observed in in vitro studies under-

taken thus far, perhaps indicating a missing factor is required to stim-

ulate autophosphorylation of these sites (Dzamko et al, 2010). Other

kinases not known to be regulated by LRRK2 including CK1 (Chia

et al, 2014) and PKA (Muda et al, 2014) have also been reported to

phosphorylate these sites. In macrophages, the IkappaB kinase family

phosphorylates Ser910 and Ser935 sites independently from LRRK2

kinase activity (Dzamko et al, 2012).

In this study, we demonstrate that Rab29 functions as a critical

upstream regulator of LRRK2 by stimulating kinase activity, inferred

by assessing autophosphorylation of Ser1292 as well as phosphory-

lation of LRRK2 substrates such as Rab10. We find that the patho-

genic LRRK2 mutants that bind GTP with higher affinity are

activated by Rab29 to a much greater extent than wild-type LRRK2,

suggesting a mechanism by which such mutations stimulate LRRK2

activity in vivo. Our studies suggest that LRRK2 interacts with

Rab29 via its N-terminal ankyrin domain, and, strikingly, mutations

that disrupt regulation by Rab29 prevent phosphorylation of a clus-

ter of highly studied biomarker phosphorylation sites (Ser910,

Ser935, Ser955 and Ser973) (Dzamko et al, 2010; Doggett et al,

2011). Our findings suggest that Rab29 plays a major role in regulat-

ing LRRK2 Golgi localization and kinase activity as well as poten-

tially triggering phosphorylation of biomarker sites.

Results

Rab29 activates LRRK2

To explore whether Rab29 influences LRRK2 kinase activity, we co-

expressed Rab29 with wild-type and pathogenic mutants of LRRK2

in HEK293 cells, and assessed LRRK2 autophosphorylation of

Ser1292 (Sheng et al, 2012) as well as phosphorylation of endoge-

nous Rab10 (Thr73) and Rab29 (Thr71), employing well-character-

ized phospho-specific antibodies (Fig EV1). Overexpression of

Rab29 significantly enhanced both LRRK2 Ser1292 and Rab10 phos-

phorylation (Fig 1A). Rab29 stimulated activity of the “enhanced

GTP-binding mutants” (R1441C, R1441G, R1441H, Y1699C) to a

much greater extent than wild-type LRRK2 (Fig 1A). Rab29 was also

phosphorylated by the R1441G/C and Y1699C mutants to a much

greater extent than wild-type LRRK2, consistent with the higher acti-

vation state of these pathogenic mutants (Fig 1A). Due to its higher

basal activity, the G2019S mutant displayed elevated kinase activity

in the absence of Rab29 overexpression, which was further

enhanced upon Rab29 overexpression. The I2020T, T2031S, and

G2385R pathogenic mutants behaved more like wild-type LRRK2

and were activated by Rab29 overexpression to a lesser extent than

the enhanced GTP-binding mutants (Fig 1A). In general, the amount

of Rab10 phosphorylation correlates with the extent of LRRK2 acti-

vation; however, some variation correlating with the level of Rab29

expression is observed. Furthermore, there are 14 Rab proteins that

are phosphorylated by LRRK2 (Steger et al, 2017) and conceivably,

LRRK2 mutants may have slightly different localization or prefer-

ences for diverse Rab proteins, which could also account for varia-

tion between Ser1292 phosphorylation and Rab10 phosphorylation

observed (Fig 1A). We also found that stimulation of Ser1292 as

well as Rab10 phosphorylation induced by overexpression of Rab29

was abolished by introducing a kinase-inactivating D2017A muta-

tion (Fig 1A, right panels), confirming that Rab29 was enhancing

phosphorylation by stimulating LRRK2 kinase activity.

To test whether phosphorylation of Rab29 at Thr71 and Ser72 by

LRRK2 was required for activation of LRRK2, we mutated these sites

both to Ala. We found that the Rab29[T71A,S72A] mutant still acti-

vated LRRK2[R1441G] to the same extent as wild-type Rab29, indi-

cating that phosphorylation of Rab29 is not required for its ability to

activate LRRK2 (Fig 1B). In an attempt to mimic phosphorylation of
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Rab29 by LRRK2, we mutated the phosphorylation sites to Glu and

observed that the Rab29[T71E,S72E] mutant failed to activate

LRRK2 (Fig 1B). This suggests that Rab29 phosphorylation may

decrease its ability to activate LRRK2.

Rab29 selectively activates LRRK2

We next evaluated the effect that 11 Rab proteins including Rab32

and Rab38 (that are highly related to Rab29) have on Ser1292 phos-

phorylation of wild-type LRRK2 (Fig EV2A) and LRRK2[R1441G]

(Fig EV2B). We found that for wild-type LRRK2, Rab29 markedly

stimulated Ser1292 phosphorylation, but with exception of Rab12,

which induced a modest ~twofold increase, none of the other Rab

proteins including Rab32 and Rab38 activated LRRK2 significantly

(Fig EV2A). For the LRRK2[R1441G] mutant, Rab29 also markedly

increased Ser1292 phosphorylation more than any of the other Rab

proteins (Fig EV2B), but Rab8A and Rab38 also stimulated Ser1292

phosphorylation two- to threefold (Fig EV2B).

Rab29 activates LRRK2 on Golgi membranes

At steady state, LRRK2 is primarily cytosolic; approximately 10%

associates with membranes upon cell fractionation. The large pool

of cytoplasmic protein obscures the localization of the membrane-

associated pool in fixed cells. To overcome this challenge, and to

avoid the possibility of spurious precipitation of cytosolic LRRK2

protein onto cellular structures during fixation, we employed an

established liquid nitrogen coverslip freeze–thaw protocol (Seaman,

2004) to deplete cytosolic proteins and reveal the localization of

membrane-associated LRRK2 protein. Figure 2 shows the localiza-

tion of R1441G LRRK2 in HeLa cells upon transient transfection.

The protein is localized predominantly in the perinuclear region but

distinct, peripheral punctae are also detected, and 60% of these also

contain Rab10 protein (Fig 2A and C). In the perinuclear region,

more than 40% of the LRRK2 punctae co-localized with Rab8

protein (Fig 2B and D). These findings are consistent with the fact

that Rab10 and Rab8 are significant LRRK2 substrates (Steger et al,

2016).

Rab29 is localized to the Golgi complex (Wang et al, 2014)

where it overlaps with p115 protein (Fig 3A). Like LRRK2 R1441G

(Fig 2), LRRK2 G2019S also displays a distributed, punctate pattern

when expressed on its own (Fig 3E). A small amount of perinuclear

LRRK2 may co-localize with endogenous Rab29, but available anti-

bodies were unable to label endogenous Rab29 protein. However,

when LRRK2 G2019S was co-expressed in cells with Rab29, the

proteins showed significant co-localization over an extended,
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                          WT       D2017A  R1441C  R1441G  R1441H  Y1699C  R1728H  G2019S    I2020T   T2031S   G2385R 

Rab29-pT71

Rab10-pT73 (endogenous)

Rab10-total (endogenous)

LRRK2-total

LRRK2-pS1292

R1441G R1441G
D2017A

Y1699C Y1699C
D2017A

G2019S G2019S
D2017A

25kDa

25kDa

25kDa

25kDa

250kD

250kD

A

B

enhanced GTP-binding
LRRK2
Rab29

D2017A = kinase inactive

Rab29 

LRRK2 R1441G 

25kDa

250kD

        wt             T71E          S72E            EE              AA

250kD

Rab29 (HA)

Rab10-pT73 (endogenous)

Rab10-total (endogenous)

LRRK2

LRRK2-pS1292

25kDa

25kDa

Figure 1. Rab29 activates LRRK2.

A Left: HEK293 cells were transfected with the indicated wild-type and human full-length pathogenic LRRK2 variants with either HA-empty vector (�) or HA-tagged
Rab29 (+). 24 h post-transfection, cells were lysed and analyzed by immunoblotting with the indicated antibodies. WT is wild-type and D2017A corresponds to the
kinase-inactive LRRK2 mutant. Similar results were obtained in two separate experiments. Right: As in left panel except that kinase-inactivating D2017A LRRK2
mutation was inserted into the indicated LRRK2 pathogenic mutant. Similar results were obtained in two independent experiments.

B As in (A) except that LRRK2[R1441G] pathogenic variant was co-transfected with wild-type and indicated mutants of Rab29. EE indicates Rab29[T71E,S72E] mutation
and AA indicates Rab29[T71A,S72A] mutation. Similar results were obtained in two separate experiments, each performed in duplicate.
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somewhat perinuclear, reticular structure (Fig 3B). This structure is

likely to represent a disrupted Golgi complex, as staining became

much more concentrated in the perinuclear region upon treatment

of cells with the MLI-2 LRRK2 kinase inhibitor (Fig 3C and D).

Co-localization of LRRK2 G2019S (Fig 3B) and R1441G proteins (see

Fig 7H below) with Rab29 supports a model in which Rab29 can

activate pathogenic LRRK2 proteins on Rab29-containing

membranes.
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Figure 2. R1441G-LRRK2 co-localizes with Rab10 in the periphery and Rab8 near the nucleus.

A, B Shown are HeLa cells stained for transfected R1441G-LRRK2 (red) and either GFP-Rab10 (A) or GFP-Rab8 (B) in green. Scale bar, 10 lm. The second row in both
panels shows enlarged portions boxed in the rows above. Scale bar, 2 lm.

C, D Percent co-localization of R1441G-LRRK2 with the indicated Rab in the indicated cell regions was determined from a Mander’s coefficient after automatic
thresholding. Error bars represent mean � SEM. ****P < 0.0001; **P = 0.0076 by Student’s unpaired, two-tailed t-test (n = 13 from two experiments). For
peripheral quantitation, boxes of the size indicated were generated (see A) that included the plasma membrane and excluded the nucleus. For perinuclear
quantitation (see B), the boxes included half of the nucleus.
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Disruption of the Golgi by pathogenic LRRK2 proteins has been

previously reported (MacLeod et al, 2013; Beilina et al, 2014), and

light microscopic analysis of the trans-Golgi network in mouse

embryonic fibroblasts (MEFs) (as monitored using anti-GCC185

antibodies) confirmed this finding (Fig 4A and C); MLI2 treatment

restored compact Golgi localization for GCC185-stained compart-

ments (compare Fig 4B and C right and left panels). Note that the

extent of Golgi fragmentation correlated with the relative kinase

activation of the LRRK2 mutant proteins. Together, these data show

that LRRK2 co-localizes with its substrates, Rab10 and Rab8, and

also co-localizes with an important key activator, Rab29 GTPase.

Rab29 activation of LRRK2 would be predicted to occur on

membrane surfaces harboring active Rab29 protein. To test this,

cells expressing Rab29 and R1441G LRRK2 were fractionated into

membrane and cytosol fractions and analyzed for their content of

total and activated LRRK2 protein, using anti-LRRK2 and anti-

pS1292 antibodies. Expression of Rab29 increased the amount of

total membrane-associated LRRK2 (Fig 5A and B) and also led to a

greater than threefold enrichment of activated, pS1292 LRRK2 on

membranes (Fig 5C). Similar data were obtained for G2019S-LRRK2

(see Fig 7 below). Note that about 10% of LRRK2-R1441G is also

detected in membrane fractions obtained from Rab29 knockout 293

T cells (Fig 5B). This Rab29-independent pool may represent associ-

ation of LRRK2 with another Rab GTPase such as Rab8A or Rab38,

or could represent R1441G LRRK2 aggregates.

Ankyrin domain residues permit activation of LRRK2 by Rab29

In an initial attempt to define the region of LRRK2 required for

Rab29 activation, we generated a truncation mutant of LRRK2 lack-

ing the N-terminal, 969 non-catalytic residues encompassing the

armadillo and ankyrin domains. Although this mutant is expressed

at lower levels than full-length LRRK2 in HEK293 cells, it was

clearly not activated by Rab29 overexpression (Fig 6A), indicating

that the Rab29 effector region lies within the LRRK2 N-terminal

fragment, which was also suggested in a previous study (Beilina

et al, 2014).

Rab32 and Rab38, the Rab proteins most closely related to

Rab29, interact directly with the ankyrin domain of an effector

called VARP (VPS9-ankyrin repeat protein, also known as

ANKRD27), a regulator of endosomal trafficking (Fukuda, 2016).

The crystal structure of the VARP ankyrin domain/Rab32 complex

(PDB 4CYM) reveals a large interface of interacting residues, encom-

passing several clusters of adjacent Leu residues on VARP that make

hydrophobic interactions with Rab32 (Hesketh et al, 2014). Muta-

tion of these VARP ankyrin domain Leu residues decreased binding

to Rab32 (Hesketh et al, 2014). These studies prompted us to

explore whether the LRRK2 ankyrin domain might comprise the

Rab29 binding site. Inspection of the LRRK2 ankyrin domain reveals

that it possesses three Leu-rich motifs that are conserved in human,

chicken, Xenopus, Zebrafish, and Drosophila LRRK2, which we

termed Region A, B, and C (Fig 6B). We mutated representative Leu

residues within each of these regions to Asp, as this corresponds to

the mutations that were designed to prevent the interaction of VARP

with Rab32 (Hesketh et al, 2014). We studied how these mutations

impacted Rab29-mediated LRRK2 activation. This revealed that in

particular, Region A (Cys727Asp, Leu728Asp, and Leu729Asp)

mutations strikingly prevented Rab29-mediated activation of
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Figure 3. Pathogenic LRRK2 mutants co-localize with Rab29 and
disperse Golgi membranes.

HeLa cells were transfected with LRRK2-G2019S or Myc-Rab29 or LRRK2-G2019S
and 24 h later transfected with Myc-Rab29. After 48 h, cells were permeabilized
by liquid nitrogen freeze–thaw to deplete cytosol and then fixed and stained
with mouse anti-p115, mouse anti-Myc, and rabbit anti-GFP or rabbit anti-
LRRK2 antibodies.

A Myc-Rab29 (green) and p115 (red) show co-localization at the Golgi. Left
and right panels were treated with or without MLI2 (200 nM, 4 h) as
indicated.

B Myc-Rab29 (red) and eGFP-LRRK2-G2019S (green) show co-localization and
dispersed Rab29-labeled Golgi membranes.

C Cells treated with MLI-2 (200 nM, 4 h) show compact, Rab29-positive
Golgi, and associated LRRK2-G2019S (green).

D Percent of cells with compact Rab29 staining; ***P = 0.0002;
**P = 0.002 with Student’s unpaired, two-tailed t-test. Error bars
represent SEM for three experiments with > 30 cells per condition in
each experiment.

E LRRK2-G2019S alone showing punctate staining throughout the cell.

Data information: Scale bars, 10 lm.
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wild-type LRRK2 (Fig 6C) and LRRK2[R1441G] mutant (Fig 6D).

These ankyrin domain mutations reduced basal levels of Ser1292

phosphorylation, consistent with these enzymes being less active

due to their inability to bind Rab29 (Fig 6C and D). Mutations in

Region B and Region C also suppressed Rab29-stimulated Ser1292

autophosphorylation of wild-type LRRK2, further supporting a role

for the ankyrin repeat domain playing a critical role in controlling

LRRK2 activation (Fig 6C).
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Figure 4. LRRK2-R1441G expression disrupts Golgi morphology.

A Wild-type MEFs were stained with rabbit anti-GCC185 (green) and DAPI (blue); left and right panels were treated with or without MLI2 as indicated.
B Knock-in R1441G MEF cells � MLI-2 (200 nM, 4 h) stained with rabbit anti-GCC185 antibody (green) and DAPI (blue).
C Quantitation of the percent of cells showing a compact trans-Golgi network as seen in (A). Error bars represent SEM from two experiments with > 50 cells per condition

in each experiment. *P = 0.0184 with Student’s unpaired, two-tailed t-test. Differences between WT, WT+MLI2, and R1441G+MLI2 were not significant (P > 0.5).

Data information: Scale bars, 10 lm.
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To study further how Rab29 binding controls LRRK2, we immuno-

precipitated wild-type LRRK2 and Region A mutations from HEK293

cells and assayed kinase activity employing the Nictide peptide

substrate (Dzamko et al, 2010) (Fig 6E) or recombinant Rab8A

(Steger et al, 2016) (Fig 6F). Assays were undertaken in the presence

or absence of the MLi-2 LRRK2 inhibitor to ensure activity measured

was mediated by LRRK2 rather than a contaminating kinase. These

experiments demonstrated that the Region A mutations (Cys727Asp,

Leu728Asp, and Leu729Asp) inhibited LRRK2 kinase activity toward

Nictide and Rab8A by four- to fivefold (Fig 6E and F). At the end of

in vitro kinase assays, we also assessed LRRK2 autophosphorylation

at Ser1292 by immunoblot, which also revealed that Region A muta-

tions also substantially inhibit autophosphorylation (Fig 6E and F).

The crystal structure of the VARP:Rab32 complex reveals that

Rab32 binding to the VARP ankyrin domain is controlled by two

conserved Met91 and Arg93 residues that lie within the Rab32

effector-binding switch II motif (Hesketh et al, 2014). Mutation of

these residues to Ser abolished VARP binding (Hesketh et al, 2014).

Interestingly, Rab29, Rab32, and Rab38 are the only Rab proteins

that possess Met and Arg residues at the equivalent positions within

their effector-binding loops (Fig EV3A), perhaps suggesting that this

family of Rab proteins binds ankyrin domains via a common mecha-

nism. Although we found mutation of equivalent residues in Rab29

(Met73 and Arg75) prevented activation of LRRK2 (Fig EV3B), the

Rab29[M73S, R75S] mutant was localized in the cytosol, indicating

that these mutations likely disrupt Rab29 nucleotide binding and

C-terminal prenylation and should not be employed in future studies

(Fig EV3C).

Ankyrin domain residues influence LRRK2 membrane association
and Rab29 co-localization

If the ankyrin domain is important for Rab GTPase interaction, it

would be predicted to be important for LRRK2 membrane associa-

tion. To test this, cells expressing LRRK2 R1441G or LRRK2 R1441G

protein also carrying Region A mutations were fractionated and

analyzed for their content of membrane-associated LRRK2 protein by

immunoblot. As shown in Fig 7A, approximately 10% of total

R1441G LRRK2 was detected on membranes; the individual L728D

or L729D LRRK2 proteins showed only a slight decrease in overall

membrane association, and the L728D/L729D mutant protein led to

a 60% decrease in membrane association determined by this method

(Fig 7B). In addition, the ankyrin domain mutants failed to respond

to Rab29 co-expression in terms of their activation on membranes,

as monitored using anti-LRRK2 pS1292 antibodies (Fig 7C, E and F)

or cytosol (Fig 7D); Rab29 overexpression enhanced the membrane

association of total (Fig 7E) and pS1292-LRRK2 (Fig 7F) on

membranes. Further support for the importance of ankyrin domain

sequences in Rab29 interaction comes from light microscopy experi-

ments, in which R1441G LRRK2 ankyrin domain mutant proteins

showed significantly less co-localization with Rab29 upon expres-

sion in HeLa cells (Fig 7G and H). R1441G LRRK2 staining was much

more punctate than that seen for G2019S (compare with Fig 3E);

40% of R1441G LRRK2 punctae co-localized with Rab29, and most

Rab29 remained associated with a disrupted Golgi complex (Fig 7G

and H). Importantly, R1441G L728D/L729D failed to disrupt the

Golgi (Fig 7I), consistent with the requirement for Rab29 interaction

to mediate this process. These experiments support a model in which

ankyrin domain residues are important for Rab29 interaction, LRRK2

kinase activation, and Golgi complex disruption.

Ankyrin domain mutant proteins showed decreased overall

kinase activity, and the protein was somewhat less stable in cells, as

determined by monitoring its turnover after cycloheximide addition

(Fig 7J). Loss of a binding partner interaction often leads to

decreased protein stability.
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Figure 5. Rab29 increases membrane association of LRRK2-R1441G.

HEK293T Rab29�/� (KO) and WT cells were transfected with LRRK2-R1441G and
24 h later transfected with Myc-Rab29. After 48 h, cells were harvested and
fractionated into cytosol and membrane fractions.

A Immunoblot of membrane protein (75 lg) and the 50% of equivalent
volume of cytosolic proteins, �Rab29 as indicated. Numbers at left indicate
mobility of marker proteins in kDa; proteins were detected with rabbit anti-
pS1292, rabbit anti-LRRK2 UDD3, mouse anti-LRRK2, mouse anti-LAMP2,
mouse anti-tubulin, and mouse anti-Myc antibodies.

B Quantitation of the fraction of total LRRK2-R1441G on
membranes � Rab29 (transfected and endogenous).

C Amount of active (pS1292) LRRK2 in membrane and cytosol fractions �
Rab29 expression normalized to the amount of total LRRK2 in the fraction.

Data information: Error bars represent SEM from two experiments. **P = 0.0025;
****P = 0.00013; ns = not significant (P = 0.1968) by Student’s unpaired, two-
tailed t-test. Differences between Rab29 KO and (minus) Myc-Rab29 are not
significant.
Source data are available online for this figure.
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Evidence that Rab29 may regulate phosphorylation of LRRK2
biomarker sites

LRRK2 possesses a cluster of well-studied, constitutively phosphory-

lated residues (Ser910, Ser935, Ser955 and Ser973) that are controlled

by LRRK2 kinase activity, as these residues become dephosphory-

lated following administration of LRRK2 inhibitors (Dzamko et al,

2010; Nichols et al, 2010; Doggett et al, 2011). We studied whether

ankyrin domain mutations that prevent Rab29 from activating LRRK2

influence phosphorylation of these sites. Strikingly, all Region A
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Figure 6. Ankyrin domain residues permit activation of LRRK2 by Rab29.

A HEK293 cells were transfected with the indicated wild-type human full length (FL) or a fragment lacking the N-terminal 969 residues (LRRK2[residues 970-end])
pathogenic LRRK2 variants with either HA-empty vector (�) or HA-tagged Rab29 (+). 24 h post-transfection, cells were lysed and analyzed by immunoblotting with
the indicated antibodies. WT is wild-type and D2017A corresponds to the kinase-inactive LRRK2 mutant. Similar results were obtained in two independent
experiments, each performed in duplicate.

B Upper panel: Schematic representation of how Rab29 might interact with the ankyrin domain (ANK) of LRRK2 by analogy with how Rab32 binds VARP. Lower panel:
Sequence alignments of the three Leu-rich regions in the ankyrin domain of LRRK2 in the indicated species.

C, D As in (A) except that HEK293 cells were transfected with the wild type and indicated LRRK2 ankyrin domain mutations with either HA-empty vector (�) or HA-
tagged Rab29 (+). KD is the Kinase Dead LRRK2[D2017A] mutant. Similar results were obtained in two experiments.

E As in (C) except that the indicated forms of LRRK2 were immunoprecipitated from cell extracts and then subjected to an LRRK2 kinase activity by measuring
phosphorylation of the Nictide peptide substrate in the presence of 0.2 mM 32PcATP and in the absence (�) or presence (+) of 1 lM MLi-2 LRRK2 in a 30-min
kinase reaction. After the kinase assay, phosphorylation of Nictide was quantified by Cherenkov counts and data presented as average � SEM for three
independent experiments each undertaken in triplicate. Cherenkov counts recorded for no LRRK2 (-) controls were subtracted from all values. There was a
statistically significant difference between groups (P < 0.0001, one-way ANOVA, F(9, 20) = 95.87) ***P < 0.001 by one-way ANOVA with Dunnett’s multiple
comparison with mean difference 95% confidence intervals of groups compared to WT: WT MLI-2 0.8668–1.126; C727D 0.7428–1.002; C727D MLI-2 0.8731–1.132;
L728D 0.7602–1.019; L728D MLI-2 0.8559–1.115; L729D 0.7570–1.016, L729D MLI-2 0.8708–1.130, L728D+L729D 0.7466–1.006; L728D+L729D MLI-2 0.8655–1.124.
Assay mixtures were subjected to immunoblot analysis with the indicated antibodies.

F As in (E) except phosphorylation of Rab8A by LRRK2 was assessed using a phospho-specific antibody. Similar results were obtained in two experiments each
undertaken in duplicate.

Source data are available online for this figure.
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mutations (Cys727Asp, Leu728Asp and Leu729Asp) that disrupt

Rab29-mediated activation of LRRK2 tested blocked phosphorylation

of LRRK2 at Ser910, Ser935, Ser955, and Ser973 (Fig 8A).

Rab29 knockout decreases endogenous LRRK2 activity and
biomarker site phosphorylation

We generated two independent Rab29 knockout A549 cell lines

employing a CRISPR/CAS9 approach (Fig 8B). Rab29 knockout mark-

edly inhibited LRRK2-mediated phosphorylation of endogenous Rab10

by around twofold, measured with two different phospho-Rab10

monoclonal antibodies (Fig 8B). Consistent with Rab29 controlling

biomarker phosphorylation sites, knockout of Rab29 moderately

reduced LRRK2 phosphorylation at Ser935 and Ser973 (Fig 8B). We

were unable to detect phosphorylation of endogenous LRRK2 at

Ser1292 in these cells with available antibodies possibly due to low

stoichiometry of phosphorylation of wild-type LRRK2 in these cells.

GTP binding to LRRK2 is required for Rab29-mediated activation
of LRRK2

To further study the role that LRRK2 GTP binding might play in

controlling Rab29-mediated activation and biomarker phosphoryla-

tion, we employed the well-characterized LRRK2 T1348N mutation

that blocks GTP binding (Ito et al, 2007; Taymans et al, 2011).

Introduction of the T1348N mutation into wild-type, R1441G,

Y1699C, and G2019S LRRK2 completely inhibited Ser1292 autophos-

phorylation, as well as Rab10 phosphorylation that was induced

following overexpression of Rab29 (Fig 9A). Consistent with a

previous report (Doggett et al, 2011), we also confirm that the

T1348N mutation ablates phosphorylation of LRRK2 at the

biomarker sites (Fig 9A). We also find that in endogenous homozy-

gous LRRK2[T1348N] knock-in MEFs, although the mutation

decreases LRRK2 expression, Rab10 phosphorylation and biomarker

site phosphorylation are clearly abolished (Fig 9B).

Hilfiker and colleagues have recently analyzed the localization

of a large set of LRRK2 mutant proteins and found that in about

20% of cells expressing certain mutant forms (but not wild type

or G2019S), LRRK2 appears to associate with microtubules;

microtubule association is enhanced upon LRRK2 inhibitor addi-

tion, a condition that is documented to enhance LRRK2 turnover

(Blanca Ramirez et al, 2017). Using low LRRK2 expression levels

and gentle release of cytosol with liquid nitrogen treatment, we

have never seen microtubule association for LRRK2 G2019S or

R1441G proteins. However, certain mutants appear to form what

appear to be non-specific aggregates, including T1348N (Fig 9C).

We believe these structures represent concentration-dependent

“aggresomes” that are microtubule-associated protein aggregates—

a finding that would be consistent with the previous microtubule

association seen by others. Consistent with the inability of Rab29

to activate LRRK2 T1348N, co-expression with Rab29 did not

increase the amount of membrane-associated LRRK2 T1348N, as

determined by cell fractionation (Fig 9D). Note that the centrifuga-

tion protocol employed may pellet some LRRK2 T1348N protein

aggregates that may also be present in the “membrane” fraction;

nevertheless, the amount present in the fraction (16% of total

LRRK2 protein) was unchanged upon Rab29 co-expression. Even

though this mutant forms aggresomes, the 84% of the molecules

that remain in the cytosol do not appear to be recruited to the

Golgi by Rab29 GTPase (Fig 9D).

Discussion

We have shown here that in addition to comprising an LRRK2

substrate, Rab29 operates as a master upstream regulator of LRRK2,

controlling Golgi localization, kinase activity, and potentially N-

terminal biomarker phosphorylation (Fig 10). We also demonstrate

that pathogenic mutations such as R1441G/C or Y1699C that

enhance GTP binding to the ROC domain are recruited to the Golgi

apparatus and activated more efficiently than wild-type LRRK2.

These observations are consistent with previous studies that have

suggested that LRRK2 and Rab29 operate as part of a common

signaling pathway (Dodson et al, 2012; MacLeod et al, 2013;

Pihlstrom et al, 2015; Zhang et al, 2015; Kuwahara et al, 2016). Our

work also reveals an intriguing interplay between Rab proteins and

the LRRK2 kinase that also possesses a Rab-like GTPase domain.

Our data are consistent with a model in which GTP binding to

▸Figure 7. Membrane association of ankyrin domain mutant LRRK2 proteins.

A Immunoblots of R1441G LRRK2 in membrane (top two rows) or cytosol (bottom two rows) fractions after 48-h expression in HEK293T cells. TfR (transferrin
receptor) and tubulin loading controls are included.

B Relative membrane association of the constructs analyzed in (A). Error bars represent SEM from duplicate samples of a representative experiment. **P = 0.001
using Student’s unpaired t-test. Differences between WT and single mutations in ankyrin domain were not significant.

C, D Membrane and cytosol fractionation of extracts from cells expressing G2019S LRRK2 or its derived ankyrin domain mutant forms, �Rab29 as in Fig 5.
E, F Quantitation of the relative membrane association of each construct, normalized for total LRRK2 expression. Error bars indicate SEM from duplicate

determinations. ns = not significant, P > 0.05; (E) **P = 0.003; (F) **P = 0.0086 by Student’s unpaired two-tailed t-test.
G Quantitation of the fraction of the indicated LRRK2 proteins that co-localize with Rab29. Co-localization was measured using Mander’s coefficient after automatic

thresholding in FIJI. Error bars represent SEM from two experiments (15 cells); ***P = 0.0002 by Student’s unpaired t-test. Scale bar, 2 lm.
H Light microscopy of HeLa cells transfected as in Fig 3 with LRRK2-R11441G or LRRK2-R1441G+L728D/L729D (red) and Rab29 (green). LRRK2-R1441G (red) co-

localization on distinct Rab29 (green)-positive puncta representing dispersed Golgi membranes requires ankyrin domain sequences. Scale bar, 2 lm.
I Quantitation of cells with compact Rab29 morphology; error bars represent SEM of three experiments with > 20 cells per experiment. **P = 0.0011 for R1441G

alone compared with Rab29 alone; **P = 0.0049 for R1441G-L728/L729D. Differences between R1441G-LRRK2-L728/729D + Rab29 and Rab29 alone were not
significant (P > 0.5).

J Quantitation of the relative stability of LRRK2 R1441G protein (blue) in comparison with its ankyrin domain mutated form (red) in HEK293T cells transfected with
LRRK2 R1441G or R1441G-LRRK2-L728/729D. After 24 h, cells were treated with 50 lg/ml cycloheximide for 0, 3, or 6 h. Error bars represent SEM from three
combined experiments carried out in duplicate.

Source data are available online for this figure.
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LRRK2’s ROC domain promotes Rab29 activation of LRRK2. Once

activated, LRRK2 kinase phosphorylates and influences the function

of a series of other downstream Rab proteins (Steger et al, 2016,

2017).

It was previously unclear how the LRRK2[R1441G/C] and LRRK2

[Y1699C] variants activated LRRK2, as these mutants possess similar

kinase activity as wild-type LRRK2 in in vitro experiments (Jaleel

et al, 2007; Nichols et al, 2010; Steger et al, 2016). However, in cells,
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the LRRK2[R1441G/C] and LRRK2[Y1699C] mutations are clearly

more active and phosphorylate Rab proteins to a greater extent that

the LRRK2[G2019S] variant (Ito et al, 2016; Steger et al, 2016).

Consistent with this, the average age of onset of Parkinson’s is report-

edly earlier with patients with R1441G/C mutations compared to

those carrying the G2019S mutation (Gonzalez-Fernandez et al, 2007;

Healy et al, 2008). Our data suggest that the LRRK2[R1441G/C] and

LRRK2[Y1699C] mutations are activated in vivo, due to their increased

ability to bind GTP, thereby promoting Rab29-mediated recruitment

and activation of LRRK2 on the Golgi apparatus. Consistent with this

model, introduction of the T1348N mutation that blocks GTP binding

prevents Rab29-mediated recruitment of LRRK2 to the Golgi, and

concomitant LRRK2 activation (Fig 9). In future work, it will be

important to better define the mechanism by which the R1441G/C

and Y1699C mutations promote GTP binding and how this influences

Rab29 binding and LRRK2 kinase activation.

A 3D model of the structure of dimeric, full-length LRRK2 has

been generated based on homology models, chemical cross-linking,

negative-stain EM, and small-angle X-ray scattering (Guaitoli et al,

2016). Interestingly, this model indicates that the ankyrin domain

lies in close proximity to the kinase domain (Guaitoli et al, 2016).

Such an arrangement could explain the potent activation of the

kinase upon Rab29 binding to the active site-adjacent ankyrin

domain. Higher resolution structural analysis and further mechanis-

tic studies are required to more precisely define how Rab29 binding

to the ankyrin domain is coupled to LRRK2 kinase activity. This

might also help design improved ankyrin mutants of LRRK2 that are

unable to bind to Rab29 that might not destabilize the protein to

better study the role that this biological interaction plays. Thus far,

we have not been able to reconstitute activation of LRRK2 by Rab29

in an in vitro system. These experiments have been hampered

by challenges in expressing fully active and mono-dispersed,

A B

250kDa

25kDa

25kDa

25kDa

25kDa

250kDa

250kDa

37kDa

Rab29
KO-1WT

Rab29
KO-2

MLi-2 - +- +- +- + - - +

Rab10-pT73 (108-10)

LRRK2-pS935

LRRK2-pS973

LRRK2-total

Rab29-total

Rab10-total

GAPDH

Rab10-pT73 (83-4)

+Rab29:
WT C727D L728D L729D

  -    -   +  +   -    -   +  +   -    -   +   +  -    -   +  +    

LRRK2:

LRRK2-pS1292 

LRRK2-total

Rab29 (HA)

tubulin

Rab29-pT71

LRRK2-pS973

LRRK2-pS935

LRRK2-pS910

LRRK2-pS955

Rab10-pT73 (108-10)
(endogenous) 

Rab10-total 
(endogenous)

250kDa

250kDa

250kDa

250kDa

250kDa

25kDa

25kDa

50kDa

250kDa

25kDa

25kDa

WT D
MSO

WT M
LI-2

Rab
29

-K
O cl

one 1
 D

MSO

Rab
29

-K
O cl

one 1
 M

LI-2

Rab
29

-K
O cl

one 2
 D

MSO

Rab
29

-K
O cl

one 2
 M

LI-2
0.0

0.5

1.0

1.5

pT
73

-R
ab

10
/to

tla
 R

ab
10

 
+/

-S
EM

***

***

***

*** ***

pT73-Rab10 108-10

pS935-LRRK2

WT D
MSO

WT M
LI-2

Rab
29

-K
O cl

one 1
 D

MSO

Rab
29

-K
O cl

one 1
 M

LI-2

Rab
29

-K
O cl

one 2
 D

MSO

Rab
29

-K
O cl

one 2
 M

LI-2
0.0

0.5

1.0

1.5

pS
93

5-
LR

R
K2

/to
ta

l L
R

R
K2

+/
-S

EM

*** *** ***

*
ns

pS973-LRRK2

WT D
MSO

WT M
LI-2

Rab
29

-K
O cl

one 1
 D

MSO

Rab
29

-K
O cl

one 1
 M

LI-2

Rab
29

-K
O cl

one 2
 D

MSO

Rab
29

-K
O cl

one 2
 M

LI-2
0.0

0.5

1.0

1.5

** ** **

ns

ns

pS
97

3-
LR

R
K2

/to
ta

l L
R

R
K2

+/
- S

EM

Figure 8. Endogenous Rab29 activates LRRK2 and is required for biomarker site phosphorylation.

A HEK293 cells were transfected with the indicated wild-type and ankyrin domain mutant forms of LRRK2 with either HA-empty vector (�) or HA-tagged Rab29 (+).
24 h post-transfection, cells were lysed and analyzed by immunoblotting with the indicated antibodies. WT is wild type. Similar results were obtained in two
experiments.

B Wild-type A549 cells and two independent clones of CRISPR/CAS9 Rab29 knockout (KO-1 and KO-2) were lysed and analyzed by immunoblotting with the indicated
antibodies. Two separate phospho-Rab10 rabbit monoclonal antibodies were employed (108–10 and 83–4). Blots were signals quantified by LiCor and presented as
average � SEM. Similar results were obtained in three experiments. There was a statistically significant difference between groups for pT73-Rab10/total Rab10 signal
(P < 0.0001, one-way ANOVA, F(5, 12) = 41.56). ***P < 0.001 by one-way ANOVA with Dunnett’s multiple comparison with mean difference 95% confidence intervals
of groups compared to WT DMSO control: WT MLI-2 0.6725–1.129; Rab29-KO CL1 DMSO 0.3348–0.7916; Rab29-KO CL1 MLI-2 0.6953–1.152; Rab29-KO CL2 DMSO
0.3103–0.7671; Rab29-KO CL2 MLI-2 0.6754–1.132. There was a significant difference between groups for pS935-LRRK2/total LRRK2 signal (P < 0.0001, one-way
ANOVA, F(5, 12) = 18.00). nsP > 0.05; *P < 0.05, ***P < 0.001 by one-way ANOVA with Dunnett’s multiple comparison test with mean difference 95% confidence
intervals of groups compared to WT DMSO control: WT MLI-2 0.5319–1.271; Rab29-KO CL1 DMSO �0.01298 to 0.7261; Rab29-KO CL1 MLI-2 0.5353–1.274; Rab29-KO
CL2 DMSO 0.01820–0.7573; Rab29-KO CL2 MLI-2 0.5235–1.263. There was a significant difference between groups for pS973-LRRK2/total LRRK2 signal as well
(P = 0.003, one-way ANOVA, F(5, 12) = 6.903). nsP > 0.05, **P < 0.01 by one-way ANOVA with Dunnett’s multiple comparison test with mean difference 95%
confidence intervals of groups compared to WT DMSO control: WT MLI-2 0.1955–1.300; Rab29-KO CL1 DMSO �0.1599 to 0.9449; Rab29-KO CL1 MLI-2 0.2619–1.367;
Rab29-KO CL2 DMSO �0.4202 to 0.6846; Rab29-KO CL2 MLI-2 0.2159–1.321.
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Figure 9. Knock-in mutation of the T1348N mutation that ablates GTP binding to LRRK2 abolishes Rab10 and biomarker phosphorylation.

A HEK293 cells were transfected with the indicated wild-type and mutant forms of LRRK2 with either HA-empty vector (�) or HA-tagged Rab29 (+). 24 h post-
transfection, cells were lysed and analyzed by immunoblotting with the indicated antibodies WT is wild type. Similar results were obtained in two experiments.

B Wild-type LRRK2, heterozygous LRRK2[T1348N/+], and homozygous LRRK2[T1348N/T1348N] knock-in MEFs derived from littermate embryos were lysed
immunoblotted with the indicated antibodies. Similar results were obtained in two experiments. WT is Wild type and TN corresponds to T1348N.

C HeLa cells were transfected with FLAG-T1348N-LRRK2. After 48 h, cells were permeabilized by liquid nitrogen freeze–thaw to deplete cytosol, then fixed, and stained
with rabbit anti-LRRK2 antibody. Nuclear DAPI stain (blue); LRRK2 (red). Scale bar, 10 lm. Dotted line represents cell outlines.

D HEK293T cells were transfected with FLAG-T1348N-LRRK2 and 24 h later with Myc-Rab29. After 24 h of Rab29 expression, cytosol and membrane fractions were
prepared. Immunoblot of membrane protein (50 lg) and cytosolic protein (40% of equivalent volume) � Rab29 as indicated. Numbers at left indicate mobility of
marker proteins in kDa; proteins were detected with rabbit anti-LRRK2, mouse anti-tubulin, and mouse anti-Myc antibodies.

Source data are available online for this figure.
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recombinant Rab29. It is also possible that membrane association of

Rab29 and/or other factors located on the Golgi are required for

Rab29-mediated LRRK2 activation.

The present study focused on Rab29 due to the previous genetic

links between Rab29, LRRK2, and Parkinson’s disease. However,

it is possible that other Rab proteins regulate LRRK2 localization

and activity in a similar manner by binding to the ankyrin domain.

Indeed, when a panel of 11 Rab proteins was tested, we observed

a moderate activation of wild-type LRRK2 by Rab12 (Fig EV2A)

and LRRK2[R1441G] by Rab8A and Rab38 (Fig EV2B). Recruit-

ment of LRRK2 to membranes by different Rab proteins could

comprise a general mechanism to activate LRRK2 at different loca-

tions within the cell. The Rab29-related proteins, Rab32 and

Rab38, are obvious candidates for potential interactors, as

reported in a recent study (Waschbusch et al, 2014) and indeed

Rab38 can modestly activate LRRK2[R1441G] (Fig EV2A). Consis-

tent with other Rab proteins potentially controlling LRRK2 activity,

we find that in A549 cells, knockout of Rab29 significantly reduces

but does not abolish LRRK2-mediated phosphorylation of Rab10

(Fig 8B). It is possible that remaining LRRK2 activity observed

under these conditions is controlled by other Rab proteins binding

to LRRK2.

Our data are consistent with previous work (MacLeod et al,

2013; Beilina et al, 2014), showing that recruitment of LRRK2 to

the Golgi by Rab29 significantly effects Golgi apparatus integrity

and induces its fragmentation in a manner that can be ameliorated

by treatment with LRRK2 inhibitors (Fig 3). We also find that

LRRK2 ankyrin domain mutants that are unable to interact with

Rab29 do not fully disperse the Golgi apparatus, emphasizing the

necessity of Rab29 recruitment and activation for Golgi disruption

(Fig 7). It will be important to determine what substrate(s) LRRK2

phosphorylates on the Golgi to trigger its disruption of the structure

and whether these are additional Rab proteins. It will also be inter-

esting to evaluate the consequences of LRRK2-mediated Golgi frag-

mentation in relation to Parkinson’s disease. Further work is also

needed to define the consequences of Rab29 phosphorylation by

LRRK2. Substituting the two LRRK2 phosphorylation sites with Glu

to mimic phosphorylation appears to suppress activation of LRRK2

[R1441G] (Fig 1B), potentially indicating that this could serve as a

mechanism to release activated LRRK2 from the Golgi once it

becomes activated. Release of Rab29-activated LRRK2 could explain

its co-localization on post-Golgi structures with Rab8 in the perinu-

clear region and Rab10 near the periphery, two compartments that

presumably lack Rab29 protein. In this regard, it is important to

note that loss of Rab29 decreased Rab10 phosphorylation

significantly, linking Rab29 activation with Rab10 substrate

phosphorylation.

There has been much interest in how the phosphorylation of the

N-terminal LRRK2 biomarker (Ser910, Ser935, Ser955 and Ser973)

sites are controlled. To our knowledge, every LRRK2 kinase inhi-

bitor tested (> 100 compounds) induces efficient dephosphorylation

of these biomarker sites in around 1–2 h, suggesting that LRRK2 is

somehow controlling the phosphorylation of these sites either

directly through autophosphorylation or indirectly via another

kinase or phosphatase (Dzamko et al, 2010; Doggett et al, 2011).

Our finding that all Rab29 binding-deficient ankyrin domain LRRK2

mutants we have tested are not phosphorylated at the biomarker

sites (Fig 8A), and that knockout of endogenous Rab29 in A549 cells

moderately reduced phosphorylation of these sites (Fig 8B), strongly

suggests that Rab29 recruitment to the Golgi is required for the

phosphorylation of the biomarker sites. This is further supported by

the finding that GTP binding-deficient LRRK2[T1348N] mutants that

cannot be activated by Rab29, are also not phosphorylated at the

biomarker sites (Fig 9A and B). This is also consistent with previous

studies showing that T1348N inhibited phosphorylation of Ser935,

Ser955, and Ser973 (Doggett et al, 2011). Overall, the data suggest

that highly active LRRK2 associated with the Rab29 at the Golgi

may become capable of autophosphorylation at the biomarker sites.

However, our data do not exclude the possibility that another Golgi-

resident, LRRK2-controlled kinase or phosphatase regulates phos-

phorylation of these sites. It will be vital to reconstitute activation of

LRRK2 by Rab29 in vitro and establish whether or not this is accom-

panied by ability of LRRK2 to autophosphorylate at the biomarker

sites.

In future work, it will also be important to study how Rab29

expression, localization, and nucleotide binding are controlled

in vivo and to explore further, whether overexpression or activation

of Rab29 is linked to Parkinson’s disease. It would also be important

to obtain more detailed structural information on how Rab29 binds

to LRRK2. This would enable the design of improved mutants that

disable binding of LRRK2 and Rab29 to better probe biological of

this interaction. It would also be interesting to investigate whether

Parkinson’s patients with PARK16 mutations display elevated

LRRK2 kinase activity and Rab10 phosphorylation. If this is the

case, it would suggest that patients with PARK16 locus mutations

might benefit from a future LRRK2 inhibitor therapeutic. Our data

also suggest that inhibitors targeting the LRRK2 ankyrin domain

Figure 10. Model of how Rab29 activates and recruits LRRK2 to the
trans-Golgi network greatly stimulating its kinase activity.

Our data suggest that Rab29 binds to the LRRK2 ankyrin domain and that GTP
binding to the ROC domain of LRRK2 promotes Rab29-mediated activation. This
explains why pathogenic LRRK2 R1441G/C and Y1699C mutants that promote
GTP binding are more readily recruited to the Golgi and activated by Rab29 than
wild-type LRRK2. Recruitment of LRRK2 to Rab29 at the Golgi also promotes
phosphorylation of a cluster of highly studied biomarker phosphorylation sites
(Ser910, Ser935, Ser955, and Ser973). More work is needed to define whether
these biomarker residues are phosphorylated by autophosphorylation or by a
Golgi-resident upstream kinase. Finally, our data suggest that LRRK2-mediated
phosphorylation of Rab29 might act as a negative feedback loop and prevent
Rab29 from activating LRRK2.
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would be expected to block Rab29 binding and inhibit activity of

LRRK2 in cells, thereby offering therapeutic potential for the treat-

ment of Parkinson’s disease.

Materials and Methods

Reagents

MLi-2 LRRK2 inhibitor (Scott et al, 2017) was synthesized as

described in Miller et al (2014). All recombinant proteins, DNA

constructs, and antibodies generated for the present study and

more detailed information on these can be requested via our

reagents website (https://mrcppureagents.dundee.ac.uk/). LRRK2

[R1441G] knock-in MEFs were kindly provided by Dr Shu-Leong

Ho (Division of Neurology, Department of Medicine, University of

Hong Kong, Hong Kong) and have been described previously (Ito

et al, 2016).

General methods

DNA constructs were amplified in Escherichia coli DH5a and puri-

fied using a Hi-Speed Plasmid Maxi Kit (Qiagen). DNA cloning

procedures were undertaken using standard protocols. DNA

sequence verification of the DNA constructs used in the present

study was performed by our Sequencing Service (http://www.dnase

q.co.uk).

Antibodies

Rabbit monoclonal antibodies for total LRRK2 (N-terminus)

(UDD3) and phospho-Ser935 LRRK2 (UDD2) were generated at the

University of Dundee. Mouse monoclonal antibody against total

LRRK2 (C-terminus) was from NeuroMab (clone N241A/34).

Rabbit monoclonal antibodies detecting phospho-Ser1292 LRRK2

[MJFR-19-7-8] (ab203181), phospho-Ser910 LRRK2 [UDD1 (15-3)]

(ab133449), phospho-Ser955 [MJF-R11 (75-1)] (ab169521), and

phospho-Ser973 LRRK2 [MJF-R12 (37-1)] (ab181364) were from

Abcam. Anti-Rab10 total antibody was from Cell Signaling Tech-

nology (#8127) and anti-HA High Affinity (clone 3F10) from

Roche. Sheep polyclonal antibody for phospho-Thr71 Rab29

(S877D) was purified at the University of Dundee and used at a

final concentration of 1 lg/ml in the presence of 10 lg/ml non-

phosphorylated peptide. Sheep polyclonal antibody detecting total

Rab29 was purified at the University of Dundee (S984D) which can

be requested via our reagents website (https://mrcppureagents.

dundee.ac.uk/).

Horseradish peroxidase-conjugated anti-mouse (#31450), anti-

rabbit (#31460), and anti-rat (#31470) were from Thermo Fisher

Scientific. Rabbit monoclonal antibody recognizing phospho-Thr72

Rab8A/8B and phospho-Thr73 Rab10 were custom-made by Abcam

in collaboration with the Michael J Fox Foundation and Abcam

(Burlingame, California) (Lis et al, 2017). The Phospho-Rab10 anti-

body was raised against two phospho-T73-Rab10 peptides C-Ahx-

AGQERFHT*ITTSYYR-amide (corresponds to residues 66–80 of

human Rab10 in which Thr73 marked as T* is phosphorylated) and

Ac-AGQERFHT*ITTSYYR-Ahx-C-amide (corresponds to residues

66–80 of human Rab10 in which Thr73 marked as T* is

phosphorylated). The phospho-Rab8 antibody was raised against

two phospho-T72-Rab8A/Rab8B peptides (C-Ahx-AGQERFRT*IT-

TAYYR-amide, corresponding to residues 65–79 and Ac-AGQERFR-

T*ITTAYYR-Ahx-C-amide corresponding to residues 65–79 of

human Rab8, *indicates the phosphorylated residue). For immu-

nization, the peptides were coupled to KLH via the Cys residue.

Plasmids

The following constructs were used: HA-empty vector (DU49303);

HA-Rab29 wt/T71E/S72E/T71A+S72A/T71E+S72E/M73S+R75S

(DU50222, DU50242, DU50243, DU52690, DU27422, DU52670,

DU27495, DU27918); 6His-SUMO-Rab8a (DU47363); Flag-tagged

LRRK2 wt full-length (DU6841), LRRK2 wt 970-end (DU26764),

LRRK2 D2017A full-length (DU10128), LRRK2 D2017A 970-end

(DU26689), LRRK2 R1441C full-length (DU13078), LRRK2 R1441G

full-length (DU13077), LRRK2 R1441G 970-end (DU26770), LRRK2

R1441G+D2017A full-length (DU52702), LRRK2 R1441H full-length

(DU13287), LRRK2 Y1699C full-length (DU13165), LRRK2 Y1699C

970-end (DU26763), LRRK2 Y1699C+D2017A full-length (DU52703),

LRRK2 R1728H full-length (DU17138), LRRK2 G2019S full-length

(DU10129), LRRK2 G2019S 970-end (DU19006), LRRK2

G2019S+D2017A full-length (DU52723), LRRK2 I2020T full-length

(DU13081), LRRK2 T2031S full-length (DU17135), LRRK2 G2385R

full-length (DU13083). LRRK2 C727D full-length (DU26942), LRRK2

L728D full-length (DU26916), LRRK2 L729D full-length (DU26929),

LRRK2 L728D L729D full-length (DU26925), LRRK2 L760D full-

length (DU27224), LRRK2 L761D full-length (DU27240), LRRK2

L762D full-length (DU27225), LRRK2 L789D full-length (DU27229),

LRRK2 L790D full-length (DU27226), LRRK2 L791D full-length

(DU27227), LRRK2 C727D R1441G full-length (DU27040), LRRK2

L728D R1441G full-length (DU27042), and LRRK2 L729D R1441G

full-length (DU27022). Rab29 KO N-terminal antisense guide and

Cas9 D10A (DU52630), Rab29 KO N-terminal sense guides

(DU52626). eGFP-LRRK2-G2019S was cloned into modified

pSLQ1371 with eGFP at the N-terminus. Rab29 was subcloned into

pcDNA3.1 with Myc-tag and modified pSLQ1371 with eGFP at the

N-terminus. All cDNA clones generated for the present study can be

requested via our reagents website (https://mrcppureagents.

dundee.ac.uk/).

Purification of Rab proteins

The coding sequence for human Rab8A (accession number:

NM_005370.4) was cloned into pET15b (DU47363), expressed in

E. coli BL21 and purified as described previously (Steger et al,

2016).

Cell culture, transfection, treatment, and lysis

HEK293, HeLa, A549, and mouse embryonic fibroblast cells were

cultured in Dulbecco’s modified Eagle’s medium containing 10%

fetal bovine serum, 2 mM Glutamine, and penicillin (100 U/ml)/

streptomycin (100 lg/ml). Media for HEK293Trex cells before

knock-in also contained 15 lg/ml Blasticidin and 50 lg/ml Zeocin.

Flp-In T-REx 293 cells knock-in for eGFP-LRRK2-R1441G were main-

tained in 15 lg/ml Blasticidin and 100 lg/ml Hygromycin B

(Thermo Scientific). LRRK2 expression was induced with 1 lg/ml
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Tetracycline for 24 h. HeLa cells were transfected with Fugene 6

(Promega), and HEK293T cells were transfected with Polyethylen-

imine HCl MAX 4000 (Polysciences, Inc.) as described previously

(Reed et al, 2006). Cells were lysed 24 h after transfection in an ice-

cold lysis buffer containing 50 mM Tris/HCl, pH 7.5, 1% (v/v)

Triton X-100, 1 mM EGTA, 1 mM sodium orthovanadate, 50 mM

NaF, 10 mM 2-glycerophosphate, 5 mM sodium pyrophosphate,

0.1 lg/ml mycrocystin-LR (Enzo Life Sciences), 270 mM sucrose,

and Complete EDTA-free protease inhibitor cocktail (Roche).

Lysates were centrifuged at 20,800 g for 15 min at 4°C, and super-

natants were quantified by Bradford assay (Thermo Scientific) and

subjected to immunoblot analysis. Treatment of cells with MLi-2

was for 60 min at a final concentration of 100 nM, unless otherwise

specified. All cell lines used in this study were tested for myco-

plasma contamination and confirmed as negative for experimental

analysis.

Generation of mouse embryonic fibroblasts

LRRK2[T1348N] knock-in mice were obtained from The Jackson

Laboratory and maintained on a C57BL/6J background (for further

information see http://jaxmice.jax.org/strain/021829.html). Litter-

mate-matched wild-type and homozygous LRRK2[T1348N] MEFs

were isolated from mouse embryos at day E12.5 resulting from

crosses between heterozygous LRRK2[T1348N/WT] mice as

described previously (Wiggin et al, 2002). Genotyping of mice and

MEFs was performed by PCR using genomic DNA isolated from ear

biopsies and KOD Hot Start DNA Polymerase. Primer 1 (50-ACAAT
CATGAGCTTCATTCGGTTGTAGGGT-30) and Primer 2 (50-ACATAT
GTGTATATAACACAACCAAGGCTGC-30) were used to detect the

wild-type and knock-in alleles. DNA sequencing was used to con-

firm the knock-in mutation and performed by DNA Sequencing &

Services (MRC–PPU; http://www.dnaseq.co.uk) using Applied

Biosystems Big-Dye version 3.1 chemistry on an Applied Biosystems

model 3730 automated capillary DNA sequencer. Wild-type,

heterozygous, and homozygous T1348N knock-in MEFs isolated

from the same littermate were selected for subsequent experiments.

Cells cultured in parallel at passage 6 were used for the

immunoblotting experiments presented in this paper.

LRRK2 immunoprecipitation kinase assays

FLAG-tagged LRRK2 wild-type and mutant variants of LRRK2 were

transiently overexpressed in HEK293 cells using Polyethylenimine

transfection (Reed et al, 2006), and 24 h post-transfection, cells

were lysed in lysis buffer as described above and LRRK2 immuno-

precipitated using anti-FLAG M2-agarose for 1 h (10 ll resin per

1 mg of cell extract). A control was also included where HEK293

cells were transfected with FLAG-empty vector. Immunoprecipi-

tates were then washed three times with lysis buffer supplemented

with 300 mM NaCl, and twice with 50 mM Tris/HCl (pH 7.5).

Kinase assays were set up in a total volume of 50 ll with immuno-

precipitated LRRK2 in 50 mM Tris/HCl (pH 7.5), 10 mM MgCl2,

and 1 mM ATP in the presence of 5 lg recombinant Rab8A.

Assays were carried out at 30°C for 45 min with shaking. Reac-

tions were terminated by adding LDS (lithium dodecyl sulfate)

loading buffer to the beads. The mixture was then incubated at

100°C for 10 min, and the eluent was collected by centrifugation

through a 0.22-lm-pore-size Spinex column and added with

2-Mercaptoethanol to 1% (v/v). Samples were incubated for 5 min

at 70°C before being subjected to SDS–PAGE and Western blotting.

For the peptide substrate phosphorylation assay, kinase reactions

were set up in a total volume of 50 ll with immunoprecipitated

LRRK2 in 50 mM Tris/HCl, pH 7.5, 0.1 mM EGTA, 10 mM MgCl2,

and 0.2 mM [c-32P]ATP (~300–500 c.p.m./pmol) in the presence

of 40 lM Nictide (RLGWWRFYTLRRARQGNTKQR). Reactions

were undertaken for 30 min at 30°C and terminated by applying

45 ll of the reaction mixture on to P81 phosphocellulose paper

and immersing in 50 mM phosphoric acid. After extensive wash-

ing, the radioactivity in the reaction products was quantified by

Cherenkov counting. LRRK2 was then eluted from the beads by

addition of LDS before being subjected to SDS–PAGE and Western

blotting.

Generation of CRISPR/Cas9 knockout of Rab29 in A549 and
HEK293Trex cells

To generate Rab29 knockout cells, a modified Cas9 nickase system

was used. Guides were chosen following careful transcript analysis

using both NCBI and Ensembl and that the guides themselves were

identified using the Sanger center’s CRISPR finder (http://www.sa

nger.ac.uk/htgt/wge/find_crisprs). Optimal sgRNA pairs were iden-

tified with a low combined off-targeting score ((Rab29 KO-sgRNA1:

GCACACTACCCAATGGAGAGC (DU52626); sgRNA2: GCTAGGTCC

TGTTTCCACCTC (DU52630). Complementary oligos with BbsI-

compatible overhangs were designed for each and the dsDNA guide

inserts ligated into BbsI-digested target vectors; the antisense

guides (sgRNA2) were cloned onto the spCas9 D10A-expressing

pX335 vector (Addgene plasmid no. 42335) and the sense guides

(sgRNA1) into the puromycin-selectable pBABED P U6 plasmid

(Dundee-modified version of the original Cell Biolabs pBABE

plasmid). A549 and HEK293Trex cells at ~80% confluency were

co-transfected in a six-well plate with DU52630 and DU52626 plas-

mids (for the Rab29 knockout) using for A549 cells Lipofectamine

LTX according to the manufacturer’s instructions, with the final

amount of 9 ll Lipofectamine LTX and 2.5 lg of DNA per well in

a 6 well plate, and Polyethylenimine HCl MAX 4000 (Polysciences,

Inc.) for HEK293Trex cells with 6 lg of Polyethylenimine, and

2.5 lg of DNA per well in a six-well plate followed by 24-h incu-

bation in DMEM supplemented with 10% FBS, 2 mM L-glutamine,

100 units/ml penicillin, and 100 mg/ml streptomycin. Medium

was then replaced with fresh medium supplemented with 2 lg/ml

of puromycin. After 24 h of puromycin selection, medium was

replaced again with fresh medium without puromycin and the

cells were left to recover for 48 h before performing single-cell

sorting.

Cell sorting was performed using Influx cell sorter (Becton Dickin-

son). Single cells were placed in individual wells of a 96-well plate

containing DMEM supplemented with 10% FBS, 2 mM L-glutamine,

100 units/ml penicillin, and 100 mg/ml streptomycin and 100 mg/

ml Normocin (InvivoGen). For HEK293Trex cells, the wells were

coated by gelatin and the media contained Blasticidin and Zeocin as

described above. After reaching ~80% confluency, individual clones

were transferred into six-well plates. After reaching ~80% conflu-

ency, the clones were screened for presence of Rab29 by

immunoblotting. A549 Rab29-KO were further confirmed by
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sequencing. For this purpose, genomic DNA was isolated using

GenEluteTM Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich).

PCR was performed using PfuUltra High-Fidelity DNA Polymerase

(Agilent Technologies) using 50-CAGGAGCGCTTCACCTCTATG and

50-GTCTCACTCACCCTCAACATCC primers to amplify the region

targeted for knockout. The PCR products were then cloned into pSC-

A-amp/kan vector using StrataClone PCR Cloning Kit (Agilent Tech-

nologies). For each cloning reaction, 20 positive bacterial colonies

were selected and amplified for plasmid DNA isolation using

QIAprep� Spin Miniprep Kit (Qiagen). The inserts in each individual

clone were then sequenced using M13 primers (DNA sequencing

facility of Division of Signal Transduction Therapy at the University

of Dundee) to confirm that there were no wild-type alleles of Rab29

gene present in the genome of selected clones.

Immunoblot determination of membrane-associated LRRK2

Cells were chilled on ice, washed with ice-cold PBS, and swelled

in hypotonic buffer (10 mM HEPES pH 7.4). After 15 min, 5×

buffer was added to achieve a final concentration of resuspension

buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 5 mM MgCl2,

0.5 mM DTT, 100 nM GDP, 1× protease inhibitor cocktail (Sigma)

and 2 mM sodium orthovanadate, 5 mM sodium fluoride, 5 mM

sodium pyrophosphate, 10 mM beta-glycerophosphate, 0.1 lg/ml

Microcystin-LR), and the suspension was passed 20 times through

25-G syringe. Nuclei were pelleted by centrifugation at 1,000 g for

5 min at 4°C. The post-nuclear supernatant was spun 100,000 g

for 20 min in a table top ultracentrifuge in TLA100.2 rotor; the

resulting supernatant was the cytosol fraction. Membrane pellets

were solubilized in 1% Triton X-100-containing 1× resuspension

buffer. Protein concentrations were estimated by Bradford assay

(Bio-Rad, Richmond, CA). Samples containing 50 lg of membrane

protein, or the equivalent volume of cytosolic protein, were heated

at 37°C for 10 min after addition of 5× SDS–PAGE sample buffer. For

experiments utilizing FLAG-LRRK2-G2019S, FLAG-LRRK2-R1441G,

and derivative mutants, expression was for 48 h and Myc-Rab29

expression was for 24 h. Samples were loaded in duplicate onto

TGX mini-PROTEAN 4–20% precast gradient gels (Bio-Rad) or

NuPAGE 3–8% precast gradient Tris-acetate gels (Invitrogen). Gels

were transferred onto nitrocellulose membrane using Trans-blot

turbo system, blocked in 5% milk in TBS-T. Antibodies used were

rabbit anti-LRRK2 UDD3 1:1,000 (MRC PPU University of Dundee),

mouse anti-Myc (Cell signaling, 1:1,000), chicken anti-GFP (Aves,

1:1,000), mouse anti-GFP (Neuromab, 1:1,000), Mouse anti-tubulin

DM1A (Sigma, 1:1,000), rabbit anti-phosphoserine 1292 (Abcam,

1:500), mouse anti-LAMP2 (DSHB 1:1,000), and mouse anti-Trans-

ferrin receptor (BD Bioscience, 1:1,000). Primary antibody

incubations were overnight in blocking buffer. Secondary donkey

anti-Rabbit 800 and donkey anti-mouse 680 antibodies (Licor,

1:10,000) were incubated for 1 h, imaged using an Odyssey

Infrared scanner (Licor), and quantified using ImageJ software.

Light microscopy

HeLa cells were plated on collagen coated coverslips, transfected

with indicated plasmids using Fugene 6 (Promega). After 48 h for

LRRK2 and 24 h for Rab expression, cells were cytosol depleted by

liquid nitrogen freeze-thaw (Seaman, 2004). Briefly, cells were

chilled on ice, washed twice with cold PBS, and incubated in gluta-

mate buffer (25 mM KCl, 25 mM HEPES pH 7.4, 25 mM magnesium

acetate, 5 mM EGTA, 150 mM potassium glutamate). Excess buffer

was removed by blotting with a tissue; the coverslip was then

dipped in liquid nitrogen for 5 s and allowed to thaw for few

seconds. Coverslips were then gently washed with glutamate buffer

and rehydrated for 5 min in cold PBS. Cells were then fixed (cold

3% PFA for 20 min on ice), permeabilized with 0.1% Trixon X-100,

and blocked with 2% BSA in PBS. Antibodies were diluted as

follows: anti-LRRK2 UDD3 antibody (1:1,000, MRC PPU University

of Dundee), mouse anti-GFP (Neuromab, 1:1,000), and mouse anti-

Myc (9E10 Hybridoma culture supernatant—undiluted). Secondary

antibodies (Thermo Scientific) were goat anti-rabbit Alexa 568

(1:2,000), goat anti-mouse Alexa 488 (1:1,000), goat anti-mouse

Alexa 555 (1:2,000), and goat anti-rabbit Alexa 488 (1:2,000).

Images were acquired using a laser scanning confocal microscope

(Leica SP8) fitted with a 63× 1.4NA objective and acousto-optical

beam splitter with hybrid detector, or a spinning disk confocal

microscope (Yokogawa) with an electron multiplying charge-

coupled device (EMCCD) camera (Andor, UK) and a 100× 1.4NA oil

immersion objective. Images were analyzed using Fiji (https://fiji.

sc/). Co-localization was quantified using JACoP, a Fiji plugin, and

Mander’s coefficients were calculated using an automatic threshold.

MEF-R1441G or WT cells were fixed (3% PFA, RT, 15 min), perme-

abilized using Triton X-100 (0.1%), blocked with 2% BSA, and

stained with rabbit anti-GCC185 (1:1,000), (Cheung et al, 2015) and

goat anti-rabbit Alexa 488 (1:1,000) antibody. Nuclei were stained

using 0.1 lg/ml DAPI (Sigma).

Statistics

Graphs were made using Graphpad Prism 5 software. Error bars

indicate SEM. Student’s t-test was used to test significance.

Two-tailed P-values < 0.05 were considered statistically significant.

Figures EV2, 6E and 8B were analyzed using one-way ANOVA with

Dunnett’s multiple comparison test to test significance.

Data availability

All primary data are available to anyone requesting this. We confirm

that this study does not contain protein, DNA, RNA sequence, macro-

molecular structure, crystallographic, functional genomic, or

proteomic data that are subject to the “EMBO Data Deposition policy”.

Expanded View for this article is available online.
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