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Serial transfer can aid the evolution of
autocatalytic sets
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Abstract

Background: The concept of an autocatalytic set of molecules has been posited theoretically and demonstrated
empirically with catalytic RNA molecules. For this concept to have significance in a realistic origins-of-life scenario, it
will be important to demonstrate the evolvability of such sets. Here, we employ a Gillespie algorithm to improve
and expand on previous simulations of an empirical system of self-assembling RNA fragments that has the ability to
spontaneously form autocatalytic networks. We specifically examine the role of serial transfer as a plausible means
to allow time-dependent changes in set composition, and compare the results to equilibrium, or “batch” scenarios.

Results: We show that the simulation model produces results that are in close agreement with the original
experimental observations in terms of generating varying autocatalytic (sub)sets over time. Furthermore, the model
results indicate that in a “batch” scenario the equilibrium distribution is largely determined by competition for
resources and stochastic fluctuations. However, with serial transfer the system is prevented from reaching such an
equilibrium state, and the dynamics are mostly determined by differences in reaction rates. This is a consistent
pattern that can be repeated, or made stronger or weaker by varying the reaction rates or the duration of the
transfer steps. Increasing the number of molecules in the simulation actually strengthens the potential for selection.

Conclusions: These simulations provide a more realistic emulation of wet lab conditions using self-assembling
catalytic RNAs that form interaction networks. In doing so, they highlight the potential evolutionary advantage to
a prebiotic scenario that involves cyclic dehydration/rehydration events. We posit that such cyclicity is a plausible
means to promote evolution in primordial autocatalytic sets, which could later lead to the establishment of
individual-based biology.
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Background
Autocatalytic sets
An autocatalytic set is a collection of molecular species in
which the network as a whole forms a functionally closed
and self-sustaining system [1]. This network-based per-
spective, as opposed to an individual-based one, is becom-
ing recognized as a plausible early stage in the emergence
of life. In the past decade, this idea has been explored for-
mally, by casting it into graph and probability theory [2,3]
and examining its underlying chemical dynamics [4,5], by
generalizing it to other systems [4,6], and by exploring the
features of minimal sets that fit its definition [7]. In fact

the relevance of autocatalytic sets to a wide variety of phe-
nomena is now becoming apparent [8].
Only very recently though, has progress in the labora-

tory in creating actual such sets with informational
molecules [7-13] enabled a powerful convergence of
empirical and theoretical approaches to their study.
These works were inspired by earlier studies with short
nucleic acid oligomers [14]. RNA, through specific
nucleotide-pairing interactions that allow certain se-
quences to recognize each other and discriminate among
similar sequences, has the ability to spontaneously form
complex networks. Moreover, if these RNAs are catalytic
in that they can augment the rate of synthesis of other
RNAs, an autocatalytic network can be set up [10]. Pre-
vious numerical simulations of such networks have
emulated well the interaction events observed in the la-
boratory, and furthermore confirm that cooperativity in
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such networks can lend RNA with a competitive advan-
tage over selfish systems that are less able or unable to
form autocatalytic sets [15]. Yet the creation of true
autocatalytic sets in the laboratory is still a challenging
process, making it therefore essential to have more real-
istic and accurate computer models to make progress in
this field.
Our work before has exploited the fact that the Azoar-

cus ribozyme, which is roughly 200 nucleotides (nt), can
be broken into up to four shorter oligonucleotide frag-
ments (termed W, X, Y, and Z) and that these fragments
can spontaneously reassemble into covalent versions of
the ribozyme. The chemistry employed for this is trans-
esterification, which effectively means that RNA frag-
ments can be catalytically recombined into new, larger
RNAs. The assembly can happen from four pieces:

W þ X þ Y þ Z→W•X•Y•Z ð1Þ
but one can also set up the reaction to occur from vari-
ous combinations of only two pieces:

W þ XYZ→W•XYZ ð2Þ
WX þ YZ→WX•YZ ð3Þ
orWXY þ Z→WXY•Z ð4Þ

In any of these cases, the dot (•) represents a covalent
bond and the reactions are catalyzed either by non-
covalent assemblages of ribozymes that form through
base-paring and 3˚ interactions or by partially or fully
covalent versions of the ribozyme through autocatalytic
feedback. Importantly, the specificity of these reactions
is guided through specific nucleotide triplet-triplet inter-
actions (see “The RNA system”, below). These triplets
can be altered in a way that rather complicated networks
of RNAs can be created in which covalent assembly re-
quires spontaneous cooperation between other sets of
RNAs and the compositions of these networks can be
observed to change in real time [10]. We have previously
modeled some aspects of this system and found that
many of its parts can be parameterized and that in gen-
eral there is good correspondence between expected and
observed behavior, particularly in regard to RNA-RNA
cooperation dynamics [15].
An immediate requirement of both empirical and

simulation studies of RNA autocatalytic sets is that they
be able to accommodate evolutionary principles. These
sets must be able to change their composite species fre-
quencies over time and respond to selection pressures if
they are to be relevant models of historical events on the
prebiotic Earth. In principle, autocatalytic sets can evolve
by expanding (including more members), contracting
(expelling some members), and/or by changing the iden-
tities and relative concentrations of their composite

members. Note that these evolutionary events are non-
Darwinian in the traditional sense because the relative
fitnesses of individual genotypes is not the underlying
driving force for persistence. Nevertheless the frequency
changes of network members – compositional changes –
with time, should they be based on selectable forces,
would represent a primitive sort of evolutionary change
that has closer ties to chemistry rather than biology.
These sorts of evolutionary processes are difficult to

envisage in a static, or “batch”, environment once the
system reaches equilibrium. Thus there is a need to ex-
plore realistic models of environmental change that per-
mit network evolution. A serial drying and rehydration
of an aqueous environment is a commonly invoked fea-
ture of the prebiotic Earth [16-18] and one in which
many types of prebiotic chemistry – including those as-
sociated with nucleic-acid synthesis – actually become
facilitated. Here, we explore the efficacy of a common la-
boratory mimic of one potential consequence of dehy-
dration/rehydration cycles, namely serial dilution, to
promote the evolution of autocatalytic sets. We do this
by expanding and improving the match between a previ-
ous model [15] and the chemical details of an RNA
autocatalytic set [10], and simultaneously investigate the
effects of serially transferring a fraction of one mixture
of RNA molecules into a naïve environment containing
new food-stock for RNA synthesis.

The RNA system
We based our simulations on an RNA system in which
composite RNA oligonucleotides, ranging in size from ~40–
150 nt, can spontaneously self-assemble into a recom-
binase ribozyme [19]. These are fragments of the
Azoarcus self-splicing group I intron [20], which when
fully assembled through contiguous covalent bonds, is
roughly 200 nt in length. This ribozyme can catalyze
further covalent synthesis of other such ribozymes,
creating an autocatalytic feedback loop [21]. The initi-
ation of this catalytic cycle is made possible by the non-
covalent association of RNA fragments (here, “food”
molecules) into loose coalitions that possess a small
amount of activity towards recombining other frag-
ments into covalently joined molecules [19].
Information transfer in this chemical system is medi-

ated by a 3-nt base-pairing interaction between the in-
ternal guide sequence (IGS) located on the 5´ end of the
ribozyme, and corresponding pseudo-complementary
3-nt “tag” sequences located on the 3´ ends of each
RNA fragment. In other words, catalysts (either the
loose coalitions or the covalently contiguous forms of
the ribozyme), can see and discriminate among other
RNAs on the basis of this 3-nt interaction. To a first ap-
proximation, an IGS triplet that does not make strong
Watson-Crick base pairs with a tag will not promote
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assembly using the RNA that contains that tag. Thus, in-
teractions can be described as either “cooperative” (if an
IGS base pairs with tags on other molecules with differ-
ent IGS sequences) or “selfish” (if an IGS only base pairs
with tags on molecules with the same IGS sequence).
With this discriminatory situation, various sorts of inter-
action networks can be established [10]. To examine
what sorts of ribozymes might emerge from a simulated
pre-biotic scenario, we previously mixed fragments of
these RNAs in which the middle nucleotide of the IGS
(symbolized here as M) and that of the tags (symbolized
here as N) were randomized. We were able to observe
the synthesis of various frequencies of covalently con-
tiguous full-length (200 nt) ribozymes over time in both
batch (i.e., one-pot) scenarios and serial transfer scenar-
ios in which 10% of the RNA solution was transferred to
a new tube every hour [10]. For the batch scenario, the
establishment of equilibrium after a few hours of reac-
tion time revealed that cooperativity could in some cases
produce higher concentrations of full-length ribozymes
than selfishness, and this was corroborated and ex-
plained using ODE and stochastic simulation models
[10,15]. However the serial transfer case was not ana-
lyzed, and the full stochastic nature of the system re-
quires enhancements to the model. Here we explore
both of these aspects.

Experimental
The model
We have constructed a formal model of the experimen-
tal RNA system and used the Gillespie algorithm to
simulate its dynamical behavior. An earlier, but simpler,
model was described previously [15]. Here we include
more chemical realism in the model and perform a more
detailed analysis. To fully specify the model, we first
need to define the molecular species, the possible chem-
ical reactions, which molecules catalyze which reactions,
and the corresponding reaction rates. Then the simula-
tion algorithm is described in detail.

Molecules
There are three main groups of molecule types. First,
there are the RNA fragments (first group). These consti-
tute the “food set” in the context of autocatalytic sets.
Second, these RNA fragments associate spontaneously
into non-covalent ribozymes (second group). And third,
the non-covalent ribozymes are transformed (through
catalyzed reactions) into the corresponding covalent
ribozymes (third group).
For the purposes of the model, in the first group of

molecule types (the RNA fragments), we ignore the spe-
cific junction at which the RNA fragments are covalently
recombined, and only consider the particular combin-
ation of nucleotides in the IGS and tag sequences of the

resulting (non-covalent) ribozyme to be important. Since
the RNA fragments are oriented (left to right, or 5´ to 3´),
we assume there is a “left” (l) fragment and a “right” (r)
fragment that associate, each of which can have any of the
four possible nucleotides in the IGS/tag sequence. Conse-
quently, there are four possible “left” fragments and four
possible “right” fragments, i.e., eight RNA fragments con-
stituting the first group of molecule types (the food set).
We label these lM and rN, M,N∈{A,C,G,U}.
Given an association of such a “left” fragment and a

“right” fragment, there can be 16 possible resulting non-
covalent ribozymes (second group of molecule types), la-
beled IMN, M,N∈{A,C,G,U}, depending on the relevant
nucleotides M and N that are combined.
Finally, there are the 16 corresponding covalent ribo-

zymes (third group of molecule types), labeled EMN, M,
N∈{A,C,G,U}. Thus, in total there are 8 (first group) + 16
(second group) + 16 (third group) = 40 molecule types in
the model.

Reactions
There are two main groups of reactions. First, there are
the (spontaneous) association reactions transforming
two RNA fragments into a non-covalent ribozyme: lM +
rN→ IMN. There are 16 such reactions (one for each of
the 16 possible non-covalent ribozymes). We also in-
clude the reverse (dissociation) reactions in the model.
Second, there are the catalyzed recombination reac-

tions that convert a non-covalent ribozyme into a cova-
lent one: IMN→ EMN. There are 16 such reactions (one
for each of the 16 possible ribozymes), and they can be
catalyzed by either a non-covalent or a covalent ribo-
zyme (see below). We also include the reverse reactions
in the model. Thus, in total there are 16 + 16 = 32
(bi-directional) reactions in the model.

Catalysis
The ribozymes (both non-covalent and covalent) catalyze
each others’ transformation from non-covalent to cova-
lent. In particular, if a ribozyme EMN (or IMN) has a nu-
cleotide M in its guide sequence that is the base-pair
complement of the variable nucleotide N' in the tag
sequence of another ribozyme IM'N', then the first ribo-
zyme EMN (IMN) can catalyze the non-covalent to covalent
transformation of the second ribozyme IM'N'. So, each
ribozyme catalyzes the transformation reaction of four
other ribozymes (or possibly of three others and that of it-
self ). There is a difference in rates depending on whether
the catalyst is a non-covalent (IMN) or covalent (EMN)
ribozyme (see below).
The RNA fragment association reactions (forming non-

covalent ribozymes) are spontaneous. In the formal
autocatalytic sets framework, spontaneous (non-catalyzed)
reactions can by definition never be part of an autocatalytic
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set. This is because, usually, spontaneous reactions happen
at significantly lower rates than catalyzed ones, often too
low to be relevant. However, in the RNA system the spon-
taneous RNA-RNA association reactions actually happen
at very high rates because these aggregations are driven by
favorable base-paring and tertiary interactions, which are
numerous in the Azoarcus ribozyme [22]. In the formal
framework, we can incorporate such spontaneous but
high-rate reactions by assuming that they are actually cata-
lyzed by a (fictional) “generic catalyst” which is also part of
the food set. Here, this assumption is made implicitly, but
not explicitly included in the model.

Rates
Relative rates for the transformation reactions were ob-
tained experimentally by steady-state kinetic analyses of
representative matching and non-matching (i.e., Watson-
Crick) IGS-tag relationships in RNA fragments [10,21].
These rates were then re-scaled to make one time unit in
the simulation correspond roughly to one hour in the real
experiments. In these experiments, at the end of each
transfer step (one hour), close to 20% of the solution has
been transformed into covalent ribozymes [10]. Using this
as a target, the experimentally obtained rates were then
rescaled (while maintaining their relative ratios) such that
after one time unit in the simulation also close to 20% of
the solution consists of covalent (EMN) ribozymes.
The transformation reaction rates depend on the par-

ticular base-pair combination of the relevant nucleotide in
the IGS of the catalyst and that of the tag sequence in the
reactant. The following (re-scaled) rates were obtained for
the four possible Watson-Crick base-pair combinations
(ordered from high to low rates):

AU: 0.00613, CG: 0.00541, UA: 0.00517, and GC: 0.00445.

For example, the transformation reaction ICU→ ECU
catalyzed by the covalent ribozyme EAG has a rate of
0.00613 (catalyst/reactant base-pair combination AU).
The rates of non-covalent ribozyme catalyzed trans-

formation reactions are set to half the rates of the corre-
sponding covalent ribozyme catalyzed reactions, as
observed in the laboratory experiments [10]. The rates
of the spontaneous association reactions in the simula-
tion model are set to 0.00006 (same rate for each of the
16 possible association reactions). Finally, the rates for
all reverse reactions were set to 1/10th the rate of their
corresponding forward reactions.

Simulation
To simulate the dynamics of the above chemical reaction
system, we used the Gillespie algorithm [23,24] assuming
a closed reaction vessel (with volume 1). Starting with an
initial amount of 2000 of each of the 8 food molecule

types (i.e., a total amount of 16,000 molecules), the algo-
rithm is run for a given number of time units t. We per-
formed two types of simulations: (i) with and (ii) without
transfer steps.
In a simulation without transfer steps, the Gillespie

algorithm is simply run for the given number of time
units. In a simulation with transfer steps, at the end of
each time unit first the solution is diluted to 10%. Rather
than simply reducing the concentration of each molecule
type to 10%, this dilution is done by randomly drawing
molecules (without replacement) from the solution with
probabilities according to their relative current concen-
trations, until 10% of the total concentration is reached.
Next, from this diluted solution a random sample (with
replacement) of 75 molecules is taken from among the
16 EMN types. Each EMN type that occurs twice or more
in this random sample is reported. Finally, the diluted
solution is replenished with the 8 food molecule types
(in equal concentrations) until the initial total concen-
tration of 16,000 is reached again. These transfer steps
are then repeated for the given number of time units.
This provides a detailed simulation of the original la-
boratory serial transfer experiments [10], which can be
repeated an arbitrary number of times.
As a consequence of computational limitations, the

total amount of molecules used (16,000) is relatively
small, and clearly does not compare to the micromolar
concentrations in the real experiments. However, to get
an idea of how the system’s behavior scales with larger
numbers of molecules, we also performed a number of
runs of the same simulation but with two orders of mag-
nitude more food molecules (starting with 200,000 mole-
cules of each food type, or a total of 1.6E6 molecules,
and appropriately adjusting the time units to maintain a
close to 20% conversion to EMN ribozymes after one
time unit). Even though this is still a small number com-
pared to the laboratory experiments, we argue that in an
origin-of-life context the actual concentrations were
most likely significantly lower than micromolar, giving
more relevance to the results presented here.

Results and discussion
We first ran the simulation model without transfer steps
for t = 8 time units. Figure 1 shows the concentrations of
the 16 covalent ribozymes EMN over time for one such
run. By the end of the run, the system seems to have
reached an equilibrium state. Given an initial concentra-
tion of 2000 for each of the food molecule types (RNA
fragments), each EMN type can potentially reach a total
concentration of 500. However, due to the stochastic na-
ture of the Gillespie algorithm (as in real chemistry), the
RNA fragments will not associate into the intermediate
non-covalent ribozymes in exactly equal amounts. There
is competition among the different EMN molecules for
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the same resources, and the relative concentrations in
the equilibrium state are thus largely a result of stochas-
tic fluctuations in the production of the different non-
covalent ribozymes. For example, in one typical run of
the simulation, the total concentrations of IMN + EMN

molecules for the 16 different types at the end of the run
(eight time units) vary from 390 to 431, a difference of
41, or around 10%.
Furthermore, due to the reverse reactions [25], reflected

in the wiggly lines in Figure 1, the equilibrium state is a
dynamic one. Covalent ribozymes can be transformed

back into non-covalent ones, which can dissociate again
into RNA fragments (at a rate of 1/10th of the correspond-
ing forward reactions). As a consequence, the potential
concentration of 500 is not reached and, moreover, the
relative concentrations still change over time, even in the
equilibrium state. Indeed, ordering the 16 EMN molecule
types according to their final concentrations (at t = 8) gives
a different (and seemingly random) order in different
simulation runs.
Next, we ran the simulation model with transfer steps,

also for t = 8 time units (as in the original chemical
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Figure 1 The concentrations of the covalent ribozymes EMN over time in a typical run of the simulation model (starting with 16,000
food molecules) without transfer steps, for a total of t = 8 time units.
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Figure 2 The concentrations of the covalent ribozymes EMN over time in a typical run of the simulation model (starting with 16,000
food molecules) with transfer steps, for a total of t = 8 time units.
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experiments). Figure 2 shows the concentrations of the
16 covalent ribozymes EMN over time for one such run.
The effect of the transfer steps can clearly be seen. At
the end of each time unit, the concentrations are
roughly around 100 (i.e., 20% of the potential 500),
which are diluted to about 10 during the transfer step.
These concentrations then quickly start increasing again
due to the resupply of food molecules at the end of each
transfer step.
These simulation results seem to reproduce the experi-

mental results quite well. For example, Figure 3 shows the
results of taking a sample of size 75 from among the EMN

molecules (after the dilution to 10%) at different time
steps. These graphs are indeed very similar to the experi-
mental ones (Figure four in ref [10]). Also, they confirm
the previous model prediction [15] that a different se-
quence of networks is observed each time the experiment/
simulation is repeated, due to the stochastic nature of the
system.
The transfer steps clearly prevent the system from

reaching an equilibrium state. It turns out that this has an
important impact on the relative concentrations of the co-
valent ribozymes. Whereas these relative concentrations
in the equilibrium state are largely a consequence of com-
petition for resources (as explained above), on short time
scales, when there are still abundant food molecules avail-
able, they are largely determined by differences in the
reaction rates.
This distinction is shown in Table 1. The first column

shows the average concentrations of the covalent ribo-
zymes (starting with 16,000 food molecules and averaged
over 50 simulation runs) after one time unit (t = 1), and
ordered from highest to lowest. The second column
shows the same but after eight time units (t = 8; no
transfer steps performed). Clearly, after only one time
unit, the covalent ribozymes that have the highest rate

of production (the E*U molecules with rate 0.00613) also
have the highest concentrations on average (first four
molecule types in the first column). Furthermore, the
ribozymes with the lowest rate of production (the E*C
molecules with rate 0.00445) have the lowest average
concentration (last four molecule types in the first
column). The other two molecule types (E*A and E*G),
which have similar rates in between (0.00517 and
0.00541, respectively), are mixed and between the E*U
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Figure 3 The varying autocatalytic (sub)sets as observed during one particular simulation run at the end of transfer steps number 1
(a), 3 (b), and 8 (c). The sizes of the circles indicate the relative frequencies of the different EMN molecules in the sample of size 75 taken after
each dilution. Empty circles indicate genotypes that do not occur at least twice in the sample, as in the original experiment [10]. Arrows indicate
the catalytic relationships, but the frequency changes depicted in Table 1 are the result of network dynamics, not merely single
inter-genotype interactions.

Table 1 Short-term vs long-term dynamics

16,000 food molecules 1,600,000 food molecules

t = 1 t = 8 t = 1 t = 8

UU 101.1 CA 365.0 CU 9899 CG 36200

AU 100.8 AG 364.8 UU 9888 UA 36160

CU 99.0 GU 363.4 GU 9875 AU 36145

GU 98.5 GG 363.3 AU 9873 GU 36139

AG 96.3 UU 362.1 AG 9290 GG 36121

CA 94.3 AC 361.4 GG 9276 CU 36116

UG 92.5 AA 360.3 UG 9272 UG 36112

GA 91.8 GC 360.2 CG 9268 AA 36094

GG 91.5 CG 360.1 CA 9054 AC 36092

AA 90.3 UG 359.8 AA 9043 GA 36083

UA 90.1 CC 359.6 GA 9022 CA 36082

CG 90.0 AU 359.6 UA 9017 UC 36072

AC 83.9 UC 359.2 GC 8305 AG 36069

GC 83.7 UA 358.7 CC 8302 CC 36059

CC 82.5 GA 358.6 UC 8300 GC 36054

UC 81.6 CU 357.1 AC 8257 UU 36053

The average number of molecules of the 16 covalent ribozymes after one time
unit (t=1) and eight time units (t=8) without transfer steps, ordered from high
to low. The left half of the table is for simulations starting with 16,000 food
molecules (2,000 of each type), averaged over 50 runs. The right half of the
table is for simulations starting with 1,600,000 food molecules (200,000 of
each type), averaged over 20 runs.
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and E*C molecules. This pattern is the same on any set
of 50 runs over which the averages are calculated (al-
though the order of the four E*U molecule types within
the top four might be different, and similarly for the
order of the four E*C molecule types within the bottom
four).
However, after eight time units the situation is very

different, as already observed earlier. There is no clear
pattern in the ordering (second column) and, in fact, the
ordering is completely different (and seemingly random)
over different sets of 50 runs. Furthermore, the variance
in the average concentrations is much lower. After one
time unit, the difference between the highest and lowest
concentrations is 101.1 – 81.6 = 19.5 (which is 19.3% of
the highest concentration). However, after eight time
units, this difference is 365.0 – 357.1 = 7.9 (which is only
2.2% of the highest concentration). So, not only in abso-
lute value, but also in relative value the variance in con-
centrations is much higher after only one time unit than
after eight time units.
This pattern of the relative concentrations being largely

determined by the differences in reaction rates is still
clearly visible after two time units (no transfer steps) as
well, although with a lower variance in concentrations
(9.84, or 4.6% of the highest concentration). However, after
four time units (no transfer steps), the pattern has already
disappeared, and the ordering is more or less random and
the variance very low, just as after eight time units. This
pattern can be made even stronger by making the reaction
rates even more different. For example, increasing the rate
of production of E*U molecules and decreasing the rate of
production of E*C molecules, the ordered pattern can per-
sist even up to three or four time units (no transfer steps).
Obviously if the production rates of all EMN molecules are
equal, than the ordering is always random, even already
after one time unit.
Now, measuring the relative concentrations of the co-

valent ribozymes at the end of the simulation run over
eight time units and with transfer steps, again averaged
over 50 runs, shows the same ordered pattern as the first
row of Table 1. As mentioned, the transfer steps prevent
the system from reaching the (random) equilibrium state
and, as a consequence, the relative concentrations are still
largely determined by the differences in reaction rates, not
by competition for resources. This pattern is the same, no
matter how many transfer steps are performed, as long as
the duration of the transfer steps is relatively short (on the
order of one or two time units). Note that the concentra-
tions at the end of any one particular transfer step do not
necessarily reflect this ordered pattern (cf. Figure 3). How-
ever, on average (over a larger number of transfer steps),
this pattern is clear and consistent.
To see whether this phenomenon is not an artifact of

the relatively small number of molecules used in the

simulations, we repeated the analysis with a starting
concentration of 1,600,000 food molecules (200,000 of
each type), and averaging over 20 runs. The results are
shown in the third (t = 1) and fourth (t = 8) columns of
Table 1. Clearly, the effect is even stronger in this case,
even though the averages are over a smaller number of
runs (20 instead of 50, due to higher computational re-
quirements). Now also the two “intermediate” ribozyme
types (E*A and E*G) are well separated after one time
unit. So, we can expect that with even larger concentra-
tions, the effect on selection is even stronger.

Conclusions
We have improved and expanded our previous model
[15] of an autocatalytic set that is observed in a self-
assembling RNA system that is a plausible mimic of the
origins of information transfer. Our main observation is
that serial transfer has the effect of preventing the
molecular system from reaching chemical equilibrium,
thereby augmenting the power of slight differences
among rate constants to promote selection. While a
batch system can generate different frequencies of its
final products, in the context of network dynamics, the
evolutionary potential of such a scenario is highly
limited. With serial transfer, we can observe changes in
network composition over time (Figure 3) that are
dependent and driven by relatively small intrinsic varia-
tions in 3-nt base-pairing interactions, whose free ener-
gies can differ by less than 1 kcal/mole in the active site
of catalytic RNAs such as the ones under study [26].
Our results were obtained even when the composition
of the food-stock was kept constant in each transfer;
true environmental systems would not be so regular
and the effects of serial transfer on selection should be
similarly augmented. This phenomenon should be ap-
plicable to a wide range of autocatalytic set realizations
including protein networks [11], nucleic-acid networks
[9,10], and lipid networks such as the composomes
envisioned in the GARD model of Lancet and co-
workers [27]. We posit that a pre-biotic scenario of
dehydration/rehydration would be permissive for the
evolution of autocatalytic networks and thus should be
explored further.
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