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Abstract

Introduction

Cognition is impaired in homeless and vulnerably housed persons. Within this heteroge-

neous and multimorbid group, distinct profiles of cognitive dysfunction are evident. How-

ever, little is known about the underlying neurobiological substrates. Imaging structural

covariance networks provides a novel investigative strategy to characterizing relationships

between brain structure and function within these different cognitive subgroups.

Method

Participants were 208 homeless and vulnerably housed persons. Cluster analysis was used

to group individuals on the basis of similarities in cognitive functioning in the areas of atten-

tion, memory, and executive functioning. The principles of graph theory were applied to con-

struct two brain networks for each cognitive group, using measures of cortical thickness and

gyrification. Global and regional network properties were compared across networks for

each of the three cognitive clusters.

Results

Three cognitive groups were defined by: higher cognitive functioning across domains (Clus-

ter 1); lower cognitive functioning with a decision-making strength (Cluster 3); and an inter-

mediate group with a relative executive functioning weakness (Cluster 2). Between-group

differences were observed for cortical thickness, but not gyrification networks. The lower

functioning cognitive group exhibited higher segregation and reduced integration, higher

centrality in select nodes, and less spatially compact modules compared with the two other

groups.
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Conclusions

The cortical thickness network differences of Cluster 3 suggest that major disruptions in

structural connectivity underlie cognitive dysfunction in a subgroup of people who have a

high multimorbid illness burden and who are vulnerably housed or homeless. The origins,

and possible plasticity of these structure-function relationships identified with network analy-

sis warrant further study.

Introduction

Excessive multimorbidity is a prominent feature of marginalized populations worldwide,

including persons who are homeless or vulnerably housed [1]. Common co-occurring illnesses

include psychosis, polysubstance use, HIV infection, and traumatic brain injury [2–4], which

may reflect a set of genetic, environmental, and developmental vulnerabilities that predispose

individuals to significant cognitive dysfunction. Previous studies in marginalized populations

have shown substantial cognitive heterogeneity and impairment across domains [5–7] and this

was linked with regional alterations in cortical thickness and gyrification [8], and to variation

in white matter microstructure [9]. However, due to the scope of illness burden among mar-

ginalized persons, there are likely to be more widespread alterations to structural brain integ-

rity, which warrants further exploration. Given that multimorbidity is an emergent global

health issue [10], there is impetus for extending our knowledge of structure-function relation-

ships by characterizing distinct neural and cognitive phenotypes that reflect the consequences

of multiple co-occurring psychiatric and physical illnesses, as opposed to those associated with

single diagnostic categories.

To better understand the neurobiological underpinnings of cognitive profiles in marginal-

ized persons, brain network science using a graph theoretical approach provides an opportu-

nity to move beyond traditional reductionist frameworks that focus on localized structure-

function associations and consider cognition as an emergent property of distributed, interac-

tive regions embedded within a complex system. Specifically, structural covariance networks

enable us to examine how inter-individual differences in one anatomical region are correlated

with inter-individual differences in another region. These patterns of brain covariation are

presumed to reflect a product of coordinated anatomical development, maturation, or plastic-

ity driven by both genetic and environmental factors and can be used to infer underlying

structural connectivity and topological organization of the brain [11].

Few studies have explicitly linked structural brain networks with cognition. Diffusion ten-

sor tractography studies in healthy adults have found that higher network efficiency and better

integration of information are associated with higher overall intelligence [12,13]. Others have

reported an association between network properties and intelligence only for adults aged 75

years and older [14]. In one of the most robust studies to date, Seidlitz and colleagues [15]

used a novel structural covariance technique to construct brain networks that incorporated

multiple indices of grey and white matter and found that network measures accounted for

40% of the overall variance in intelligence. Converging results from functional brain network

analyses using resting state fMRI have reported a relationship between better integration and

efficiency of brain networks and higher intelligence [16], while task-activated fMRI found a

positive association between network efficiency and working memory only for younger

healthy adults, with a negative association in older adults [17].
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The current study used a structural covariance approach to examine brain network topolo-

gies underlying distinct cognitive profiles in a large cohort of marginalized persons recruited

from a socially and economically impoverished community located in Vancouver, Canada. A

network-based approach to evaluating patterns of cognitive functioning provides a meaningful

way of understanding the neuroanatomical markers of dysfunction that more closely aligns

with an integrated systems-based perspective of cognitive processing [18]. This study repre-

sents an important extension of our previous work that examined groups subtyped by cogni-

tive strengths and weakness in the domains of premorbid intellectual functioning, attention,

verbal memory, and executive functioning, and their association with regional variations in

cortical architecture [6,8]. Three groups were described by profiles of higher functioning over-

all (Cluster 1), lower functioning overall with a relative strength in decision-making (Cluster

3), and a group that fell intermediate to the others but exhibited a prominent weakness in exec-

utive functioning (Cluster 2). These groups have also been previously well validated on the

basis of clinical variables, expressing differential patterns of multimorbidity burden, including

substance dependence, viral infection, and psychotic illness [6,8]. The clustering strategy

therefore provides a complementary approach to using diagnostic categories by enabling us to

capture co-variation in cognitive functioning that maximizes within-group similarities and

between-group differences and, as a function of this, also captures distinct illness profiles that

may be contributing to cognitive dysfunction.

This study aimed to describe and compare the network topology between distinct cognitive

groups using surface-based measures of cortical thickness and gyrification. A secondary aim

was to describe the modular composition within the network of each cognitive group. It was

hypothesized that the structural networks of Clusters 2 and 3 would be characterized by poorer

network efficiency and integration compared to Cluster 1 (highest functioning group). Fur-

ther, it was anticipated that Cluster 1 would exhibit greater modularity and more spatially

compact modules compared to the lower functioning Clusters 2 and 3.

Materials and methods

Participants

Data was used from the Hotel Study [3,4], an ongoing observational study of homeless and

marginally housed persons living within an impoverished neighbourhood of Vancouver, Can-

ada. Three hundred and seventy one (N = 371) participants were enrolled between November

2008 and November 2014. Participants were recruited from single-room occupancy (SRO)

hotels (n = 306) and the community courthouse (n = 65) located within this neighbourhood.

Enrollment eligibility included being 18 years of age or older, fluent in English, and providing

written informed consent. Additionally, participants were required to be dwelling in one of

four identified SRO hotels in the target neighbourhood or have had contact with the commu-

nity court anytime within the previous six months. The sociodemographic and clinical charac-

teristics of our sample are comparable to other studies of homeless and marginally housed

persons in major urban centers across Canada [19,20]. The morbidities of our sample and

their respective rates are also consistent with those reported in other developed nations [2].

There are no evident differences in health status or health care needs between those who are

homeless and those who are vulnerably housed [19,21].

Written informed consent was obtained from all individual participants included in the

study. To ensure participants had the capacity to provide full informed consent, they needed

to be able to communicate fluently in English and indicate that they understood the nature

and purpose of the study, the limits to confidentiality, and their right to withdraw at any time

without consequence. They were provided with a minimum of 24 hours to consider the study
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information prior to being eligible for enrolment. If concerns emerged about capacity, a study

psychiatrist was available for consultation (FVR, WGH). Consent was reaffirmed at each fol-

low-up visit. Participants were provided with small cash honoraria for completion of each

assessment. This study received ethics approvals from the Clinical Research Ethics Board of

the University of British Columbia and the Simon Fraser University Office of Research Ethics.

Cognitive and clinical assessments

A battery of cognitive tests was administered to participants by trained research assistants

under the supervision of a registered psychologist (AET). The Wechsler Test of Adult Reading

(WTAR) [22] was used to estimate premorbid full scale IQ (FSIQ). Verbal learning and mem-

ory was measured using the Hopkins Verbal Learning Test–Revised (HVLT-R) [23] total

immediate recall score. The Cambridge Neuropsychological Test Automated Battery [24] was

used to measure sustained attention (Rapid Visual Information Processing subtest [RVIP], A

prime [A’] score) and mental flexibility (Intra-Dimensional Extra-Dimensional subtest

[IDED], total adjusted errors score). The Stroop color-word subtest score was used to index

cognitive inhibition. Finally, affective decision-making in the context of reward was measured

using the Iowa Gambling Task total net score [25]. Examiners rated the validity of each cogni-

tive test result on a scale from 1 (clearly invalid) to 5 (clearly valid). Data for tests rated as 3

(questionably valid) or lower were excluded from analyses. Reasons for invalid data may

include participant intoxication, extreme fatigue, equipment malfunctions, or poor compli-

ance with testing. English language fluency was assessed using the English Language Accultur-

ation Questionnaire. Total scores range from 12 (very fluent in English) to 60 (not at all fluent

in English), and those with a score of 24 (much fluent in English) or lower were included in

analyses. These details of the cognitive assessment protocol have been previously published

[6,8,9].

Clinical assessments were conducted at study entry by research psychiatrists. Diagnoses for

psychiatric illness and substance dependence were made according to the Diagnostic and Sta-

tistical Manual of Mental Disorders 4th edition [26] criteria and achieved by consensus using

the Mini-International Neuropsychiatric Interview [27], the Best Estimate Clinical Evaluation

and Diagnosis [28], and a mental status exam. The Charlson Comorbidity Index was used to

measure co-occurring physical illnesses using the Charlson weighting scheme with one point

added for every decade of life after 40 years [29]. A medical questionnaire was used to ascertain

self-reported history of a traumatic brain injury. Blood tests were used to assess viral serology,

where seropositivity indicated active infection for HIV and viral exposure for hepatitis C.

Structured interviews with trained research assistants were conducted to collect demographic

data.

Neuroimaging acquisition and processing

Whole brain structural magnetic resonance imaging (MRI) scans were obtained at the time of,

or proximal to, cognitive testing (99% within one month). Images were acquired on a 3.0T

Phillips Achieva scanner with an 8-channel SENSE head coil. A 3D Fast Field Echo

T1-weighted structural sequence was obtained in the sagittal plane with 190 1-mm thick slices

(TR/TE = 7.6/3.5 ms; acquisition matrix = 256 X 250; field of view = 256 mm; flip angle = 8˚;

total acquisition time = 7:23 min).

FreeSurfer v5.1.0 (available at: https://surfer.nmr.mgh.harvard.edu/) was used to recon-

struct the cortical surface using the standard processing stream. At each vertex of the recon-

structed surface, the local gyrification index (lGI) was calculated as the ratio of the surface area

within the sulci to the surface area that is exposed [30] and cortical thickness (CT) was
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calculated as the distance in millimetres between the pial surface and the gray-white matter

boundary [31]. Visual inspections of the pial and white matter surfaces were conducted by

trained raters (DJL, WS) and manual corrections were applied as required. This is the same

procedure previously used with this data set [8]. Automatic cortical parcellation was based on

sulcal and gyral divisions using the Destrieux atlas [32], yielding a total of 148 regions of inter-

est (ROIs; 74 for each hemisphere). A standard Gaussian surface smoothing filter (10mm) was

applied for cortical thickness ascertainment [33]. The lGI and CT values at each vertex were

averaged separately to yield either a lGI or CT measure for each atlas-defined ROI.

Cognitive cluster construction

A cluster analysis was used to group participants on the basis of common profiles of cognitive

functioning. To summarize, a subsample of 299 participants had valid cognitive data and were

missing no more than one test on the following set of variables: premorbid FSIQ, HVLT-R

immediate recall, RVIP A’, Stroop color-word, IDED total adjusted errors, and IGT total net

score. The IDED variable was log transformed due to a significant positive skew and multiplied

by -1 to align it with interpretation of other cognitive measures. Next, cognitive scores were

regressed on age and education, and the residual scores were submitted to a k-means cluster

analysis specifying three groups. Groups were compared on demographic and clinical sample

characteristics using ANOVAs (analysis of variance) and Kruskal-Wallis tests (non-paramet-

ric) for continuous variables and chi-square tests for categorical variables. This cluster analysis

and group comparisons were previously performed on this subsample of 299 participants and

were reported in detail elsewhere [8].

Brain network construction

A subsample of 208 participants had available imaging data that were free from visible motion

artifact for inclusion in the network analysis. This subsample remains nearly identical to our

previous analyses limited to regional cortical measurements (n = 211) [8]. As a sensitivity anal-

ysis, participants who were included versus excluded from the network analysis were com-

pared on demographic variables (age, sex, education, ethnicity, and estimated premorbid

FSIQ) using t-tests and chi-square tests. Reasons for exclusion were not having completed a

cognitive assessment or MRI scan; having more than one invalid or missing cognitive test;

and/or poor scan quality (e.g., motion artifact, significant lesions resulting in segmentation

failure.)

The procedure described below was used to independently construct gyrification- and cor-

tical thickness-based brain networks using the Graph-Theoretical Analysis Toolbox imple-

mented in MatLab [34]. As a first step, linear regression analysis was performed on each of the

148 ROIs to remove variance associated with age, sex, age by sex interaction, and either total

gyrification or total cortical thickness. The regression residuals were then used to create a 148

X 148 Pearson correlation matrix for each of the three cognitive clusters. This approach has

been recommended over using partial correlations when the sample size for a group is smaller

than the number of ROIs [35]. Binarized adjacency matrices, which reflect unweighted and

undirected graphs, were computed by setting all significant positive correlations (p< .05) to 1

and non-significant or negative correlations to 0. The diagonals of the matrices (correlation of

a region with itself) were also set to 0. Only positive correlations were included because they

are considered to more closely represent underlying fibre pathways, whereas negative correla-

tions may reflect indirect connections and therefore have different biological meaning [36]. To

control for noisy or spurious associations between regions, adjacency matrices were thre-

sholded by density (the proportion of non-zero elements to all possible connections), which

Cognitive profiles and brain networks in marginalized adults
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facilitates comparison of networks between groups. For cortical thickness networks, a mini-

mum density of .07 (7%) was determined as the lowest value that rendered a fully connected

(i.e., not fragmented) graph within each of the three groups, and increased by an interval of .39

to a maximum density of .46 (46%). For gyrification networks, the minimum density was .06

(6%), increasing by an interval of .38 to a maximum density of .44 (44%). Densities above 50%

in structural networks approach a random configuration and are not considered to be biologi-

cally meaningful [37].

Brain network properties

Binarized matrices were used to compute global and regional metrics for description and com-

parison of the network topologies across the three cognitive clusters. While there are many

global metrics that can be computed to describe topological network properties, indices of seg-

regation, integration, and small-worldness are of key interest [38–40]. It is prudent to seek

convergence across metrics that measure similar network properties, thus we opted to examine

two or more metrics, where appropriate, along each topological dimension. The following

metrics that are described were computed with the GAT application in MatLab based on for-

mulas provided by Rubinov and Sporns [40].

With respect to indices of network segregation, the clustering coefficient is one of the most

common metrics used, and is defined as the average of the number of existing connections

between the neighbors of a node divided by all possible connections. It is often considered to

be a measure of network “cliquishness”, with higher values reflecting greater localized covari-

ance. A related measure is transitivity, which is a normalized variant of the clustering coeffi-

cient and is less influenced by nodes with low degree. Transitivity is defined as the likelihood

that two nodes are connected if they each have a connection to a common third node. Further,

local efficiency was measured as the inverse of the shortest number of edges (i.e., correlations

between regions) among neighbors of a given node. Higher local efficiency suggests better

fault tolerance because it indexes how well a network transmits information following elimina-

tion of a given node.

Two complementary indices of network integration were also examined. First, we com-

puted the characteristic path length, the most commonly reported measure of integration,

defined as the average smallest number of edges required to connect two nodes. Shorter path

length reflects stronger overall routing efficiency and is generally considered optimal because

it minimizes conduction delays, susceptibility to noise, and energy requirements. We also cal-

culated global efficiency, which is the inverse of the harmonic mean of the shortest path length

between each node. Thus, a lower value for global efficiency is suggestive of weaker connectiv-

ity and poorer integration of information across modules.

Small-world architecture is taken to be a universal feature of complex networks and has

been observed across a wide range of biological and non-biological systems [41]. Small-world-
ness is defined as the ratio of the normalized clustering coefficient to the normalized path

length, where normalized values were derived by dividing a given coefficient by the same coef-

ficient generated from 20 null networks (i.e., random graphs with the same number of nodes,

edges, and degree distribution). As a simple rule-of-thumb, values greater than 1 were consid-

ered consistent with a small-world topology and can be interpreted as a measure of cost-effi-

ciency whereby there is an ideal balance between local specialization and global integration.

On the other hand, regional metrics are also of interest because global measures lack speci-

ficity and may not have sufficient power to detect effects that are present at just a few nodes

within the overall network. One important regional analysis includes the identification of hubs

within the networks. Hubs represent nodes of relatively greater importance within a network

Cognitive profiles and brain networks in marginalized adults
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because they have a high degree of connections with other nodes and therefore represent

mediators of major information flow. Indices of centrality can be calculated to determine how

influential a given node is within the network and therefore whether it is defined as a hub. A

common measure of centrality is node betweeness, which is the fraction of all shortest paths

that pass through a given node. A node was considered a hub if its node betweeness was at

least two standard deviations higher than the mean network betweeness.

Modularity of each network was also evaluated. Modularity is an index of segregation and

represents the division of nodes into non-overlapping subsets called modules or communities,

whereby the nodes within modules are more highly connected with each other than with

nodes outside the module. We used the Louvain algorithm, an agglomerative method, to detect

the optimal number of modules within the network [42]. The maximum Q-value was used to

determine modularity, which is calculated as the number of intramodule connections com-

pared to the intermodule connections that would be expected by chance in a random network

with the same number of modules. We describe the module membership for each network at

minimum density by examining the nodes that comprise each module and how the relative

compositions may differ. The minimum density was selected because it reflects the most con-

servative network composition (e.g., retains only the strongest positive correlations needed to

construct a fully connected graph, thereby minimizing inclusion of spurious correlations) for

descriptive purposes. BrainNet Viewer [43] was used to visualize the networks for each cogni-

tive cluster, with nodes plotted by module membership and degree.

Brain network comparisons

To compare differences in the network properties constructed within each cognitive cluster,

we used the analytic tools provided in the GAT application. One particular challenge in com-

paring network coefficients is that they are computed at a range of densities and there is no

good rationale for choosing one particular density value over another. Moreover, if one were

to statistically test differences in coefficients at each density, this would introduce the problem

of multiple comparisons and potentially complicate data interpretation with divergence of

results across density values. To overcome these challenges, we analyzed network differences

in global topological measures by integrating data for a given coefficient across the full range

of densities using a commonly implemented approach called Functional Data Analysis [44,45].

FDA is similar to an Area Under the Curve analysis whereby the coefficients plotted across the

range of densities create a curve that is represented by a function, and the area between the

curves for each group can be statistically compared using a non-parametric permutation test.

Permutations were conducted by randomly reassigning each of the 148 brain regions (i.e.,

residuals for cortical thickness or gyrification) to one of three new groups, while preserving

the original sample sizes for each group, and this was repeated 1000 times. For each permuta-

tion, binary adjacency matrices were generated and thresholded across the aforementioned

range of densities and network coefficients were calculated at each density. The FDA curve

functions were generated and the difference between the curves for all possible comparisons

(Clusters: 1 vs. 2; 1 vs. 3; 2 vs. 3) was computed and used to construct null distributions. FDA

values derived from the current network analysis were compared against the corresponding

null distribution, generating p-values based on percentile position. The same FDA approach

was conducted for comparing groups on regional network measures (one for each of the 148

ROIs), but given the large number of comparisons, an additional False Discovery Rate correc-

tion (p< .05) was applied. Hubs were identified as nodes whose FDA-based node degree or

node betweeness was two or more standard deviations above the mean FDA-based node

degree or betweeness.

Cognitive profiles and brain networks in marginalized adults
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Results

Cognitive cluster analysis

The three cognitive groups generated from the cluster analysis of 299 participants were recon-

structed with the reduced sample (n = 208) included in the brain network analysis and

depicted in Fig 1. Cluster 1 (n = 61) was the smallest group, but demonstrated relatively higher

cognitive functioning relative to the other groups. Cluster 2 (n = 80) fell closest to the sample

mean across many domains, but exhibited a prominent weakness in executive functions. Clus-

ter 3 (n = 67) demonstrated overall poorer functioning relative to the others, with the excep-

tion of a relative strength in decision-making. To provide a benchmark for level of clinical

impairment, the groups were plotted by mean T-scores corrected for age (and education

where available for a given test) based on the normative databases for each test (see Fig 2).

Sample characteristics of each cluster are outlined and compared in Table 1.

Fig 1. Neurocognitive profiles. Clusters plotted by mean neurocognitive score in standard z-score units based on

sample mean and standard deviation. Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0218201.g001

Fig 2. Demographic-adjusted neurocognitive profiles. Clusters plotted by mean neurocognitive score in T-score

units corrected for age and/or education using normative test databases. Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0218201.g002
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Cortical thickness network analysis

Participants who were included (n = 208) versus excluded (n = 142) from the network analysis

only differed on mean estimated premorbid FSIQ (Included: M = 98.2, SD = 8.6; Excluded:

M = 95.1, SD = 8.7). When the cognitive groups were compared on global network measures,

Cluster 3 consistently differed from Clusters 1 and 2. Regarding measures of network segrega-

tion, Cluster 3 demonstrated a significantly higher clustering coefficient and transitivity com-

pared to Clusters 1 and 2, whereas significantly higher local efficiency and modularity were

observed only when compared to Cluster 2. For measures of integration, Cluster 3 exhibited a

significantly longer characteristic path length and lower global efficiency compared to Clusters

1 and 2. No significant group differences were observed for small-worldness, and all networks

were considered to have small world architecture. No differences were observed between Clus-

ters 1 and 2 on any global network measure. Results of network comparisons are summarized

in Table 2. Mean network coefficients plotted as a function of density for each subgroup are

provided in Fig 3.

Table 1. Neurocognitive cluster characteristics.

Cluster 1

(n = 61)

Cluster 2

(n = 80)

Cluster 3

(n = 67)

Cluster

Comparisons

Age years, M (SD) 43.5 (9.4) 42.9 (9.7) 41.4 (9.8) ns

Education years, M (SD) 10.9 (2.3) 10.2 (2.5) 10.1 (1.9) ns

Monthly income (CAD), M (SD) 845.8 (475.7) 858.7 (454.0) 830.0 (322.6) ns

Duration on DTES (years), M (SD) 6.7 (5.2) 8.0 (7.1) 8.9 (7.3) ns

Male sex, % (n) 91.8 (56) 68.8 (55) 86.6 (58) C2 < C1, C3���

Ethnicity, % (n)

White 80.3 (49) 61.3 (49) 47.8 (32) C1 > C2, C3���

Indigenous 13.1 (8) 27.5 (22) 38.8 (26) C1 < C2, C3��

Other 6.6 (4) 11.3 (9) 13.4 (9) ns

Psychotic Disorder, % (n)

Schizophrenia spectrum 6.6 (4) 21.3 (17) 20.9 (14) C1 < C2, C3�

Substance induced 9.8 (6) 12.5 (10) 20.9 (14) ns

Other psychosis 18.0 (11) 8.8 (7) 14.9 (10) ns

Charlson Comorbidity Index, M (SD) 3.2 (2.8) 3.2 (3.0) 3.4 (3.1) ns

Substance Dependence, % (n)

Alcohol 14.8 (9) 12.5 (10) 22.4 (15) ns

Cannabis 34.4 (21) 37.5 (30) 37.3 (25) ns

Stimulant 85.2 (52) 88.8 (71) 79.1 (53) ns

Opioid 41.0 (25) 48.8 (39) 31.3 (21) ns

Viral infectiona

HIV 8.3 (5) 13.8 (11) 20.9 (14) ns

Hepatitis C (antibody positive) 73.3 (44) 63.8 (51) 65.2 (43) ns

Self-reported TBI, % (n) 72.1 (44) 61.3 (49) 58.2 (39) ns

Note. ns = not significant; CAD = Canadian Dollars; DTES = Downtown Eastside; TBI = traumatic brain injury. Other psychosis = Psychosis not otherwise specified,

Major Depressive Disorder with psychosis, or Bipolar Disorder with psychosis.
an = 60 in Cluster 1.

�p< .05

��p< .01

���p< .005

https://doi.org/10.1371/journal.pone.0218201.t001
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Comparison of regional network measures revealed higher node betweeness for select

regions in Cluster 3 when compared to Clusters 1 and 2 (see Table 3). No differences were

observed for node degree or when comparing Cluster 1 versus 2 at the FDR-corrected level.

Hubs identified for each network on the basis of node betweeness are listed in Table 4. Cluster

1 was characterized by four hubs distributed across the right hemisphere in occipital, temporal,

and frontal regions. Cluster 2 also showed four hubs but these were located exclusively within

the frontal region, bilaterally. In contrast, Cluster 3 had nearly twice as many hubs (i.e., seven)

located primarily within occipital and temporal regions of the left and right hemispheres.

Five modules were identified for each network at the minimum density. The relative distri-

bution of nodes across the modules, along with relative node degree, are visualized in Fig 4.

Upon closer inspection, Module 1 was mostly characterized by nodes located within the limbic

lobe. This module was very sparsely populated in Cluster 3, with only two nodes. The majority

of the limbic lobe nodes that were interconnected in Clusters 1 and 2 were instead assigned to

a frontal module in Cluster 3. Module 2 was predominately composed of occipito-temporal

nodes in all three networks, with evidence of additional connectivity extending to the insula

region in Cluster 1. Module 3 was comprised of nodes largely located in the occipital lobe

within each network, but there appeared to be a few distributed connections to frontal and

temporal regions for Cluster 2 and Cluster 3. Module 4 was represented by nodes that were

more widely distributed across parietal and lateral frontal regions, but again this module was

sparsely populated in Cluster 3 compared to the other groups. Lastly, Module 5 was character-

ized as predominately frontal with some connectivity to insula and limbic regions, and this

module was more densely populated in Cluster 3 compared to the other groups.

Gyrification network analysis

Across the three cognitive groups, no differences were found between any global or regional

network measures of gyrification. For descriptive purposes, mean network coefficients are

summarized in Table 5 and plotted as a function of density for each group in Fig 5. All net-

works demonstrated small world architecture. A relatively equal number of hubs based on

node betweeness were identified for each group, which is outlined in Table 6. Similar to the

cortical thickness networks, five modules were identified at the minimum density for each

cluster. The distribution of nodes across the modules and relative node degree is depicted in

Fig 6. Visual comparison of these figures suggests that the nodular composition of each

Table 2. Cortical thickness network comparisons of topological measures.

Cluster 1 Cluster 2 Cluster 3 Significant FDA Comparisons (p-value)

Mean Global Coefficients

Clustering coefficient 0.443 0.427 0.494 C3>C1 (.039); C3>C2 (.003)

Transitivity 0.450 0.429 0.507 C3>C1 (.039); C3>C2 (.003)

Local efficiency 0.696 0.687 0.723 C3>C2 (.001)

Modularity 0.322 0.291 0.359 C3>C2 (.029)

Characteristic path length 1.882 1.866 1.945 C3>C1 (.019); C3>C2 (.004)

Global efficiency 0.608 0.610 0.600 C3<C1 (.033); C3<C2 (.003)

Small-world 1.835 1.801 1.798 —

Mean Regional Coefficients

Node betweeness 131.495 129.108 140.900 C3>C1 (.019); C3>C2 (.004)

N = 208. Coefficients for each cluster represent the mean network value averaged across densities. FDA = Functional Data Analysis; C1 = Cluster 1; C2 = Cluster 2;

C3 = Cluster 3.

https://doi.org/10.1371/journal.pone.0218201.t002
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module is relatively similar across networks. Module 1 consisted of nodes located predomi-

nately within midline structures spanning from occipital to parietal and frontal regions. Mod-

ules 2 and 4 were comprised of fronto-temporal nodes, but exclusively within the left and right

Fig 3. Functional data analysis curves for cortical thickness networks. Mean cortical thickness network coefficients for neurocognitive clusters plotted as a function of

density. Cluster comparisons and p-values are derived from results of the Functional Data Analysis. Sigma = small-world.

https://doi.org/10.1371/journal.pone.0218201.g003

Table 3. Cortical thickness network nodes with altered betweeness.

Nodes Significant Comparisons (p-value)

LH central sulcus C3 > C1 (.049); C3 > C2 (.037)

LH lingual gyrus C3 > C1 (.049)

LH inferior temporal gyrus C3 > C2 (.037)

LH posterior segment of the lateral sulcus C3 > C2 (.037)

RH inferior frontal sulcus C3 > C2 (.037)

RH medial orbital sulcus C3 > C1 (.049)

Note. FDR-corrected p-values. LH = left hemisphere; RH = right hemisphere.

https://doi.org/10.1371/journal.pone.0218201.t003
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hemispheres, respectively. Module 3 was predominately occipital and parietal nodes but with

some extension to the limbic region. Lastly, Module 5 was considered to be predominately

frontal.

Discussion

We identified three distinct profiles of cognitive functioning that were associated with under-

lying differences in cortical brain network topology in a large sample of homeless and vulnera-

bly housed adults with significant multimorbidity. Using structural covariance network

analyses of complementary cortical parameters, we found significant between-group differ-

ences in network coefficients for cortical thickness. Specifically, we found that Cluster 3 (the

lowest cognitive functioning group) was significantly higher on measures of segregation (clus-

tering coefficient, transitivity, local efficiency, modularity) and demonstrated reduced network

integration (longer characteristic path length, lower global efficiency) compared to the other

groups for the cortical thickness networks. All networks demonstrated a small-world architec-

ture. Regionally, Cluster 3 exhibited higher node betweeness and had a greater number of

hubs overall compared to Clusters 1 and 2. No differences were observed between Clusters 1

and 2 in any comparison. At minimum density, five modules were identified for each cortical

Table 4. Cortical thickness network hubs defined by node betweeness.

Cluster 1 Cluster 2 Cluster 3

RH calcarine sulcus RH inferior frontal sulcus LH inferior temporal sulcus

RH circular sulcus of the

insula

RH vertical ramus of the lateral sulcus LH posterior segment of the lateral

sulcus

RH medial orbital sulcus RH H-shaped orbital sulcus LH circular sulcus of the insula

RH suborbital sulcus LH transverse frontopolar sulcus and

gyrus

LH superior temporal sulcus

RH posterior dorsal cingulate gyrus

RH circular sulcus of the insula

RH anterior transverse collateral sulci

Note. Hubs defined by node betweeness � 2 standard deviations above mean cluster network node betweeness.

RH = right hemisphere; LH = left hemisphere.

https://doi.org/10.1371/journal.pone.0218201.t004

Fig 4. Cortical thickness network visualization. Visualization of cortical thickness networks for each neurocognitive

cluster. Nodes are plotted by module membership. Greater node size reflects higher node degree (i.e., a greater number

of connections). Module 1 (limbic lobe) = red; Module 2 (temporo-occipital) = yellow; Module 3 (occipital) = green;

Module 4 (parieto-frontal) = light blue; Module 5 (frontal) = dark blue.

https://doi.org/10.1371/journal.pone.0218201.g004
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thickness network, with noticeably different patterns of node distribution across modules

within each group.

In comparison, no between-cluster differences were found on any gyrification network

coefficients. The number of hubs identified in each cluster was relatively even, and tended to

be greater in number compared to hubs identified in cortical thickness networks (for Clusters

1 and 2). Five modules were also identified for gyrification networks, but the nodal composi-

tion of modules within each cluster appeared highly consistent and more spatially compact

compared to cortical thickness networks. These overall differences in network structures sug-

gest that cortical thickness, but not gyrification, may be a sensitive marker of cognitive dys-

function, and associated multimorbid illness, in a marginalized population.

Convergent findings across different cortical thickness network measures suggest that the

poorer profile of cognitive functioning in Cluster 3 may reflect an underlying disruption of the

balance between network segregation and integration, in keeping with literature showing asso-

ciations between network efficiency and intellectual functioning [12,13,16]. Segregation

reflects a tendency towards functional specialization within a complex system, but this must be

optimally balanced with integration of information between ostensibly discrete units (i.e.,

modules), an equilibrium that ultimately gives rise to the small-world property. One context in

which increased segregation is seen is in early development, whereby the maturational trajec-

tory of structural and functional networks of healthy humans follows a pattern of decreasing

segregation in favor of increasing global integration, while preserving a small-world architec-

ture [46,47]. Decreasing interregional correlation (i.e., segregation) has been shown to be most

pronounced in association cortex during adolescence, which may reflect the dynamic pruning

processes and myelination that occurs during this developmentally sensitive period [48]. In

disorders of disrupted neurodevelopment, there are reports of network alterations in patients

with schizophrenia characterized by increased clustering and longer path lengths in cortical

thickness networks [49] and increased regional clustering in the dorsolateral prefrontal cortex

in gyrification networks [39]. Other studies have reported decreased integration, but not

increased segregation in patients with schizophrenia [50], with evidence for preserved small-

worldness [51].

We also observed higher centrality (mean node betweeness) in Cluster 3 compared to Clus-

ters 1 and 2, which may reflect a compensatory mechanism for reduced global integration.

Higher betweeness centrality is thought to index influential nodes within a network that act as

Table 5. Gyrification network comparisons of topological measures.

Cluster 1 Cluster 2 Cluster 3 Significant FDA Comparisons (p-value)

Mean Global Coefficients

Clustering coefficient 0.5328 0.5581 0.5495 ns

Transitivity 0.5330 0.5553 0.5567 ns

Local efficiency 0.7506 0.7643 0.7580 ns

Modularity 0.4038 0.4030 0.4252 ns

Characteristic path length 2.0709 2.1213 2.1267 ns

Global efficiency 0.5809 0.5744 0.5755 ns

Small-world 2.3316 2.2418 2.2466 ns

Mean Regional Coefficients

Node betweeness 159.4865 166.9582 167.7482 ns

N = 208. Coefficients for each cluster represent the mean network value averaged across densities. All cluster comparisons had p-values > .232. FDA = Functional Data

Analysis; ns = not significant.

https://doi.org/10.1371/journal.pone.0218201.t005
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Fig 5. Functional data analysis curves for gyrification networks. Mean gyrification network coefficients for neurocognitive clusters plotted as a function of density.

Cluster comparisons and p-values are derived from results of the Functional Data Analysis. Sigma = small-world.

https://doi.org/10.1371/journal.pone.0218201.g005

Table 6. Gyrification network hubs defined by node betweeness.

Cluster 1 Cluster 2 Cluster 3

LH planum polare LH superior suborbital sulcus LH middle anterior cingulate sulcus and

gyrus

LH lateral orbital sulcus LH superior frontal gyrus RH triangular part of the inferior frontal

gyrus

RH superior occipital gyrus RH fronto-marginal sulcus and gyrus RH temporal pole

RH occipital pole RH orbital gyri RH H-shaped orbital sulcus

RH anterior circular sulcus of

the insula

RH occipital pole RH occipital pole

RH posterior transverse

collateral sulci

RH medial occipital-temporal sulcus &

lingual sulcus

RH medial occipital-temporal sulcus &

lingual sulcus

RH H-shaped orbital sulcus

Note. Hubs defined by node betweeness � 2 standard deviations above mean cluster network node betweeness.

RH = right hemisphere; LH = left hemisphere.

https://doi.org/10.1371/journal.pone.0218201.t006
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connectors between disparate parts of the system [40]. Regionally, Cluster 3 demonstrated

nearly twice as many hubs (as defined by node betweeness) when compared to the other

groups, and further exhibited higher betweeness in nodes distributed across frontal, temporal,

and occipital regions. It is possible this property may emerge as a function of increased average

path length in order to maintain sufficient network-wide parallel processing of information.

Higher node betweeness has been previously reported in primary and paralimbic cortices; and

in frontal, temporal, and parietal regions of persons with schizophrenia compared to healthy

controls [49,52], reflecting possible regional markers of network inefficiency.

Examination of the modular composition may further elucidate the observed patterns of

altered network topology in Cluster 3. Modularity is considered the “hallmark of complex sys-

tems”, facilitating robustness, adaptability, and functional specialization [53]. Descriptively,

the nodes that comprised each of the five modules in Cluster 1, and to a lesser extent Cluster 2,

were more spatially proximal to each other than those observed for Cluster 3. For example,

Module 1 was primarily composed of nodes located within the limbic lobe for Clusters 1 and

2, but Module 1 was defined by only two nodes in this region for Cluster 3. Instead, we

observed that the limbic nodes in Cluster 3 were grouped within Module 5, which was com-

posed of predominately frontal lobe nodes, suggesting there is greater connectivity of nodes in

Cluster 3 that are spatially distal to each other and therefore incur greater material and meta-

bolic connectivity costs [53]. The overall pattern of less spatial compactness in the frontal lobe

of Cluster 3 could be taken as a signature of the poor executive functioning that characterizes

this cognitive group.

It is interesting to consider whether the previous findings of Cluster 3 exhibiting higher

rates of neurodevelopmental markers (i.e., schizophrenia diagnosis, neurological soft signs) [8]

may be manifest in the current cortical thickness network architecture. Although we previ-

ously reported localized increases in fronto-temporal gyrification of Cluster 3 compared to

Clusters 1 and 2 that were taken as putative markers of aberrant neurodevelopment [8], we did

not find group differences in gyral covariance patterns in the current study. This may suggest

that localized abnormalities in gyrification are subtle and do not have direct bearing on global

network architecture, consistent with findings reported by Palaniyappan and colleagues [39].

Likewise, certain individual risk factors may not directly influence global network architec-

ture. Despite previously documented differences between Clusters 1 and 2 with respect to sex,

years of education, monthly alcohol use, and MRI pathology (stroke, aneurysm) [6,8], cortical

Fig 6. Gyrification network visualization. Visualization of gyrification networks for each neurocognitive cluster.

Nodes are plotted by module membership. Greater node size reflects higher node degree (i.e., a greater number of

connections). Module 1 (occipito-parietal/midline) = red; Module 2 (fronto-temporal, left hemisphere only) = yellow;

Module 3 (occipito-parietal/limbic) = green; Module 4 (fronto-temporal, right hemisphere only) = light blue; Module

5 (frontal) = dark blue.

https://doi.org/10.1371/journal.pone.0218201.g006
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thickness and gyral covariance patterns were highly similar. Neurodevelopmental aberrations

and/or higher overall illness burden (i.e., multimorbidity) may be clinical features that have a

more pervasive impact on structural networks, as seen in relation to Cluster 3. Specifically,

changes in structural covariance patterns may be more reflected in cortical thickness, a param-

eter that is highly sensitive to the cumulative lifetime effect of environmental risk exposures

such as substance use [54], HIV infection [55] and traumatic brain injury [56], and progres-

sion of psychiatric illness [57]. The efficiency of networks derived from cortical thickness has

been shown to be reduced in adults experiencing greater environmental deprivation [58]. Cor-

tical thickness networks, but not gyral networks, may therefore be an important indicator of

the neural consequences of multimorbidity in the context of marginalization and warrants

future examination within a network science framework.

One important limitation of the current study is that a biologically meaningful interpreta-

tion of structural covariance networks is challenging. Brain network science is an emerging

and rapidly evolving field, but an understanding of what the network coefficients can reliably

reveal about the neurobiological underpinnings at multiple different systems levels (e.g.,

molecular, cellular) is incomplete. Accumulating work suggests that covariance of brain

regions can be used to infer some aspects of connectivity [11], with approximately 35–40% of

positive cortical thickness correlations overlapping with defined white matter tracts in the

human brain [36]. Another important caveat is that we were not able to statistically compare

the node composition of each module across the cognitive groups, but rather provided a

description of the relative differences of node distribution. Any interpretation of a possible

link between modularity and cognitive functioning in this study must be made with caution.

Relatedly, because we used a group-level analysis, we were precluded from being able to

directly associate network parameters with individual measures of cognitive functioning or

clinical variables. An individualized structural network approach would be complementary.

Lastly, although our population of focus has shared features with other marginalized popula-

tions, most notably extreme morbidity and mortality [1], there are also likely unique features

of our sample that reflect influences of the local environment and this may somewhat limit the

generalizability of our findings. For example, participants are recruited from a single neigh-

bourhood with a high concentration of subsidized housing in significant disrepair [3], and a

high degree of economic disparity such that the neighbourhood has been referred to as the

“poorest postal code” in Canada [59]. Nonetheless, we report similar sociodemographic, clini-

cal, and cognitive characteristics as other Canadian studies of homeless and vulnerably housed

adults [7,19,20], but substance use policies and access to healthcare vary outside of the Cana-

dian context.

The current work represents a novel and important advancement in understanding the

neuropsychological status of homeless and marginalized persons by identifying differential

network topologies of well-defined cognitive groups using complementary cortical parameters.

The overall pattern of results is consistent with the very eloquently expressed idea that

“Impairment or loss of cognitive functions with disease can be accounted for by abnormal

trade-offs that have an impact on often preferentially the most costly components of the net-

works that are also the most important for integrative processing and adaptive behaviour”

(p. 347) [60]. Homeless and unstably housed persons face numerous risk factors for brain and

cognitive dysfunction, and network science offers a valuable systems-based approach to under-

standing brain-behaviour relationships in a clinically heterogeneous population. Our findings

suggest that covariance patterns of cortical thickness may represent important structural phe-

notypes that requires further examination. Importantly, networks are flexible and can be

reconfigured with new learning [61]. Future work in this area should continue to focus on

establishing structural networks as valid markers of cognitive functioning, as well as
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identifying the genetic and environmental risk factors that modify networks and rehabilitative

interventions that can optimally rewire networks.
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