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Abstract
Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox 
to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this 
study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dis-
similarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid 
(PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active 
substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly  acting compounds. We first determined 
relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures 
were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumula-
tion were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all 
combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures 
of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with 
respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying 
the adverse outcome.

Keywords Steatosis · Mixtures · AOP-wise testing · Relative potency factors · Triglyceride accumulation · Hepatotoxicity

Abbreviations
2EHA  2-Ethylhexanoic acid
4eVPA  (±)-2-Propyl-4-pentenoic acid
4PEA  4-Pentenoic acid
AhR  Aryl hydrocarbon receptor
AO  Adverse outcome
AOP  Adverse outcome pathway
AUC   Area under the curve
BMD  Benchmark dose
BMDL  Lower confidence limit of the benchmark dose
BMDU  Upper confidence limit of the benchmark dose

BMR  Benchmark response
CAR   Constitutive androstane receptor
CTD  Clothianidin
CYP  Cytochrome P450
DMEM  Dulbecco’s modified Eagle’s medium
DMSO  Dimethyl sulfoxide
DPBS  Dulbecco’s phosphate-buffered saline
FXR  Farnesoid X receptor
GC-FID  Gas chromatography with flame-ionization 

detection
GR  Glucocorticoid receptor
HCI  High-content cell imaging
KE  Key event
LXR  Liver X receptor
MIE  Molecular initiating event
MoA  Mode of action
NR  Nuclear receptor
PBS  Phosphate-buffered saline
PHP  2-Propylheptanoic acid
PHX  2-Propylhexanoic acid
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PPAR  Peroxisome proliferator-activated receptor
PXR  Pregnane X receptor
RAR   Retinoic acid receptor
RPF  Relative potency factor
RPFL  Lower bound of the RPF confidence interval
RPFU  Upper bound of the RPF confidence interval
RXR  Retinoid X receptor
VPA  Valproic acid
XME  Xenobiotic-metabolizing enzymes

Introduction

Human exposure to countless chemical substances, occur-
ring as complex mixtures, has become a major concern 
for regulatory agencies (Escher et  al. 2017; Rappaport 
and Smith 2010). In response to this issue, different tiered 
strategies for the risk assessment of combined exposure to 
multiple chemicals have been proposed and implemented 
(Rotter et al. 2018). The identification of the modes of action 
(MoAs) of the different components inside a mixture is an 
important task to perform, as such information permits to 
distinguish between similarly and dissimilarly acting com-
pounds. Compounds sharing the same MoA are believed to 

follow the principle of dose addition when being in mix-
tures, and, therefore, mixture effects may be predicted by the 
dose addition concept (Backhaus and Faust 2012; Korten-
kamp et al. 2009). However, in the case of compounds with a 
different MoA, it is unclear whether the assumption of dose 
addition is still valid (Borgert et al. 2012; EFSA et al. 2013; 
Kortenkamp et al. 2009). Thus, the dose addition assumption 
in the case of mixtures involving substances with dissimilar 
MoA remains to be investigated on a larger scale.

In a previous study, we have established an in vitro bioas-
say toolbox to evaluate different endpoints along the adverse 
outcome pathway (AOP) for chemically induced liver stea-
tosis (Luckert et al. 2018). In short, the activation of nuclear 
receptors (NRs) is described as the molecular initiating 
events (MIEs), leading to induction of further key events 
(KEs) including specific gene transcription and expression 
of proteins that subsequently induce the accumulation of 
liver triglycerides. This accumulation triggers different toxic 
events at the organelle level which leads to fatty liver cells 
and ultimately to the biological adverse outcome (AO) stea-
tosis (Fig. 1). Using the toolbox, we have previously investi-
gated mixture effects of different combinations of pesticides, 
using imazalil, thiacloprid and clothianidin (CTD) as test 
compounds. Triglyceride accumulation was observed for all 

Fig. 1  Liver steatosis AOP (modified after Luckert et al. (2018)). Biological events analyzed in the present study are indicated by arrows
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pesticides, alone and in mixtures (Lichtenstein et al. 2020). 
The three binary and one ternary mixtures that were tested 
all showed dose addition for the different investigated end-
points. However, due to overlap in the NRs agonism/antago-
nism patterns of the three substances, it was not possible to 
draw conclusions on the testing of mixtures with compounds 
showing a strictly dissimilar MoA. Therefore, in the present 
study, we designed new mixtures with a strong emphasis on 
the aspect of similarly/dissimilarly acting compounds. CTD 
was included again as it showed a very distinct pattern in the 
activation of NRs, as compared to other steatosis-inducing 
compounds, targeting only PPARα (antagonism) (Lichten-
stein et al. 2020). Thus, we screened for compounds with a 
known steatotic potential, which interact with NRs excluding 
PPARα antagonism.

Valproic acid (VPA) is one of the most commonly used 
drugs to treat epilepsy, but can lead to undesired hepatotox-
icity such as steatosis (Chang et al. 2016). Fatty acid metab-
olism impairment following in vitro treatment with VPA 
has been also reported (Grünig et al. 2020). Moreover, VPA 
was shown to activate the pregnane X receptor (PXR) and 
constitutive androstane receptor (CAR) in luciferase reporter 
assays (Cerveny et al. 2007). Both receptors are crucially 
involved in liver steatosis and possible MIE for the steatosis 
AOP (Mellor et al. 2016). Besides, several structural analogs 
of VPA are available, making it possible to screen for a panel 
of molecules that presumably induce comparable toxicity. In 
regard to these findings, CTD, VPA and its analogs (Fig. 2) 
were considered promising candidates for the implementa-
tion of mixtures consisting of similarly and dissimilarly 

acting compounds.
Equipotent mixtures were designed based on the com-

pound-specific relative potency factors (RPF) that were 
determined with lipid accumulation data in HepaRG cells, 
using a benchmark dose (BMD) approach. HepaRG cells 
represent a relevant model to study hepatic steatosis in vitro, 
as they show lipid accumulation in response to treatment 

with known steatosis-inducing chemicals, and furthermore 
they functionally express key steatosis-related nuclear recep-
tors (Antherieu et al. 2012; Luckert et al. 2018; Tanner et al. 
2018; Tolosa et al. 2016). NRs activation, target gene regula-
tion and triglyceride accumulation were further analyzed for 
the mixtures (see Fig. 1). The findings of this study extend 
our knowledge on the behavior of chemical mixtures and 
provide new experimental data on mixtures of similarly and 
dissimilarly acting compounds.

Materials and methods

Chemicals

VPA (CAS no. 1069-66-5), 4PEA (CAS no. 591-80-0), 
4eVPA (CAS no. 1575-72-0), 2EHA (CAS no. 149-57-5), 
PHP (CAS no. 31080-39-4)  and CTD (CAS no. 210880-
92-5) were obtained from Sigma Aldrich (St. Louis, USA). 
PHX (CAS no. 3274–28-0) was purchased from Toronto 
Research Chemicals (Toronto, Canada). Cyproconazole 
(CAS no. 94361-06-5) was purchased from Syngenta (Basel, 
Switzerland) as technical grade. All other chemicals were 
obtained from Sigma (Taufkirchen, Germany) or Merck 
(Darmstadt, Germany) in the highest available purity.

Cell culture

Human HepaRG hepatocarcinoma cells were cultivated as 
previously described in Lichtenstein et al. (2020). Briefly, 
cells were purchased from Biopredic International (Saint 
Grégoire, France) and cultivated in William’s Medium 
E with 2 mM glutamine (PAN-Biotech, Aidenbach, Ger-
many), 10% (v/v) bovine serum (FBS; FBS Good Forte EU 
approved, PAN-Biotech, Aidenbach, Germany), 100 U/ml 
penicillin and 100 µg/ml streptomycin (Capricorn Scientific, 
Ebsdorfergrund, Germany) and 5 ×  10–5 M hydrocortisone 

Fig. 2  Chemical structures of CTD, VPA and its analogs
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hemisuccinate (Sigma-Aldrich, St. Louis, USA) at 37 °C in 
a humidified atmosphere with 5%  CO2. Cells (passages 15 
to 20) were seeded at a density of ~ 25,000 cells/cm2 and 
grown for 14 days, followed by 14 days in medium addition-
ally containing 1.7% DMSO. Differentiated HepaRG cells 
were pre-adapted to treatment medium (culture medium 
containing only 2% FBS and 0.5% DMSO) for 48 h prior to 
exposure in treatment medium for 24 h or 72 h, with a final 
DMSO concentration of 0.5%.

Human HepG2 hepatocellular carcinoma cells were 
purchased from the European Collection of Cell Cultures 
(ECACC #85,011,430, Salisbury, UK) and cultured in Dul-
becco’s modified Eagle’s medium (DMEM, PAN-Biotech, 
Aidenbach, Germany) supplemented with 10% (v/v) fetal 
calf serum (PAN-Biotech, Aidenbach, Germany), 100 U/
ml penicillin and 100 µg/ml streptomycin (Capricorn Sci-
entific, Ebsdorfergrund, Germany) at 37 °C in a humidified 
atmosphere with 5%  CO2. Cells were passaged at ~ 80–90% 
confluence and seeded at a density of 60,000 cells/cm2. Only 
cells within passages 15–25 were used.

Cell viability analysis

Cytotoxic effects of test compounds were analyzed in HepG2 
and HepaRG cells using the WST-1 assay (Sigma-Aldrich, 
St. Louis, USA) as described by Luckert et al. (2018). At 
least two independent biological replicates with minimum 
three technical replicates per condition were run.

AOP‑based approach

In this study we evaluated different components of the 
liver steatosis AOP. As shown in Fig. 1, NR activation was 
investigated as part of MIE while gene expression and lipid 
accumulation were studied as part of molecular and cellular 
KEs. Considering this AOP-based approach, we applied dif-
ferent time treatments (i.e. 24 h for NR activation and gene 
expression, 72 h for lipid accumulation) to reflect the tem-
poral relationships between biological events (e.g. upstream 
MIEs occur earlier than subsequent downstream KEs). This 
temporal relationship was also shown experimentally as for 
instance lipid accumulation was better observed after 72 h 
treatment cyproconazole than 24 h treatment in the study 
from Luckert et al. (2018).

Reporter gene assays

The activation of 10 NRs (CAR, farnesoid X receptor (FXR), 
glucocorticoid receptor (GR), liver X receptor (LXR) α, per-
oxisome proliferator-activated receptor (PPAR) α, PPARγ, 
PPARδ, PXR, retinoic acid receptor (RAR) α, retinoid X 
receptor (RXR) α) and aryl hydrocarbon receptor (AhR) by 
test compounds was investigated using reporter gene assays. 

Due to low transfection efficacy in HepaRG cells, reporter 
gene analysis was performed using HepG2 cells. A detailed 
overview of the plasmids and transfection methodology can 
be found in the paper by Luckert et al. (2018). HepG2 cells 
were seeded in 96-well plates and transiently transfected 
after 24 h using TransIT-LT1 (Mirus Bio, Madison, USA) 
according to the manufacturer’s instructions. An overview 
of the specific conditions for each reporter gene assay (plas-
mid, plasmid amount, positive controls) can be found in 
supplementary Table S1. Cells were exposed to different 
concentrations of the test compounds for 24 h in culture 
medium containing 0.5% DMSO. Cell lysis and lumines-
cence measurements were performed on an Infinite M200 
Pro (Tecan group, Männedorf, Switzerland) luminometer. 
Three independent biological replicates were run, each in 
three technical replicates per condition.

Analysis of mRNA expression levels

HepaRG cells were differentiated in 12-well plates and 
treated with different concentrations of the test compounds 
or solvent control (0.5% DMSO) for 24 h. Cells were 
washed twice with ice-cold PBS and lysed with 350 µl 
RLT buffer (RNeasy Mini Kit, Qiagen, Hilden Germany). 
Total RNA was extracted according to the manufacturer 
protocol. For first-strand cDNA synthesis, 1 μg of total 
RNA was reverse-transcribed into cDNA in a total volume 
of 20 μl, using the PrimeScript RT reagent Kit Perfect 
Real Time for RT-PCR (Takara Bio, Europe) with oligo-
dT primers and random hexamers for the reaction accord-
ing to the manufacturer’s instructions. Specific primers 
were designed using the Primer-BLAST tool (NIH) for 
63 genes linked to liver steatosis, nuclear receptor activa-
tion and hepatotoxicity. Primers for three reference genes 
were also designed (B2M, GAPDH and ACTB).  EC50 
values, derived from AdipoRed experiments, were used 
for a first screening of gene deregulation following sin-
gle compound treatment. Genes exhibiting deregulation 
at the  EC50 concentration (screening process) as well as 
the five genes of the steatosis AOP (ACOX1, FASN, MLX-
IPL, SCD1, SREBF1) were finally assessed at all chosen 
single compound concentrations. Regarding mixture test-
ing, genes showing pronounced responses to treatment in 
at least two compounds in the screening process, as well 
as all 5 AOP genes, were selected to be assessed at all 
mixture concentrations. The oligonucleotide sequences of 
primers are shown in supplementary Table S2. To prevent 
amplification of sequences from genomic DNA contami-
nation, primers and/or amplicons were designed to cross 
exon/exon boundaries if possible. All genes were amplified 
by real-time PCR in the Step One Plus detection system 
with StepOnePlus Software v2.3 (Thermo Fisher Scien-
tific, Waltham, USA) using SYBR green as the detection 
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dye. Each amplification reaction was carried out in a total 
volume of 20 μl containing 10 μl SYBR Select Master 
Mix (Thermo Fisher Scientific), 0.3 μM of each primer 
and 0.002 μg cDNA. The reactions were cycled 40 times 
using the following parameters: 95 °C for 3 s and 60 °C 
for 30 s during which the fluorescence data were collected. 
Melting curves were generated to verify the identity of 
the products. A non-template control was run with every 
set of primers and no indication of PCR contamination 
was observed. Lack of PCR products from the non-reverse 
transcribed RNA control indicated that contamination by 
genomic DNA did not serve as amplification template. 
Expression levels of the target genes were normalized 
to the reference gene B2M (beta-2-microglobulin) which 
was stably expressed throughout treatments. RNA from 
three independent biological replicates was used. Each 
cDNA was analyzed at least in duplicate by real-time PCR. 
Relative gene expression was calculated using the ΔΔCT 
method (Livak and Schmittgen 2001). The statistical cal-
culation was based on  2−ΔCt values.

Liver triglyceride accumulation

Liver triglyceride accumulation was measured using three 
different methodologies. The Adipored assay and Nile Red 
staining analysis by high-content cell imaging (HCI) use 
the same dye, i.e. Nile red, but differ in their procedure. 
The Adipored assay measures the total fluorescence intensity 
inside a well, while HCI quantifies the lipid droplets (size, 
intensity, number), thus allowing a phenotypic vision at the 
single-cell level. In complement, triglyceride was analyzed 
using gas chromatography with flame-ionization detection 
(GC-FID) method.

AdipoRed assay

HepaRG cells were treated for 72 h with different concen-
trations of the test compounds, solvent (0.5% DMSO), or 
a positive control for steatosis (cyproconazole; 200 µM). 
Then, the cell monolayer was rinsed with 200 µl phosphate-
buffered saline (PBS) and nuclei were stained with 5 µg/
ml Hoechst 33,342 (Thermo Fischer Scientific, Waltham, 
USA). Afterwards, 5 µl/well AdipoRed solution (ready to 
use; Lonza, Basel, Switzerland) was added and cells were 
incubated for 10 min at 37 °C. Fluorescence was measured 
at Ex 485 nm/Em 572 nm for AdipoRed and Ex 350 nm/Em 
461 nm for Hoechst 33,342 staining using an Infinite M200 
Pro plate reader (Tecan group, Männedorf, Switzerland). 
Relative triglyceride levels were referred to solvent control. 
Four independent biological replicates with minimum three 
technical replicates per condition were run.

Triglyceride extraction and analysis by gas 
chromatography with flame‑ionization detection 
(GC‑FID)

Triglyceride analysis by GC-FID was performed as previ-
ously described (Lichtenstein et al. 2020). Briefly, HepaRG 
cells were differentiated in 12-well plates and treated with 
different concentrations of the test compounds or solvent 
control (0.5% DMSO) for 72 h. Then, the monolayer was 
rinsed with 1 ml Dulbecco’s phosphate-buffered saline 
(DPBS)/well followed by harvesting in 300 µl RLT-lysis 
buffer (Qiagen, Venlo, The Netherlands). The lysates were 
collected and stored at − 80 °C until triglyceride extraction. 
After thawing, the organic phases were collected using a 
mixture of isooctane and ethylacetate (75:25, 5 ml) with tri-
tridecanoin (Nu-Chek Prep Inc., Elysian, USA). The organic 
phases were dried under  N2 gas, redissolved in 100 µl isooc-
tane and transferred to a GC vial for analysis. Analysis of the 
samples was executed on a Trace GC Ultra GC-FID system 
(Thermo Fisher Scientific, Waltham, USA). Quantification 
of the triglycerides was achieved by determining the area 
under the curve (AUC). Calculation of the relative triglyc-
eride level was achieved by dividing the AUC of the test 
compounds by the AUC of the solvent control. Two inde-
pendent biological replicates with three technical replicates 
per condition were run.

Nile Red staining and neutral lipid droplet analysis 
by high‑content cell imaging (HCI)

HepaRG cells were treated for 72 h with different concen-
trations of the test compounds, solvent (0.5% DMSO), or a 
positive control (20 µM cyclosporine A). Afterwards, cells 
were fixed in 4% (w/v) paraformaldehyde in PBS for 30 min 
and washed three times with PBS and stained overnight (at 
4 °C) with 100 µl of 0.9 µM Nile Red (Sigma-Aldrich, St. 
Louis, USA) solution in PBS (Amacher and Martin 1997; 
McMillian et al. 2001). Nuclei were stained with DAPI 
(0.3 µg/ml in PBS) during 2 hours before reading (incu-
bation at ambient temperature in the dark). The multi-well 
plates were scanned (9 images) with an Arrayscan XTI using 
a 20 × NA 0.4 objective (Plan NeoFluar, Zeiss, Oberkochen, 
Germany). The Photometrics X1 CCD camera was set with a 
binning 2 (14 bits dynamic range, 4 × 106 pixels with a size 
of 4.54 µm). Identification of neutral lipid spot was done by 
tracking Nile Red green emission with an XF100-485-20 
filter set. Identification of the nuclei was done by tracking 
DAPI with an XF100-386-23 filter set and used to focus the 
instrument. The Spot Detector V3 Bioapplication analysis 
algorithm (software V.6.5) was used to identify nuclei upon 
fluorescent size and intensity. The nuclear mask was dilated 
in order to define the cytoplasmic region. Two parameters 
were measured at the cell level as follows: nuclei (defined as 
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area as well as total and average intensity for each cell) and 
neutral lipid spots (defined as spot number, spot intensity 
and spot area as well as total fluorescence of spot intensity 
within each cell).

To quantitatively assess the data obtained after the image 
analysis, a workflow was built in Statistica v13.2 (Tibco, 
Palo Alto, USA). First, each independent plate was stand-
ardized in order to eliminate inter-experiment variation. 
In order to fix the values in the same order of magnitude 
(robust Z-score) the whole data set for neutral lipid spot 
total intensity within cells was submitted to a median MAD 
standardization. Finally, the three independent experiments 
were grouped and data were then normalized to the median 
of solvent controls (value defined as 1).

Analysis of mixture effects and compound potencies

Concentration–response modeling and RPF analysis were 
performed as previously described (Lichtenstein et al. 2020). 
Data were loaded into PROAST (https:// www. rivm. nl/ en/ 
proast, RIVM, Bilthoven, The Netherlands). Concentra-
tion–response data were statistically analyzed by fitting with 
an exponential four-parameter model (1):

where y denotes the response, x denotes the concentration, 
a reflects the response at concentration zero, b relates to 
the potency of the tested chemicals, c reflects the maximum 
response and d reflects the steepness of the curve. Based 
on the obtained fits, RPFs were calculated for a benchmark 
response of 50%  (BMR50). Mixture compositions were 
thereafter determined based on the estimated RPFs to design 
equipotent mixtures of the test compounds.

For mixture effect analysis, the concentration–response 
data for the mixture and the single compounds were com-
pared using the same approach. First, the single com-
pounds were analyzed for calculation of the RPF. The 
curve fit results were expressed visually as described 
above. If the data points of the mixture fit with the curve 
derived from the single compounds, dose addition can be 
assumed. In cases of synergism or antagonism, the con-
centration–response data of the mixture will not fit with 
the response of the single substances and shift either to 
the left or to the right. Additionally, the ratio of overlap 
was calculated to provide a quantitative evaluation. The 
ratio of overlap is used to characterize the degree of dose 
addition or the degree of deviation from dose addition and 
describes numerically what can be seen graphically in the 
PROAST plots. Confidence intervals of the estimated 
RPFs were calculated for the single compounds and also 
for the corresponding mixtures. If both intervals overlap, 

(1)y = a
[

c − (c − 1)exp
(

−bxd
)]

then the response curves are very close together and dose 
addition can be assumed. On the contrary, if intervals do 
not overlap then the respective response curves are very far 
away from each other and dose addition cannot be assumed 
(visually apparent on the plot). Thus, the lower confidence 
limit of the benchmark dose (BMDL) of the higher calcu-
lated interval was divided by the upper confidence limit 
of the benchmark dose (BMDU) of the lower calculated 
interval. A ratio of overlap above 1 indicates a deviation 
from dose addition (i.e. no overlap of the confidence inter-
vals), while a ratio below 1 indicates no deviation from 
dose addition (i.e. overlap of the confidence intervals).

Statistical analysis

All statistical analysis were performed with GraphPad 
Prism v.8 (GraphPad Software, La Jolla, USA). Statistical 
analysis for cell viability, nuclear receptor and triglyceride 
accumulation endpoints was performed by doing one-way 
ANOVA followed by Dunnett’s test (*p < 0.05; **p < 0.01; 
***p < 0.001). Statistical analysis for gene regulation 
endpoint was performed by doing the non-parametric 
Kruskal–Wallis test followed by Dunn’s test (*p < 0.05; 
**p < 0.01; ***p < 0.001).

Results

Screening of VPA and its analogs

Concentration‑range finding and liver triglyceride 
accumulation

Based on cell viability assay results, maximal concen-
trations of 6 mM 4PEA, 4eVPA, 2EHA, PHX, PHP and 
4  mM VPA were chosen for subsequent experiments 
in HepaRG cells in order to exclude unspecific cellular 
responses due to pronounced cytotoxicity (> 25%) (Sup-
plementary Fig. S1). Similarly, maximal concentrations of 
4 mM VPA, 4eVPA, 2EHA, PHX, PHP and 5 mM 4PEA 
were chosen for subsequent experiments in HepG2 cells in 
order to exclude unspecific cellular responses due to pro-
nouced cytotoxicity (> 25%) (Supplementary Fig. S2). In 
a next step, triglyceride accumulation in HepaRG cells was 
measured via AdipoRed staining (Fig. S3). All compounds 
induced lipid accumulation but with different potencies: 
4PEA > PHP/PHX > 2EHA > VPA/4eVPA. CTD cytotox-
icity and triglyceride accumulation was also measured and 
was not toxic up to 1000 µM. CTD induced lipid accumu-
lation in a concentration-dependent manner (Figs. S1–S3).

https://www.rivm.nl/en/proast
https://www.rivm.nl/en/proast
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Nuclear receptor activation screening and selection 
of the test compounds

Activation of AhR, CAR, FXR, GR, LXRα, PPARα, PPARγ, 
PPARδ, PXR, RARα and RXRα was monitored using lucif-
erase-based reporter assays in human HepG2 cells. VPA and 
its analogs activated AhR, CAR, FXR, GR, PPARα, PPARy 
and RXRα with different potencies. Of note, PHP and PHX 
strongly activated PPARα (80-fold activation and 50-fold 
activation, respectively) and PPARy (180-fold activation 
and 120-fold activation, respectively). On the contrary, 
LXRα was whether unaffected (VPA and 4PEA) or inhib-
ited (4eVPA: 2.5-fold reduction, 2EHA: twofold reduction, 
PHP: fivefold reduction, PHX: 3.3-fold reduction) (Table 1). 
PPARδ was activated solely by PHP (twofold activation) 
and PHX (twofold activation). CTD only affected PPARα, 
antagonizing its activity (3.3-fold reduction). Results on 
concentration-dependent induction of reporter activities 
can be found in supplementary data section (Figs. S4–S15).

Design of equipotent mixtures

According to the steatosis AOP, activation of NRs (e.g. 
PPARs) leads to biological events that subsequently induce 
the accumulation of liver triglycerides. Our screening assays 
showed that 4PEA, PHP and PHX induced the strongest 
lipid accumulation, but 4PEA activated PPARα and PPARγ 
only to a weak or moderate extent. On the contrary, PHP and 
PHX strongly activated PPARα and PPARy and showed very 
high overlap in their NR activation pattern. Therefore, PHP 
and PHX were defined as compounds acting in a similar 
MoA in contrast to CTD that was defined as a compound 
acting in a dissimilar MoA as compared to PHP and PHX. 
Based on lipid accumulation data in HepaRG cells (Adi-
poRed), RPFs were calculated with the dose–response mod-
eling software PROAST by comparing the whole curves of 

each compound (Fig. S16). PHX was the least potent inducer 
of triglyceride accumulation and was, therefore, assigned a 
RPF value of 1. CTD was 4.5 times more potent than PHX, 
while PHP was 1.3 times more potent. CTD was 3.6 times 
more potent than PHP. These RPFs were used to design 
equipotent mixtures for subsequent gene expression and 
lipid accumulation experiments. Table 2 recapitulates all the 
treatment conditions. For reporter gene assay experiments, 
equipotent mixtures were designed using the same RPFs but 
with adapted concentration range (Table S3).

The cytotoxicity of the mixtures was investigated in order 
to exclude unspecific cellular responses due to cytotoxicity. 
Only the highest concentration level for PHX + PHP and for 
the ternary mixture was toxic to HepaRG cells (reduction of 
cell viability to 56 and 47%, respectively) (Fig. S17).

AOP‑wise testing

Nuclear receptor activation

All mixtures were tested in the reporter gene assays for 
NRs, which showed the strongest activation in the screen-
ing assay, i.e. PPARα and PPARγ. Additionally, GR and 
RXRα were tested. Please note that only data from nuclear 
receptors showing unidirectional activation by at least two 
compounds could be used for subsequent modeling, due to 
limitations of the chosen BMD-based RPF approach. There-
fore, only the mixtures of PHX and PHP were analyzed in 
that way. Raw data for the combinations including CTD can 
be found in Figs. S18–S21. Overall, mixtures with CTD (i.e. 
PHP + CTD, PHX + CTD and PHP + PHX + CTD) showed a 
concentration-dependent activation of GR, RXRα, PPARα, 
and PPARγ. Regarding PHX + PHP, data also showed a 
concentration-dependent activation for all tested receptors. 
PROAST modeling of the concentration–response data was 
in agreement with the assumption of dose addition (Fig. 3).

Table 1  Nuclear receptor 
activation pattern of VPA, 
4PEA, 4eVPA, 2EHA, PHX, 
PHP and CTD

Symbols: ↑↑↑, fold activation > 50; ↑↑, 10 < fold activation < 50; ↑, fold activation < 10; ↓, inhibition; –, no 
effect

Assay VPA 4PEA 4eVPA 2EHA PHP PHX CTD

AhR ↑ ↑ ↑ ↑ ↑ ↑ –
CAR ↑ ↑ ↑ ↑ ↑ ↑ –
FXR ↑ ↑ ↑↑ ↑↑ ↑↑ ↑↑ –
GR ↑↑ ↑ ↑ ↑ ↑↑ ↑ –
LXRα – – ↓ ↓ ↓ ↓ –
PPARα ↑↑ ↑ ↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↓
PPARγ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑↑ ↑↑↑ –
PPARδ – – – – ↑ ↑ –
PXR ↑ – – ↑ ↑ ↑ –
RARα ↑ ↓ ↑ ↓ ↑ – –
RXRα ↑ ↑ ↑ ↑ ↑↑ ↑ –
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PCR‑based gene expression analysis

Based on the transcriptional changes proposed in the liver 
steatosis AOP, and based on the NR activation pattern of 
PHX, PHP, and CTD, we investigated the expression of 
ACOX1, FASN, MLXIPL, SCD and SREBF1. Additionally, 
we included other genes related to xenobiotic metabolism, 
hepatotoxicity and NR activation. A screening of the expres-
sion for 56 candidate genes at the  EC50 dose was initially 
performed (Supplementary Fig. S22). Genes showing dereg-
ulation at the  EC50 for at least two compounds were then 
tested at all single compound concentrations. Only genes 
showing deregulation for at least two individual compounds 
were further tested for mixture effects.

CTD barely affected the expression of the tested AOP 
genes. PHP as well as PHX down-regulated the expression 
of MLXIPL only in the middle high and high concentrations, 
respectively. Moreover, PHX up-regulated the expression of 
SCD and SREBF1, without reaching statistical significance. 
PHP showed a biphasic response with an up-regulation of 
SCD and SREBF1 at low concentrations followed by a down-
regulation at the highest concentrations (Fig. 4a), again with-
out reaching statistical significance. The effects observed 
in the mixture testing were overall in good agreement with 

those observed following single compound treatment, i.e. 
PHP and PHX, which are the molecules exhibiting altera-
tions in gene expression. For instance, the up-regulation of 
SCD and SREBF1 by PHX was also observed after treat-
ment with PHX + CTD (Fig. 4b). Furthermore, MLXIPL was 
significantly downregulated following treatment with PHP 
and PHX binary mixture and was only moderately down-
regulated with CTD binary mixtures.

Based on the initial screening (Supplementary Fig. 
S22), 27 genes were further selected for PCR analysis in 
cells treated with different concentrations of PHP, PHX 
or CTD, or with their binary and ternary mixtures. Again, 
CTD barely affected the expression of the tested genes. 
Only a marginal, non-significant up-regulation of CYP3A4 
was observed at the highest tested concentration (Fig. 5a). 
On the contrary, PHP and PHX deregulated almost all of 
the 27 additional genes, with both compounds acting in a 
similar way. Although not all deregulations in the 27 genes 
were statistically significant, it is worth noting that a global 
concentration-dependent down-regulation of genes encod-
ing xenobiotic-metabolizing enzymes (XME) was observed, 
such as phase I CYP genes and phase II SULT and UGT 
genes. The transporters SLCO4A1 and ATP8B1 were highly 
up-regulated, in a concentration-dependent way (Fig. 5a), 

Table 2  Equipotent binary and ternary mixtures of PHP, PHX, and CTD

The final concentration of, e.g. 1000 µM PHX equivalents (PHXeq) in a mixture is composed of 1000 µM/2 = 500 µM PHX and 1000 µM/2/
RPF1.3 = 385 µM PHP
Compound concentrations which cover the intermediate part of the single compound concentration–response curve were selected for designing 
binary and ternary mixtures

Label PHX + PHP PHX + CTD

PHXeq [µM] PHX [µM] PHP [µM] PHXeq [µM] PHX [µM] CTD [µM]

RPF 1 RPF 1.3 RPF 1 RPF 4.5

Mix 6 8000 4000 3077 8000 4000 889
Mix 5 6600 3300 2538 6600 3300 733
Mix 4 5200 2600 2000 5200 2600 578
Mix 3 3800 1900 1462 3800 1900 422
Mix 2 2400 1200 923 2400 1200 267
Mix 1 1000 500 385 1000 500 111

Label PHP + CTD PHX + PHP + CTD

PHPeq [µM] PHP [µM] CTD [µM] PHXeq [µM] PHX [µM] PHP [µM] CTD [µM]

RPF 1 RPF 3.6 RPF 1 RPF 1.3 RPF 4.5

Mix 6 7000 3500 972 10,000 3333 2564 741
Mix 5 5800 2900 806 8200 2733 2103 607
Mix 4 4600 2300 639 6400 2133 1641 474
Mix 3 3400 1700 472 4600 1533 1179 341
Mix 2 2200 1100 306 2800 933 718 207
Mix 1 1000 500 139 1000 333 256 74
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although the upregulation reached statistical significance 
only for SLCO4A1 in PHP 6000 µM. For the binary mixtures 
PHX + CTD and PHP + CTD, the gene regulation patterns 
were similar to those observed with single substance treat-
ment, i.e. PHX or PHP (Fig. 5b). With the ternary mixture, 
the gene regulation pattern was also similar to what had been 

observed for treatment with the single substances PHX or 
PHP (Fig. 5c).

Concentration–response modeling of representative 
tested genes is shown in Fig. 6. In general, the mixture 
data are scattered around the curve fit with no distinct 
deviation from the overall concentration–response fit, and 

Fig. 3  Concentration–response modeling of NR transactivation for 
binary mixtures of PHX and PHP, based on the data shown in Figs. 
S18–21. Transfected HepG2 cells were exposed to different concen-
trations of PHX, PHP, and PHX + PHP. After 24 h cell lysates were 
assayed for firefly and Renilla luciferase activity. Concentration–
response modeling was performed using PROAST software and data 

are presented as means ± SD. The curves represent the four-parameter 
exponential model; see Eq. 1. The concentration–response data of the 
mixture (green diamonds) indicate no deviation from the overall con-
centration–response fit. Thus, dose addition can be assumed (colour 
figure online)
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thus dose addition can be assumed. PROAST modeling for 
the other genes can be found in supplementary Excel file.

Liver triglyceride accumulation

Liver triglyceride accumulation was measured using three 
different assays. In a first step, we performed the AdipoRed 
assay to measure intracellular lipids following 72 h of treat-
ment with compounds alone or in mixtures. Concentration-
dependent increases of intracellular lipids were observed 
for all test compounds, as well as their mixtures (Fig. S23). 
PROAST modeling revealed additive behavior for all mix-
tures (Fig. 7).

In a second step, triglyceride levels were measured using 
a GC-FID method. Similarly, all test compounds as well 
as their binary and ternary mixtures induced concentration-
dependent increases of triglycerides (44–54 carbon atoms in 
their fatty acid chains) (Figs. S24 to S29). PROAST mod-
eling showed additivity for all mixtures (see Fig. 8 for rep-
resentative modeling of C52, and Figs. S30 to S34 for the 
other chain lengths).

Last, a HCI approach was employed to quantify triglyc-
erides at the single-cell level. Consistently with the previ-
ous findings, the test compounds and their mixtures induced 

concentration-dependent increases of triglycerides (Fig. 
S35). PROAST modeling showed additivity irrespective of 
the mixture composition (Fig. 9).

Evaluation of mixture effects using the ratio of overlap 
approach

To quantitatively evaluate the mixture effects and to answer 
whether the assumption of dose addition is valid in the case 
of the investigated dissimilarly acting compounds, the ratios 
of overlap were calculated (when possible) for the three dif-
ferent endpoints used to determine triglyceride accumula-
tion. A ratio of overlap above 1 indicates a deviation from 
dose addition, while a ratio below 1 indicates no deviation 
from dose addition, i.e. the confidence interval of the second 
RPF estimate (single compounds + mixture altogether) over-
laps with the confidence interval of the single-compounds 
RPF estimate. As shown in Table 3, all ratios were below 1, 
indicating no deviation from dose addition. This is in line 
with the visual observation from Figs. 7, 8, 9.

Fig. 4  Gene expression analysis linked to liver steatosis, using data 
obtained with the single compounds (a) and their mixtures (b). Based 
on the steatosis AOP, 5 genes were selected for PCR analysis in cells 
treated for 24 h with different concentrations of PHP, PHX or CTD, 
or with their binary and ternary mixtures (Table  2). The heat map 
presents mean fold changes from three independent experiments. Fold 

changes ≥ 2 and ≤ -2 are highlighted in red and blue, respectively. 
Statistical significance of differences in expression was based on  2−

ΔCt values and was assessed by the nonparametric Kruskal–Wallis test 
followed by Dunn’s test (*p < 0.05; **p < 0.01; ***p < 0.001 in com-
parison to control values) (colour figure online)
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Fig. 5  Gene expression analysis linked to xenobiotic metabolism, 
hepatotoxicity and NR activation, using data obtained with the sin-
gle compounds PHP, PHX or CTD (a) and their mixtures (b and c 
for binary and ternary, respectively). Based on the screening (see 
supplement Fig. S22), 27 genes were selected for PCR analysis in 
cells treated for 24  h with different concentrations of PHP, PHX or 
CTD, or with their binary and ternary mixtures (Table 2). The heat 

map presents mean fold changes of three independent experiments. 
Fold changes ≥ 2 and ≤  − 2 are highlighted in red and blue, respec-
tively. Statistical significance of differences in expression based on 
 2-ΔCt values and was assessed by the nonparametric Kruskal–Wallis 
test followed by Dunn’s test (*p < 0.05; **p < 0.01; *** p < 0.001 in 
comparison to control values). N.d not determined (due to very low 
expression) (colour figure online)
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Discussion

Chemical mixtures raise concern at the regulatory level as 
the components of a mixture may interact to end up with a 
toxicity higher (i.e. synergism) or lower (i.e. antagonism) 
than the simple sum of their toxicities taken alone. The dif-
ficulty is that such phenomena are extremely difficult to fore-
see, so that no model can predict ex nihilo if two compounds 
show higher or lower effect when present in a mixture. Thus, 
dose addition has been set as the default paradigm for mix-
tures and different mathematical models have been estab-
lished to estimate additivity (Bopp et al. 2015; EFSA et al. 
2019; EFSA et al. 2013; Kortenkamp et al. 2009). So far, 
most studies have been performed with mixtures of com-
ponents having the same MoA. In that case, considering 
dose addition as the paradigm for mixture effects is intuitive 
and plausible, as two compounds with same MoA can be 
perceived as only one substance (with the other compound 
being theoretically regarded as a dilution of the other). Pub-
lished data corroborate this statement as dose addition is the 
most reported mixture effect in the case of similarly acting 
compounds (Cedergreen 2014). However, for substances 
with dissimilar MoAs the hypothesis of dose addition as 

the paradigmatic effect is less intuitive and the amount of 
published data is too limited to confirm or infirm its valid-
ity. The primary goal of this study was to test whether dose 
addition applies for selected mixtures of dissimilarly acting 
compounds. For this purpose, a valuable conceptual frame-
work was needed in order to assess mixture effects not only 
at one single endpoint but also rather on a sequential cascade 
of events with different endpoints spanning multiple layers 
of biological significance. The AOP was consequently cho-
sen as a relevant strategy to test compounds with dissimilar 
MoAs but still sharing a common AO. Thus, we selected 
compounds with different nuclear receptor activation pro-
files according to the steatosis AOP and investigated their 
behavior in mixtures.

Our preliminary screening test showed that VPA and its 
analogs all induced triglyceride accumulation but with dif-
ferent potencies. In parallel, all compounds activated at least 
one of the NR predicted as MIE in the liver steatosis AOP. 
With the exception of 4PEA, there seems to be a correlation 
between the potencies in the triglyceride accumulation and 
NR activation, i.e. the compounds with strongest NR activa-
tion (e.g. PHP and PHX) are also the ones inducing among 
the strongest triglyceride accumulation. Interestingly, NR 

Fig. 5  (continued)
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activation by test compounds occurred at lower concentra-
tions than triglyceride accumulation, reflecting a concentra-
tion–response relationship between the elements of the AOP 
where upstream events occur at lower concentrations than 
subsequent downstream events. This aspect was previously 
reported by Luckert et al. (2018). Based on the NR activa-
tion and triglyceride accumulation data, PHX and PHP were 
selected for further mixture experiments, along with CTD 
as test compound for the constitution of dissimilarly acting 
mixtures.

In our study, PHX and PHP predominantly activated 
PPARα and PPARγ while CTD antagonized PPARα. Altera-
tions at the mRNA level, as proposed in the AOP, however, 
were not always consistently observed. For instance, PHP 
and PHX activated PPARγ and were thus expected to up-
regulate MLXIPL, SREBF1 and SCD according to the AOP. 
SREBF1 and SCD were indeed up-regulated but, on the con-
trary, a down-regulation of MLXIPL gene expression was 
observed. Regarding CTD, no down-regulation of ACOX1 
was observed despite the fact that CTD antagonized PPARα. 
Our results, therefore, suggest that the current AOP does not 
completely reflect the biological complexity of chemically 

induced liver steatosis. This has also been noted previously 
by Luckert et al. (2018) who reported discrepancies in gene 
regulation in the steatosis AOP while testing the fungicide 
cyproconazole. In addition, we reported a global down-reg-
ulation of CYP, SULT and UGT genes following treatment 
with PHX and PHP. This finding might look surprising con-
sidering the activation of PXR, CAR or AhR by PHX and 
PHP, as activation of these receptors would be expected to 
upregulate XME (Ramadoss et al. 2005; Wang et al. 2012). 
However, it is noteworthy that processes like inflammation 
can inhibit the activities of XME (Gu et al. 2006; Tanner 
et al. 2018). We observed an up-regulation of JUN, which 
codes for a component of the transcription factor AP-1. AP-1 
was shown to mediate the release of inflammatory mediators 
such as IL-8 (Qiao et al. 2016; Wang et al. 2013). Addition-
ally, some inter-connection with NFκB has been documented 
(Fujioka et al. 2004). Therefore, inflammation-related pro-
cesses might be triggered in parallel to the triglyceride 
accumulation and counteract possible XME induction by 
the activated NRs.

The assessment of mixture effects in the case of dissimi-
larly acting component mixtures (i.e. CTD with PHX or PHP 

Fig. 6  Concentration–response modeling of gene expression data of 
SLCO4A1 (a) and SULT1B1 (b) for binary and ternary mixtures of 
PHP, PHX and CTD, based on the data shown in Fig. 4. Differenti-
ated HepaRG cells were exposed to different concentrations of PHP, 
PHX and CTD, their mixtures, or solvent control (0.5% DMSO) 
for 24  h. Concentration–response modeling was performed using 

PROAST software and data are presented as mean ± SEM. The curves 
represent the four-parameter exponential model; see Eq. 1. The con-
centration–response data of the mixture (green diamonds in binary 
mixtures; blue inverse pyramids in ternary mixtures) indicate no devi-
ation from the overall concentration–response fit. Thus, dose addition 
can be assumed
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or both) was partially hampered by the fact that, according 
to its particular MoA, CTD barely induced effects regard-
ing NR activation and AOP-related gene expression. In such 
situation, the RPF-based approach does not allow to perform 
quantitative evaluation of the data. Nonetheless, it has to be 

noted that the response profiles of the mixtures were always 
similar to the ones of PHX or PHP alone, considering the 
compound potencies and their effective concentrations in the 
mixtures. Therefore, it is likely that no remarkable devia-
tion from additivity occurs for these endpoints. Quantitative 

Fig. 7  Concentration–response modeling of triglyceride accumu-
lation, as determined by the AdipoRed assay, for binary and ter-
nary mixtures of PHP, PHX and CTD, based on the data shown in 
Fig. S23. Differentiated HepaRG cells were exposed to different 
concentrations of PHP, PHX and CTD, their mixtures, or solvent 
control (0.5% DMSO) for 72  h. Concentration–response modeling 
was performed using PROAST software and data are presented as 

means ± SD. The curves represent the four-parameter exponential 
model; see Eq.  1. The concentration–response data of the mixture 
(green diamonds in binary mixtures; blue inverse pyramids in ter-
nary mixtures) indicate no deviation from the overall concentra-
tion–response fit. Thus, dose addition can be assumed (colour figure 
online)
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assessment, however, was possible with the aforementioned 
dissimilarly acting mixtures at the level of triglyceride accu-
mulation, showing the most direct relevance for the AO of 
steatosis. We reported a strong consistency within the results 
obtained with three different methodologies. In addition, the 

behavior of all investigated mixtures followed the assump-
tion of dose addition irrespective of the MoA of the mixture 
components. This shows that dose addition can also apply 
to mixtures of compounds with dissimilar molecular MoA. 
In fact, the question of similarity/dissimilarity of the MoA 

Fig. 8  Concentration–response modeling of triglyceride accumula-
tion (C52), as determined by GC-FID for binary and ternary mixtures 
of PHP, PHX and CTD, based on the data shown in Fig. S28. Dif-
ferentiated HepaRG cells were exposed to different concentrations of 
PHP, PHX and CTD, their mixtures, or solvent control (0.5% DMSO) 
for 72  h. Concentration–response modeling was performed using 

PROAST software and data are presented as means ± SD. The curves 
represent the four-parameter exponential model; see Eq. 1. The con-
centration–response data of the mixture (green diamonds in binary 
mixtures; blue inverse pyramids in ternary mixtures) indicate no devi-
ation from the overall concentration–response fit. Thus, dose addition 
can be assumed (colour figure online)
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at the molecular level might not be the key element in the 
behavior of components within a mixture. Other studies have 
shown that components with dissimilar MoA also followed 
dose addition when present in mixtures (Staal et al. 2018; 

Zoupa et al. 2020). Nonetheless, the very limited number of 
mixtures investigated so far does not allow to conclude that 
dose addition is a valid assumption for all mixtures with 
different MoA. Moreover, it is not always easy to define 

Fig. 9  Concentration–response modeling of neutral lipid droplets 
at the single cell level for binary and ternary mixtures of PHP, PHX 
and CTD, based on the data shown in Fig. S35. Differentiated Hep-
aRG cells were exposed to different concentrations of PHP, PHX 
and CTD, their mixtures, or solvent control (0.5% DMSO) for 72 h. 
Note that concentration levels were modified due to observed cyto-
toxicity with the concentrations indicated in Table 1 (inter-laboratory 

variability). Concentration–response modeling was performed using 
PROAST software and data are presented as means ± SD. The curves 
represent the four-parameter exponential model; see Eq. 1. The con-
centration–response data of the mixture (green diamonds in binary 
mixtures; blue inverse pyramids in ternary mixtures) indicate no devi-
ation from the overall concentration–response fit. Thus, dose addition 
can be assumed (colour figure online)
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similarity or dissimilarity of the MoA in case of complex 
biological processes such as the steatosis AOP and partially 
overlapping molecular targets of many test compounds. It 
should also be noted that dose addition may apply at the 
common endpoint level (i.e. the AO), while it does not nec-
essarily apply as well in all the intermediate KEs of an AOP 
network. Since the time of exposure is an important aspect in 
the toxicological behavior of chemicals (whether alone or in 
mixtures), assessment of scenarios of repeated-dose effects 
would reflect more precisely the human exposure. Differ-
ent studies have reported the successful use of models like 
HepaRG cells or primary human hepatocyte spheroids for 
repeated-exposure induced steatosis (Antherieu et al. 2011; 
Bell et al. 2016; van Breda et al. 2018). Thus, future research 
involving advanced models and chronic exposure treatment 
will increase our understanding of toxicological outcomes 
of chemicals.

Conclusion

In this study, we aimed to investigate whether the assump-
tion of dose addition can also apply to mixtures composed 
of dissimilarly acting compounds. For this purpose, we 
employed the BMD-based RPF approach within an AOP-
wise testing strategy. Dose additivity for binary and ternary 
mixtures of the three test compounds was observed for the 
KE of triglyceride accumulation. Therefore, our data show 
that compounds with dissimilar molecular MoA can still 
follow dose addition at apical endpoints when being present 
in mixtures.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00204- 021- 03182-1.
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Table 3  Ratios of overlap for equipotent binary and ternary mixtures of PHP, PHX and CTD

Response Mixture RPF CI based on the single compounds RPF CI based on mixtures Ratio of overlap
Lowest Highest Lowest Highest

AdipoRed PHP + PHX 1.03 1.37 1.06 1.48 0.77
CTD + PHP 3.37 4.92 3.21 4.30 0.78
CTD + PHX 3.82 4.61 3.77 4.82 0.82
PHP + PHX + CTD PHP: 0.81 CTD: 

3.84
PHP: 1.07 CTD: 

5.04
PHP: 0.82 CTD: 

3.81
PHP: 1.08 CTD: 

4.99
PHP: 0.77 CTD: 

0.77
High content 

screening
PHP + PHX 1.05 1.18 1.06 1.23 0.90
CTD + PHP 2.15 2.67 2.05 2.77 0.77
CTD + PHX 2.87 3.44 2.83 3.76 0.82
PHP + PHX + CTD PHP: 1.05 CTD: 

2.45
PHP: 1.18 CTD: 

2.81
PHP: 1.10 CTD: 

2.42
PHP: 1.33 CTD: 

2.93
PHP: 0.93 CTD: 

0.86
GC-FID (C44) PHP + PHX 1.46 4.06 1.48 3.79 0.39

CTD + PHP 0.76 3.62 1.05 2.75 0.28
CTD + PHX 3.26 5.02 3.78 5.33 0.75
PHP + PHX + CTD PHP: 1.51 CTD: 

2.81
PHP: 3.86 CTD: 

6.83
PHP: 1.57 CTD: 

2.66
PHP: 4.38 CTD: 

6.92
PHP: 0.41 CTD: 

0.39
GC-FID (C46) CTD + PHX 4.17 11.10 4.82 7.09 0.59
GC-FID (C48) CTD + PHX 6.68 14.30 6.05 9.62 0.69
GC-FID (C50) CTD + PHX 6.25 11.60 6.18 10.10 0.62
GC-FID (C52) PHP + PHX 2.41 3.86 2.06 3.35 0.72

CTD + PHP 1.19 2.16 1.1 2.22 0.51
CTD + PHX 4.05 6.14 3.86 7.08 0.63
PHP + PHX + CTD PHP: 2.37 CTD: 

4.11
PHP: 3.99 CTD: 

6.12
PHP: 2.91 CTD: 

4.05
PHP: 5.90 CTD: 

6.31
PHP: 0.73 CTD: 

0.66
GC-FID (C54) CTD + PHX 2.26 3.76 1.28 2.94 0.77

https://doi.org/10.1007/s00204-021-03182-1
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