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Abstract

Cryo-correlative light and electron microscopy (CLEM) is a technique that uses the spatiotemporal 

cues from fluorescence light microscopy (FLM) to investigate the high-resolution ultrastructure 

of biological samples by cryo-electron microscopy (cryo-EM). Cryo-CLEM provides advantages 

for identifying and distinguishing fluorescently labeled proteins, macromolecular complexes, 

and organelles from the cellular environment. Challenges remain on how correlation workflows 

and software tools are implemented on different microscope platforms to support automated 

cryo-EM data acquisition. Here, we present CorRelator: an open-source desktop application that 

bridges between cryo-FLM and real-time cryo-EM/ET automated data collection. CorRelator 

implements a pixel-coordinate-to-stage-position transformation for flexible, high accuracy on-the­

fly and post-acquisition correlation. CorRelator can be integrated into cryo-CLEM workflows 

and easily adapted to standard fluorescence and transmission electron microscope (TEM) system 

configurations. CorRelator was benchmarked under live-cell and cryogenic conditions using 

several FLM and TEM instruments, demonstrating that CorRelator reliably supports real-time, 

automated correlative cryo-EM/ET acquisition, through a combination of software-aided and 

interactive alignment. CorRelator is a cross-platform software package featuring an intuitive 
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Graphical User Interface (GUI) that guides the user through the correlation process. CorRelator 

source code is available at: https://github.com/wright-cemrc-projects/corr.
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1. Introduction

Correlative light and electron microscopy (CLEM), the coupling of fluorescent light 

microscopy (FLM) and transmission electron microscopy (TEM), adds temporal and 

spatial information from FLM to the high-resolution structural information of EM, 

facilitating identification of rare or dynamic events during host-virus interactions (Afzelius 

& Maunsbach, 2004; Bharat & Kukulski, 2019; Bykov et al., 2016; Ganeva & Kukulski, 

2020; Laue, 2010; Romero-Brey, 2018). To preserve cellular structures and overall specimen 

integrity, biological samples undergo steps of fixation prior to EM imaging (McDonald, 

2009; Passmore & Russo, 2016; Romero-Brey, 2018; Romero-Brey and Bartenschlager, 

2015; Studer et al., 2008; Thompson et al., 2016). Conventional EM methods require 

chemical fixation or high-pressure freezing prior to resin embedding. These techniques 

have been used for EM studies of viral infection in cells where preservation of the 

ultrastructure of viral replication organelles and subcellular membrane structures is essential 

(Chatel-Chaix et al., 2016; Lee et al., 2019; Melia et al., 2017; Neufeldt et al., 2018; 

Romero-Brey et al., 2012; Rossignol et al., 2017, 2015). Rapid vitrification of biological 

specimens by plunge-freezing (Dubochet et al., 1988) helps minimize preparative artifacts 

typically associated with conventional EM procedures of chemical fixation, dehydration, 

resin-embedding, and pre or post heavy-metal staining (Baker et al., 2017; Dillard et al., 

2018; Lučić et al., 2013; Romero-Brey and Bartenschlager, 2015). Sample vitrification 

followed by cryo-EM imaging allows for the direct visualization of macromolecular 

structures on the nanometer- to sub-nanometer-resolution levels in a native frozen-hydrated 

state (Ertel et al., 2017; Ke et al., 2020a, 2018b, 2018c; Koning et al., 2018; Li et al., 

2016; Liu et al., 2020; Luque & Castón, 2020; Peukes et al., 2020; Riedel et al., 2017; 

Strauss et al., 2016; Sutton et al., 2020; Unchwaniwala et al., 2020; Wan et al., 2017; 

Zeev-Ben-Mordehai et al., 2016). Cryo-CLEM has proven to be a powerful method for 

in situ structural studies, including time-dependent events, especially those associated with 

viral entry, replication, and egress (Briegel et al., 2010; Carter et al., 2020; Hampton et al., 

2017; Jun et al., 2011, 2019; Zhang, 2013). For samples that are too thick for direct cryo-EM 

imaging, cryo-sectioning (Al-Amoudi et al., 2004; Bharat et al., 2018; Chlanda & Sachse, 

2014; Salje et al., 2009; Zuber et al., 2008) and/or cryo-focused-ion-beam (FIB) milling 

(Arnold et al., 2016; Gorelick et al., 2019; Hayles and De Winter, 2021; Hoffman et al., 

2020; Hsieh et al., 2014; Mahamid et al., 2015; Marko et al., 2007; Rigort et al., 2012a, 

2012b, 2010; Schaffer et al., 2019; Wagner et al., 2020; Wu et al., 2020; Zhu et al., 2021) 

may be used to expand the applicability of cryo-CLEM and cryo-ET.
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In cryo-CLEM, sample vitrification can be performed either before or after fluorescence 

imaging (Briegel et al., 2010; Ganeva & Kukulski, 2020). Fluorescence imaging of a 

specimen prior to cryo-preservation is valuable because of the improved resolution of 

immersion-objective microscopes and options for dynamic, time-resolved imaging (Fu et 

al., 2019; Jun et al., 2011; Sartori-Rupp et al., 2019; Tao et al., 2018). However, specimen 

states observed prior to cryo-immobilization may change, be disrupted, or damaged by 

the vitrification process or sample manipulation, thereby limiting the correlation precision. 

Cryo-fluorescence light microscopes (cryo-FLM) equipped with dedicated ‘cryo-stages’ 

that maintain specimens well below −150 °C have made it possible to correlate biological 

events with cryo-EM/ET on identical samples. In recent years, various solutions have been 

introduced to optimize low-temperature imaging, to reduce the number of grid transfer steps, 

and to realize high-resolution cryo-FLM. These include the development and use of stable 

cryo-stages (Briegel et al., 2010; Jun et al., 2011; Li et al., 2018; Rigort et al., 2010, 2012a, 

2012b; Sartori et al., 2007; Schellenberger et al., 2014; Schorb & Briggs, 2014; Schwartz et 

al., 2007; Tao et al., 2018; van Driel et al., 2009), integrated cryo-FLM and -EM systems 

(Agronskaia et al., 2008; Faas et al., 2013; Gorelick et al., 2019), high numerical-aperture 

(NA) cryo-objective lenses (Faoro et al., 2018; Le Gros et al., 2009; Li et al., 2018; Nahmani 

et al., 2017; Schorb et al., 2017; Wang et al., 2019), and cryogenic fluorescent labeling 

(Carter et al., 2018; Chang et al., 2014; Dahlberg et al., 2018; Liu et al., 2015; Moser et 

al., 2019; Schorb & Briggs, 2014; Schwartz et al., 2007; Tuijtel et al., 2019). In addition, 

super-resolution cryo-CLEM systems have also been explored, aiming to further bridge the 

resolution gap between LM and EM imaging modalities (Chang et al., 2014; Hoffman et al., 

2020; Kaufmann et al., 2014; Liu et al., 2015; Moser et al., 2019; Nahmani et al., 2017; 

Tuijtel et al., 2019; Wang et al., 2019; Weisenburger et al., 2017; Wolff et al., 2016).

Cryo-correlation typically proceeds in two steps, on-the-fly targeting and post-acquisition 

superposition. On-the-fly correlation guides cryo-EM/ET data collection to regions of 

interest (ROI), while post-acquisition mapping allows for precise translation of fluorescent 

signals to reveal ultrastructural details of targeted or potentially unknown objects in acquired 

cryo-EM images or cryo-ET 3D volumes. In order to facilitate targeting, TEM grids 

may be marked with numbers and letters (i.e., finder grids) to aid in an initial rough 

correlation process. Application of fiducial markers to the sample before vitrification, 

such as fluorescent electron-dense microspheres, can support finer-scale correlations of 

approximately 10 to 100 nm (Fokkema et al., 2018; Fu et al., 2019; Fukuda et al., 2014; 

Kukulski et al., 2011; Li et al., 2018; Schellenberger et al., 2014; Schorb & Briggs, 2014; 

Schorb et al., 2017). A less common approach is to use EM grid support features, including 

holes and imperfections in the carbon film, to achieve marker-free correlative alignment 

(Anderson et al., 2018; Dahlberg et al., 2020; Sun et al., 2019). In all cases, there are still 

difficulties to overcome. First, the distribution of fiducial markers across the entire grid 

needs to be relatively uniform for alignments to be reliable. The optimized density must be 

high enough to provide good alignment, but low enough not to obscure fluorescent signals 

from ROIs. Second, bent, warped, or crinkled vitrified grids and uneven ice-thickness 

hinder automated detection of the holes in the carbon films, leading to poor matching and 

relocation of the same hole on both maps. Therefore, interactive alignment that integrates 
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software-aided automation while including necessary user intervention is needed for quick 

and reliable registration.

A number of research groups have developed workflows, software or scripts to facilitate the 

coordinate transfer step (Anderson et al., 2018; Arnold et al., 2016; Fu et al., 2019; Fukuda 

et al., 2014; Gorelick et al., 2019; Jun et al., 2011; Kukulski et al., 2011; Paul-Gilloteaux 

et al., 2017; Rigort et al., 2010, 2012a, 2012b; Sartori et al., 2007; Schellenberger et al., 

2014; Schorb & Briggs, 2014; Schorb et al., 2017; Schorb & Sieckmann, 2017; Schwartz 

et al., 2007; van Driel et al., 2009). Many tools for correlative microscopy are available 

to the community and support accurate translations of fluorescent ROIs across various 

microscopy systems. Several options either require access to licensed materials such as 

MATLAB (MathWorks, Natick, MA, USA) or experience with programming languages (Fu 

et al., 2019; Fukuda et al., 2014; Kukulski et al., 2011; Rigort et al., 2010; van Driel et al., 

2009). Others are built for specific workflows and hardware configurations (Gorelick et al., 

2019; Li et al., 2018; Tao et al., 2018), or focus on alignment accuracy to deal with multi­

dimensional and complicated graphic distortions (Arnold et al., 2016; Paul-Gilloteaux et 

al., 2017). Previously, Fukuda et al. explored coordinate-based transformation in cryo-FLM 

to cryo-EM and cryo-FLM to cryo-FIB/SEM (Fukuda et al., 2014). However, the python 

script was not integrated with live automated data acquisition. Recently, the Py-EM package 

(Schorb et al., 2019) was developed to interface with the microscope-control platform 

SerialEM (Mastronarde, 2005) to provide coordinates for multi-target automated acquisition. 

Significant progress has been made towards real-time precise correlation. There is still a 

growing need for an “all-in-one” tool that is easy to set up, suitable for both accurate 

real-time cryo-correlative automated data collection and post-acquisition mapping, and open 

to adaptation for future multi-modal correlation schemes.

Here we present a cross-platform, user-friendly desktop application called “CorRelator” 

for feedback-based precise coordinate translation between cryo-FLM and cryo-EM/ET. 

CorRelator interfaces with SerialEM (Mastronarde, 2005) and employs robust registration 

and translation on the image pixel coordinate level while incorporating real-time microscope 

pixel-to-stage-position transformation (Fig. 1). Thus, all the transformations can be 

completed in CorRelator and saved until the user is ready for setting up automated data 

acquisition at the ROIs in SerialEM. The flexibility and system-independent nature of the 

tool for real-time cryo-CLEM data acquisition is validated in combination with SerialEM on 

live-cell and cryo-FLM of HeLa cells infected with respiratory syncytial virus (RSV). We 

demonstrate that a combination of software-aided approach and interactive user intervention 

optimizes alignment performance while accelerating the registration process. To support 

relocation accuracy, we show that lower lateral spatial resolutions that are commonly present 

in cryo-FLM data can be improved through advanced computational background cleaning 

and signal deconvolution processing. As more complex correlative strategies evolve and 

the demand for open-source system-independent cryo-CLEM setup increases, we believe 

that this tool will facilitate efforts in a broad-range of multi-modal correlative workflows. 

CorRelator is open-source and freely available for download at (https://github.com/wright­

cemrc-projects/corr).
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2. Materials and methods

2.1. Cell culture and infection on TEM grids

Quantifoil grids (200 mesh Au R2/2 and Au Finder; Quantifoil Micro Tools GmbH, 

Großlöbichau, Germany) were coated with an extra layer of carbon for stabilization and then 

glow discharged for improved hydrophilicity. Some grids were subsequently coated with 100 

nm, 200 nm, and 500 nm fluorescent microspheres (TetraSpeck Microspheres, Invitrogen 

T7279, T7281, USA) at a 500x or 1000x dilution for 5 min, followed with a washing step 

using 1x PBS. HeLa cells (ATCC CCL-2, ATCC, Manassas, VA, USA) were seeded on the 

bead-free or bead-coated grids at a density of 0.5–0.75 × 105 cells/mL in glass-bottomed 

culture dishes (MatTek Corp., MA, USA) (Schellenberger et al., 2014). The grids and 

dishes seeded with HeLa cells were cultured overnight at 37 °C with 5% CO2 in DMEM 

complete medium supplemented with 10% fetal bovine serum (FBS), 1 μg/mL penicillin, 

streptomycin and amphotericin B (PSA) antibiotics. After overnight incubation, the cell­

seeded grids were inoculated with the recombinant virus strain RSV rA2-mK+ (Hotard et al., 

2012). Twenty-four hours post-infection, native immunogold labeling of RSV glycoprotein 

F was carried out as published previously (Yi et al., 2015), with a primary antibody 

(motavizumab, 4 μg/mL (gift from Larry J. Anderson’s Laboratory, Emory University)) 

and secondary antibody Alexa Fluor 488 Nanogold Goat anti-human IgG (Nanoprobes, NY, 

USA) (Cheutin et al., 2007). 4 μl of 10 nm gold fiducial beads (Aurion Gold Nanoparticles, 

Electron Microscopy Sciences, PA, USA) were applied to the RSV-infected cell EM grids 

to aid in image alignment during the tomogram reconstruction process. The grids with RSV­

infected HeLa cells were plunge-frozen using a Gatan CryoPlunge3 system with GentleBlot 

blotters (Gatan, Inc., Pleasanton, CA, USA).

2.2. Correlative fluorescence microscopy

The CorRelator workflows were tested on a Leica DMi8 widefield fluorescence microscope 

under ambient environmental conditions or a Leica EM Cryo-CLEM microscope system 

under cryo-conditions (Leica MicroSystems, Germany). For room-temperature correlation, 

TetraSpeck-coated (100 nm) Au Quantifoil Finder EM grids were imaged at 40 × 

magnification (40 ×, 0.6NA lens, dry) and 63 × magnification (63 ×, 1.4NA lens, oil­

immersion) in brightfield, GFP (emission, λ = 525 nm), and Texas Red (emission, λ = 619 

nm) channels with Micro-Manager (Edelstein et al., 2014). For live-cell correlation, RSV­

infected HeLa cells grown on Au Quantifoil EM grids were imaged at 20 × magnification 

(20 ×, 0.4NA lens, dry) and 63 × magnification (63 ×, 1.4NA lens, oil-immersion) in 

brightfield, GFP (emission, λ = 525 nm), Texas Red (emission, λ = 619 nm), and DAPI 

(emission, λ = 477 nm) channels with Micro-Manager (Edelstein et al., 2014). Cryo-FLM of 

grids with RSV-infected HeLa cells was performed using a Leica EM Cryo CLEM system 

(50 ×, ceramic-tipped, 0.90NA), with brightfield and the band pass filter cubes of 525 nm 

and 630 nm, using the dedicated Leica LAS X microscope software (Hampton et al., 2017; 

Schorb et al., 2017; Schorb & Sieckmann, 2017). Images combined to generate 12 to 15 μm 

Z-stack projections were collected of vitrified grids at a Nyquist sampling step of 350 nm to 

compensate for cell thickness and wavy or warped grids. The Small Volume Computational 

Clearance (SVCC) implemented in the Leica LAS X THUNDER package was applied to 

the post-acquisition image stacks to reduce image blurring and to restore weaker or lower 
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signals. Images and mosaic tiles were exported and used as compressed lossless RGB TIFF 

format. We determined the point spread function (PSF) of the fluorescent signal (emission λ 
= 525 nm) of 500 nm TetraSpeck beads in the unprocessed and SVCC-processed cryo-FLM 

image stacks (n = 10). Additional image processing steps such as flipping, cropping, and 

contrast adjustment were performed in ImageJ/Fiji (Schindelin et al., 2012) and CorRelator.

2.3. Cryo-electron microscopy, cryo-electron tomography, and tomogram reconstruction

After FLM imaging at room temperature, the bead-coated Quantifoil Finder grids were 

imaged with a Tecnai T12 (ThermoScientific, Hillsboro, OR, USA) operated at 120 kV and 

equipped with a 4 k × 4 k Gatan OneView camera using SerialEM (Mastronarde, 2005). 

After cryo-FLM imaging, bare grids with immunolabeled RSV-infected HeLa cells were 

clipped and imaged using a Titan Krios (ThermoScientific, Hillsboro, OR, USA) at 300 kV. 

Images were acquired on a post-GIF Gatan K3 camera in EFTEM mode with a 20 eV slit. 

Images were recorded at magnification of 81 × (4,485 Å/pixel), 470 × (399 Å/pixel), 2,250 × 

(76 Å/pixel), and 19,500 × (4.47 Å/pixel). All grid TEM maps were collected in SerialEM.

Tilt series were collected bi-directionally with 2° increments covering a tilt range of −60° 

to 60° at a magnification of 19,500 × (4.47 Å/pixel) and nominal defocus of −8 μm with 

a total dose of 80 to 100 e−/Å2. Tilt series were aligned using 10 nm fiducial beads and 

reconstructed with weighted back-projection algorithm using the IMOD package (Kremer 

et al., 1996). The cryo-tomograms reconstructed in IMOD were denoised using the low 

pass Gaussian filter function on 3D volumes implemented in EMAN2 (Tang et al., 2007), 

followed by smooth filtering with a standard kernel of 3×3 in IMOD, to enhance contrast.

2.4. Identification of hole centers

To identify the center positions of the holes in the fluorescent TIFF images, we followed 

similar steps as described previously (Anderson et al., 2018). Briefly, the raw images were 

cropped based on ROI. Some images were downsized by a binning factor of 2 to increase the 

computational processing speed. The raw images had multiple channels including brightfield 

and fluorescent channels (e.g., GFP and Texas Red). The cropped fluorescent channel frame 

(usually with high noise) was subjected to iterative non-local mean filtering (Buades et 

al., 2005) to optimize efficiency in hole identification in the carbon film. Alternatively, 

brightfield frames may be used when the shift between frames of the different channels was 

tolerable (less than 1% of target identification exceeding 2-pixel difference). An iterative 

median filter of 2 to 6 iterations and optimal threshold for binarization were applied to 

preserve sharpness of the hole edges. Then, the binarized images were processed with the 

Canny edge detector function (Canny, 1986), followed by the circular Hough transform 

function (Illingworth & Kittler, 1987) to determine the optimal radius for hole detection and 

center coordinates of each detected hole. The whole procedure was carried out using the 

ImageJ/Fiji platform (Schindelin et al., 2012) where the Canny Edge Detector and circular 

Hough transform functions were loaded and run as plugins. The hole center coordinates 

(Px, Py) of a fluorescent TIFF image were exported in the comma-separated value (CSV) 

file format. For TEM image maps and montages collected in SerialEM, the hole centers 

were identified following the same procedure described above. SerialEM also has a built-in 

function to label a 2D grid of hole centers for TEM maps only (not applicable to FLM) 
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in its Navigator module, “Add Grid of Points” function and software-aided algorithmic 

identification of circular hole centers (SerialEM 3.8). CorRelator also provides automated 

identification of circular hole centroids via Circular Hough Transform.

2.5. Registration of stage positions in CorRelator

Images or image maps are next imported into CorRelator. The default coordinate system in 

ImageJ/Fiji is left-handed with (0,0) defining the top left corner. Pixel coordinates in this 

system can be directly imported from CSV formats to be associated with an image or image 

map in CorRelator. Additional positions can be manually assigned or modified. CorRelator 

then facilitates iteratively importing and assigning pixel positions on maps and converting 

pixel coordinates to the stage positions. The stage positions are exportable as a Navigator 

file in autodoc format that can be directly read into SerialEM. Alternatively, CorRelator can 

solve for an affine transformation function that directly aligns the stage positions and maps.

2.6. Affine transformation in CorRelator

We adopted the closed-form solution to the least square problem for an overdetermined 

system to determine the optimal transformation matrix between two modalities (Horn, 

1987). While at least 4 reference coordinate pairs are required to avoid the singular matrix 

problem, unlimited reference points can be added and incorporated into the solution. Due to 

the location error in the reference pair positioning, the calculated alignment will not satisfy 

or fit into all pairs. Instead, it is set to find the best-fitting solution that minimizes the sum of 

squared errors between targets and predicted outputs.

x0 ⋯ xn
y0 ⋯ yn
1 ⋯ 1

* M =
Px0 ⋯ Pxn
Py0 ⋯ Pyn

1 ⋯ 1
, (1)

Where 

x0 ⋯ xn
y0 ⋯ yn
1 ⋯ 1

 and 

Px0 ⋯ Pxn
Py0 ⋯ Pyn

1 ⋯ 1
 are matching homogenous reference pairs of X- and Y- 

image coordinates in the fluorescent image and TEM image to which the fluorescent image 

is registered, M is the transformation matrix. To simplify the equation (3), set 

x0 ⋯ xn
y0 ⋯ yn
1 ⋯ 1

 as 

matrix P ∈ Rn, 

Px0 ⋯ Pxn
Py0 ⋯ Pyn

1 ⋯ 1
 as matrix Q ∈ Rn, then for an overdetermined system,

M = QPT   inverse   PPT (2)

When PM = Q is consistent, then M = Mthe usual matrix solution. Matrix multiplication, 

transposition, and inverse calculations were implemented with the Java Apache Commons 

Math package (2014).
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2.7. Alignment accuracy estimation

We validated the alignment accuracy of CorRelator and the transformation algorithms of 

several programs including MATLAB (MathWorks, Natick, MA, USA), eC-CLEM (Paul­

Gilloteaux et al., 2017), and 3D Correlation Tool (Arnold et al., 2016), using a procedure 

called “Leave-one-out” that was described previously (Kukulski et al., 2011). Briefly, the 

hole centers in the carbon film within a square were used as alignment markers while either 

non-registered hole centroids that were unused and left out or TetraSpecks (100 or 500 nm) 

in the FLM image were treated as the ROIs whose positions were predicted in the registered 

EM image. The hole centroids were identified as described above. To select the bead 

signals, we used a two-dimensional Gaussian function in MATLAB (Kukulski et al., 2011; 

Schellenberger et al., 2014). The predicted position of ROIs was then compared to the actual 

position to estimate the individual prediction error by measuring the Euclidean distance or 

length between the two points. The deviation on X and Y axes was calibrated in a form 

of Euclidean vector. For cryo-CLEM, we followed a similar procedure using Quantifoil 

and Quantifoil Finder grids of infected HeLa cells. In this case, F glycoprotein labeling 

(green signal) was treated as the ROIs. To estimate the on-the-fly image acquisition accuracy 

based on CorRelator’s predictions, the image shift offsets between magnifications on a 

SerialEM-controlled TEM were corrected to avoid additional off-target variance introduced 

by the microscope lens performance. We then used the deviation between the ROI position 

(fluorescent viruses or TetraSpecks) and the center of the acquired image after moving to the 

predicted stage position.

3. Results

3.1. CorRelator development

CorRelator supports both on-the-fly and post-acquisition two-dimensional (2D) cryo­

correlation. As shown in Fig. 1, the on-the-fly correlation and subsequent automated 

cryo-EM/ET data collection can be accomplished through integration with SerialEM 

(Mastronarde, 2005), a versatile software program that controls the TEM and image 

detectors. While SerialEM is capable of manual point matching transformations (Hampton 

et al., 2017; Schorb et al., 2017; Schwartz et al., 2007), the registration process can be 

time-consuming and less accurate due to limited guidance and assessment steps. To tackle 

this challenge, CorRelator uses an iterative approach to guide the user to define and evaluate 

registration points with integrated alignment algorithms, and subsequently translates external 

image coordinates into real-time TEM stage positions in SerialEM (Fig. 1A).

The key concept of CorRelator is to use image pixel coordinates for robust registration 

and incorporate microscope stage-position-to-pixel-coordinate matrices to achieve fast 

and reliable on-the-fly correlation. We decided to use SerialEM because (1) it is an 

open-source program extensively used in the microscopy community for automated data 

acquisition; (2) it is applicable to many existing TEM systems and imaging detectors; (3) 

the instrumentation-determined image-pixels-to-stage-position relationships are accessible 

and able to be updated live in its Navigator file, where each image or mosaic is considered 

as a Map entry (see Appendix-A). The transformation of image planar coordinates to 
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stage planar coordinates can be determined by a 2D affine transformation represented in 

homogeneous form:

Px
Py
1

= Mstage2pixel 

PtsX
PtsY

1
, (3)

Where Mstage2pixel  =
a b c
d e f
0 0 1

 is the stage-to-pixel coordinate transform matrix, (Px, Py) ∈ R2 

is the image planar coordinate, and (PtsX, PtsY) ∈ R2is the transformed TEM planar stage 

position. The reverse transform is:

PtsX
PtsY

1
=

a b c
d e f
0 0 1

−1 Px
Py
1

(4)

Where 
a b c
d e f
0 0 1

−1

= Mpixel2stage  is the pixel-to-stage coordinate transform matrix.

When a set of external XY coordinates (e.g., points for registration or ROIs) related to a 

FLM or TEM map entry in the navigator file, are provided, CorRelator reads and applies 

the matrices Mstage2pixel and Mpixel2stage of the associated map to these user-defined points. 

As a result, the offline-determined “external” coordinates are translated to recognizable 

“inherent” stage positions written out in an updated Navigator file. This essential feature 

allows the user to perform real-time FLM to cryo-EM correlation, use transformation results 

from other available tools and the user’s existing workflow, and update alignment if needed

—all without leaving CorRelator.

Vitrification by plunge-freezing ensures preservation of biological samples in a near-native 

state and helps reduce physical deformations, such as non-linear warping of the sample 

that can occur during chemical fixation, freeze substitution, sectioning, embedding, and 

image acquisition (Fukuda et al., 2014; Romero-Brey and Bartenschlager, 2015; Sartori et 

al., 2007). An affine transformation that preserves co-linearity of all points and ratios of 

distance, is suitable for accurate 2D coordinate transfer for cryo-CLEM of plunge-frozen 

samples (Arnold et al., 2016; Fu et al., 2019; Fukuda et al., 2014; Hampton et al., 2017; 

Kuba et al., 2021; Kukulski et al., 2011; Rigort et al., 2010, 2012a, 2012b; Sartori et al., 

2007; Schellenberger et al., 2014; Schorb & Briggs, 2014; Schorb et al., 2017; Schwartz et 

al., 2007; van Driel et al., 2009). The registration may not be accurate for all reference pairs 

due to possible errors in the point pair positioning. To accommodate outliers and handle 

alignment, the transformation matrix M between cryo-FLM and EM is calculated using 

closed-form ordinary least-squares solutions (OLS) in digital geometric image correlation 

(Castleman, 1995; Gonzalez & Woods, 2002; Horn, 1987). Following the pixel-to-stage 

transformation, the FLM-to-TEM matrix M accounts for changes in magnification, scaling, 
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rotation, translation, and shearing between FLM and TEM. The transformation M is then 

applied to the coordinates of the fluorescent signal of interest, defining individual translated 

pixel and stage positions in the correlated TEM image.

A flow chart of the algorithm for CorRelator is shown in Fig. 1B. CorRelator first defines 

the Mstage2pixel of different maps in a baseline SerialEM navigator file (Nav_1). The map 

may be: (1) a whole grid cryo-EM montage at low magnification for rough correlation, (2) 

an intermediate magnification EM mosaic of squares of interest for fine correlation, (3) an 

imported image, e.g., a cryo-FLM frame from a wide range of commonly used microscope 

software solutions, open-source tools such as Micro-Manager (Edelstein et al., 2014) or 

commercial applications such as Leica LAS X, Nikon NIS-Elements, and Zeiss. CorRelator 

adopts an iterative and interactive registration approach, supporting (1) manual selection and 

(2) software-aided assignment through either importing comma-separated values (CSV) files 

of pixel coordinates from various external sources, or the integrated Circle Hough Transform 

feature in CorRelator. A csv file is a common file format exported by many image analysis 

tools such as ImageJ/Fiji (Schindelin et al., 2012), IMOD (Kremer et al., 1996), MATLAB 

(MathWorks, Natick, MA, USA), Chimera and ChimeraX (Pettersen et al., 2020; Yang et al., 

2012), and other commercial graphic editors such as Adobe Photoshop (Adobe, San Jose, 

CA, USA). In this way, CorRelator supports interoperability with existing popular programs 

and retains its own portability and flexibility. When provided with two matching sets of 

pixel coordinate pairs for image registration, CorRelator converts them into stage positions 

and calculates the optimal transformation matrix M to align the FLM to TEM frame. The 

alignment performance can be visually and quantitatively assessed. As a result, the user will 

be able to quickly decide if another iteration of transformation is necessary. The output is 

an updated functional navigator file referred as to Nav_2. Based on the experimental design 

and workflow, Nav_2 may be: (1) exported at various stages, (2) used for direct automated 

cryo-EM/ET data acquisition at the transformed fluorescent ROIs (Fig. 1B Route 1), or (3) 

used for further manipulation and transformation in SerialEM (Fig. 1B Route 2). The tool is 

also suitable for post-acquisition correlation (Fig. 1B. Route 3). In this case, a matching set 

of x- and y- pixel coordinate pairs identifiable in FLM and EM images are direct registration 

points for matrix calculation.

3.2. CorRelator graphical user interface (GUI) design and workflow

Another component of CorRelator is the intuitive graphical user interface (GUI) that 

assembles robust and flexible correlation paths. The software tool is a microscope­

independent Java desktop application that can be launched by double-clicking on the 

CorRelator application on a system with the Java SE Runtime Environment 8. CorRelator 

integrates the Apache Commons Math (2014) for matrix manipulations, the Java Advanced 

Imaging library for graphical format support, and JavaFX for GUI elements. The GUI 

supports multiple pathways for data management, including a Project view and a Wizard 
(Fig. 2 and Supplementary Fig. 1). The Wizard feature is a step-by-step workflow for 

performing guided on-the-fly or post-acquisition cryo-FLM to EM transformation. The 

Project view alternatively allows iterative operations for importing or adding more new maps 

and pixel positions, and performing subsequent 2D alignments. CorRelator is designed to 

allow the user to make the best of their available resources by the GUI Import feature. 
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Thus, it can work in conjunction with images and pixel coordinate outputs from a wide 

library of automated functions and plugins from other image analysis tools. It currently 

supports common image formats of MRC, TIFF, PNG, JPEG. Meanwhile, manual selection 

options allow the user to interact and fine tune image and map registration if needed. The 

Project view may be used to open image viewers of individual or aligned images and labeled 

pixel locations for quick assessment of alignment errors (Fig. 2, Supplementary Fig. 1). A 

new project/session can be created that will record information about maps (File), positions 

(Import/Export), alignments (Alignment), and errors that might arise during transformation 

(Log). New projects can be saved as XML-formatted data to preserve pre-alignment and 

post-alignment results. The registration coordinates and corresponding stage position remain 

constant after transformation, allowing users to un-align and re-align the images if the 

transformation is unsatisfactory (Fig. 2, Supplementary Fig. 1, Video 1). Multiple cryo-FLM 

and cryo-EM square maps for fine correlation can be accessed and aligned at the same time. 

CorRelator can export navigator files (Nav-2) specific to an experimental workflow at any 

point and save aligned overlays for subsequent applications.

3.3. High-accuracy cryo-CLEM applications with CorRelator

CorRelator fits into the classical two-step cryo-CLEM workflow for accurate on-the-fly 

correlation experiments with high flexibility (Figs. 1, 3, Supplementary Fig. 2). As 

published previously and detailed in the Materials and Methods (Hampton et al., 2017; 

Ke et al., 2018), HeLa cells grown on Au Quantifoil grids were infected by recombinant 

RSV strain rA2-mK+ (Hotard et al., 2012) expressing the far-red monomeric Katushka tag, 

followed by native immunogold-labeling of the RSV F glycoprotein (Fluro-nanogold) (Yi 

et al., 2015). We used a commercial Leica EM cryo-CLEM system and the LAS X CLEM 

software to scan entire grids to produce a series of multi-channel, multi-Z image stacks at 

each position (Hampton et al., 2017; Schorb et al., 2017). A final single stitched whole 

cryo-FLM grid image was then imported into SerialEM for ‘square-level’ rough correlation. 

Each local FLM image tile of the grid mosaic could be used later for fine correlation. 

Subsequent to FLM imaging, the same grid was loaded onto a Titan Krios microscope 

(ThermoScientific, Hillsboro, OR, USA) and a low magnification cryo-EM grid montage 

was collected with SerialEM (binning levels of between 4 to 8 were chosen for faster 

subsequent processing) for rough correlation (Fig. 3A–C). Blending/stiching of cryo-EM 

grid montages were performed in IMOD (Kremer et al., 1996). The recloation precision was 

sufficient to assign the grid squares/regions of interest for further fine correlation.

A SerialEM navigator file (Nav_1) was created to store both TEM and the imported FLM 

map and point entries. Recognizable grid-level landmarks visible in both FLM and cryo­

EM such as torn and broken squares, cells, and letters or numbers (like those on an EM 

finder grid), were used as rough registration points. Alignment may be difficult and time­

consuming when dark regions were present in the EM image because of thick ice or when 

the post-FLM imaged grid was flipped or rotated during sample handling. In CorRelator, we 

used the cryo-EM grid map as a reference (Fig. 3A), to transform the raw FLM grid mosaic 

counterpart by flipping, rotating, and adjusting its contrast offline for easy visualization 

(Fig. 3B). We recommend keeping TEM images as unchanged references during on-the-fly 

correlation in order to preserve the live pixel-to-stage-position transformation. Changes 
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in pixel coordinates of the TEM map such as cropping, rotating, and flipping, could 

lead to marginal misplacement of landmarks and a subsequent misalignment of the two 

imaging modalities. The rough transformation enabled us to identify squares of interest for 

fine alignment (Fig. 3C). To minimize pixel changes introduced by imprecise stage shift 

movements, we recorded the TEM square maps at an intermediate low magnification (470 

×, 399 Å/pixel, EFTEM mode, Krios) where a single frame covered the entire field of view 

of the square of interest and the holes on the support film were clearly visible (Fig. 3F, G). 

Thus, no additional blending or stitching of multiple image tiles was necessary, ensuring 

accurate transformation.

Bead-free alignment based on sample support features visible by lower magnification 

imaging modes has been explored (Anderson et al., 2018; Dahlberg et al., 2020; Sun et 

al., 2019). The use of hole centroids (Fig. 3E, F) as registration references has several 

advantages: 1) multiple independent image analysis tools such as ImageJ/Fiji, MATLAB, 

SerialEM, and CorRelator incorporate automated algorithmic hole finding functions to 

detect the edge and centroid of a hole, allowing faster and accurate point assignment; 2) 

hole centroids are abundant, readily identifiable in lower magnification TEM frames where 

individual fluorescent fiducial beads (200 nm or smaller in diameter) are poorly resolved; (3) 

determination of hole centroid coordinates is less prone to pixel misassignment introduced 

by image acquisition and processing, e. g., the centroids may endure few changes in pixel 

given that the user may set the binarization threshold higher or lower depending on the 

frame’s noise level. The hole centroid identification process may be completed in the 

same fluorescent channel as the ROIs, e.g., the GFP channel for labeled RSV particles, to 

minimize misalignments and shifts between multiple frames (Schellenberger et al., 2014). 

Non-local means filtering can be used to increase the contrast in FLM images with high 

background signal (Anderson et al., 2018; Buades et al., 2005). To examine possible 

deviations in alignment between brightfield and fluorescence image frames, we performed 

the hole identification procedure on filtered fluorescence and brightfield images acquired 

from the same area. We found that the deviation of the hole centroid coordinates for the 

same hole between the two modes was tolerable (Supplementary Fig. 3E), with less than 

1% of holes exceeding 2-pixel difference (399 Å/pixel). A larger number of usable center 

coordinates were identified in the brightfield frame (Supplementary Fig. 3D). Following the 

rough correlation, CorRelator then treated the Nav_2 as the new Nav_1 to reinitiate a round 

of fine alignment process (Fig. 1A, 3D–F). Here, out of the user-provided hole centroid 

coordinates (Fig. 3F, blue points), a set of matching reference points (n = 9) were selected to 

calculate the matrix M between the two modalities. After one or several rounds of iterative 

registration and assessment, an overlay of the cryo-FLM and -EM images was generated for 

a reliable identification of the ROIs (Fig. 3G).

CorRelator mapping of ROIs from FLM to EM can provide updated stage positions for 

direct automated cryo-ET tilt series collection on labeled RSV particles as ROIs (Fig. 3G–

J). Consistent with previous reports (Hampton et al., 2017; Ke et al., 2018; Kiss et al., 

2014; Liljeroos et al., 2013), tomographic slices of the RSV particles (Fig. 3J) showed 

that the virus was predominantly filamentous and likely infectious. Regular organization 

of the surface glycoproteins (peak 2), matrix protein (M) (peak 4), M2-1(peak 5), and the 

ribonucleoprotein complex (RNP, peak 6, 7) relative to the viral membrane (peak 3) were 
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revealed in linear density profile analysis (Fig. 3L). Of note, the nanogold-Alexa488 labeled 

RSV particles (Fig. 3J, blue line in Fig. 3L) appeared fuzzier than un-labeled RSV (Fig. 3K, 

black line in Fig. 3L) released from HeLa cells infected under the same conditions (MOI 

= 10, 24-hours post infection). An extra layer of density ~ 23 nm (peak 1) from the viral 

membrane was observed above the densities attributed to the glycoproteins (~12 nm, peak 2) 

(Fig. 3j–k, L). The extra density was likely due to the secondary antibody nanogold-Alexa 

488 anti-human IgG (~12 to 15 nm in length) and contributed to the diffuse appearance.

All map images were loaded through relative path names indicated in a navigator file. 

CorRelator operates on the image pixel coordinates for registration and alignment. It is 

possible to use noisy unprocessed fluorescence images that have holes visible for hole­

centroid registration, and then to swap with and load a processed fluorescence frame 

for on-the-fly target identification in SerialEM. Of note, there might be uncertain minor 

changes in pixels between pre- and post- processed images. When an object is irregular and 

pleomorphic, such as filamentous viral particles (Fig. 3G–I), locating fluorescent objects 

precisely by wide-field imaging is difficult. It is common that fluorescent signal from 

adjacent focal planes may result in an image with out-of-focus blur that limits details from 

being observed. To improve image contrast and resolution, we applied Leica’s THUNDER 

technology to remove background out-of-focus signal and enhance image contrast. An 

automated adaptive three-dimensional (3D) deconvolution method was applied to improve 

image resolution by restoring the point spread function (PSF). Here, we investigated RSV 

assembly sites on the plasma membrane of the infected cells (Harrison et al., 2010; Ke et al., 

2018; Oomens et al., 2006). Labeled RSV F was resolved along the host plasma membrane 

and was present on the exterior of released viral particles (Harrison et al., 2010; Ke et al., 

2018; Oomens et al., 2006; Yi et al., 2015). After small volume computational clearance 

(SVCC), the image contrast and resolution were improved (Supplementary Fig. 4A–D). As 

a result, previously undistinguishable viral filaments (Fig. 4A–C) close to infected cells 

were observed (Fig. 4D–F). We registered and transformed unprocessed cryo-FLM (Fig. 

4A) and EM images in CorRelator using paired hole centers, followed by swapping to a 

post-SVCC frame (Fig. 4D). SVCC processing did not introduce detectable pixel changes 

to the original coordinate system of the raw frame (Supplementary Fig. 4C–E). Correlation 

between the post-SVCC fluorescent image and the cryo-EM square map revealed extended 

viral filaments along the cell plasma membrane (Fig. 4F, G, Supplementary Fig. 4). Cryo-ET 

of the same targets (red and orange stars in Fig. 4G) highlight the spatial organization of 

viral components inside the RSV filament at the cell edge (Fig. 4H, I). The RNP is noted 

by white arrowheads and the F glycoprotein along the viral membrane by black arrowheads 

(Fig. 4H, I). The full-width at half-maximum (FWHM) of the PSF in the lateral X and Y 

directions was improved by 1.5 (n = 10), consistently with the narrower X-axial intensity 

distribution (cyan boxed signal in Supplementary Fig. 4C–D, F).

3.4. Accuracy of on-the-fly and post-acquisition correlation by CorRelator

It has been reported that on-the-fly relocation precision of 0.1 to 1 μm may be possible 

when microscope stage movements are taken into consideration (Fu et al., 2019; Schorb 

et al., 2017). Post-acquisition correlation in the range of 20 to 100 nm is achievable using 

TetraSpeck or FluoSphere fiducials combined with the linear transformation function (Fu et 
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al., 2019; Fukuda et al., 2014; Kukulski et al., 2011; Paul-Gilloteaux et al., 2017; Rigort 

et al., 2010; Schellenberger et al., 2014; Schorb & Briggs, 2014; Schorb et al., 2017). To 

validate the performance of CorRelator, we first assessed the on-the-fly target prediction on 

pleomorphic RSV particles for real-time automated acquisition. To demonstrate the image 

acquisition procedure, we applied a similar methodology (Schorb et al., 2017) and analyzed 

a set of 50 images acquired at magnifications of 2,250 × (76 Å/pixel, EFTEM) and 19,500 

× (4.47 Å/pixel, EFTEM). After aligning the cryo-FLM square frames (Fig. 5A) to the 470 

× (399 Å/pixel, EFTEM) TEM images, we moved to the stage positions of the transformed 

fluorescent signal and recorded images at 2,250 × and 19,500 ×. For more reliable results, 

the image magnification offset calibration in SerialEM could be performed ahead between 

the registration magnification (470 ×, EFTEM), medium magnification (2,250 ×, EFTEM), 

and acquisition magnification (19,500 ×, EFTEM). Taking into account variations in stage 

movement, the Euclidian distance between the actual position of the fluorescent viral 

particle (pink cross, Fig. 5C–F) and the center of the images (or predicted position, yellow 

cross, Fig. 5C–F) was used to estimate the on-the-fly alignment accuracy, as described 

previously (Schorb et al., 2017). The mean error of Euclidian distance was 218.9 nm with 

a standard deviation of 109 nm, with an average of 160.7 nm in X and 148.6 nm in Y axis 

(n = 50, Fig. 5N, Table 1), comparable to previous reports (Fu et al., 2019; Schorb et al., 

2017). A maximum prediction error of 605 nm was observed when the hole centroids of 

damaged support films were used for image registration (Fig. 5E). The error for positioning 

pleomorphic objects fell well within a previously reported cryo-EM imaging tolerance range 

of ~ 1.4 × 1.4 μm (pixel size of 3 ~ 8 Å) on a Gatan K3 direct electron detector (Fu 

et al., 2019). The approximate normal distribution of prediction errors indicated that data 

acquisition could be conducted with a field of view as small as 700 nm while still expecting 

a less than 5% off-target rate (Fig. 5N). We noted that on-the-fly accuracy depended on 

multiple factors, including registration point selection, stage and image calibrations between 

magnifications on the TEM, the intensity and resolution of the fluorescent signals in FLM 

images, and the limit in recording magnification/pixel size in TEM. On a modern 4 k × 4 k 

camera, the field of view that the relocation error of 500 nm can have a minimal pixel size of 

3 Å to ensure relocation robustness and ROIs (200 nm in diameter) in the view. In addition, 

we obtained consistent targeting precision when stage and image shifts were calibrated at the 

magnifications used for correlation in SerialEM.

Following similar procedures (Anderson et al., 2018; Kukulski et al., 2011; Schellenberger 

et al., 2014), the post-acquisition alignment accuracy using paired hole center registration (n 

≥ 7 pairs) in CorRelator was measured on experimental cryo-CLEM data sets. CorRelator 

predicted errors of transformation were between 20 and 100 nm. We found that average 

prediction errors in X/Y axial directions were 68.6 nm (±42) and 66.8 nm (± 52) when hole 

centers were treated as ROIs (Supplementary Fig. 5A, Table 1), and 48.1 nm (± 43) and 

42.8 nm (±34) for 500 nm TetraSpeck targets as ROIs (Table 1). The slight improvement 

seen in TetraSpeck prediction, was likely due to the application of a 2D Gaussian fitting 

model to detect precise coordinates of the point-like fluorescent signal (Kukulski et al., 

2011; Schellenberger et al., 2014; Schorb & Briggs, 2014).

Furthermore, we used TetraSpeck-coated EM Finder grids and conducted room-temperature 

(RT) FLM-EM correlation to assess alignment accuracy through hole center registration in 
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the absence of cryogenic handling and thermal stage drift observed with cryo-FLM systems 

(Briegel et al., 2010; Fu et al., 2019; Li, S. et al., 2018; Rigort et al., 2010, 2012a, 2012b; 

Sartori et al., 2007; Schellenberger et al., 2014; Schorb & Briggs, 2014; van Driel et al., 

2009). The number of 100 nm TetraSpeck beads was optimized to roughly 5 ~ 15 beads 

per square of an EM Finder grid (Schellenberger et al., 2014). A multi-channel automated 

scan of the whole grid was performed by Micro-Manager (Edelstein et al., 2014) on an 

inverted DMi8 microscope at 40 × (40 ×, 0.6NA, dry, Leica). A higher NA oil-immersion 

objective (63 ×, 1.4NA, oil-immersion, Leica) was used to record single square frames of 

areas with a good bead distribution. The GFP signal (emission, λ = 525 nm) of TetraSpeck 

beads (100 nm) precisely identified through 2D Gaussian fitting were treated as ROIs. 

The hole centers for registration were identified algorithmically through circular Hough 

transform plugin in Fiji and fine-tuned in CorRelator. Likewise, we verified the precision 

of on-the-fly correlation by analyzing the acquired image sets after moving the stage to 

the predicted position of ROIs (Fig. 5G–H). Overall, the on-the-fly correlation performance 

achieved within 100 nm Euclidian deviation of the positions of the beads from the center 

of the images (Fig. 5N), a significant decrease compared to cryo-FLM to cryo-EM (p < 
0.05, Student’s T-Test). The mean displacement was 40.8 nm (n = 19, Fig. 5. H–M, Table 

1). Consistent with cryo-CLEM CorRelator applications, the post-acquisition correlation 

of either TetraSpeck beads or ‘leave-one-out’ hole centroids as ROIs displayed prediction 

errors of 10 to 100 nm (Table 1).

3.5. Comparison of transformation performance

We compared the transformation performance of CorRelator to standard MATLAB affine 

and projective geometric functions that have been used for consistent high accuracy 

correlation (Fu et al., 2019; Kukulski et al., 2011; Schellenberger et al., 2014; Schorb et 

al., 2017), rigid-transformation in eC-CLEM/ICY (Paul-Gilloteaux et al., 2017), and 2D-2D 

transformation in 3D Correlation Tool, 3DCT (Arnold et al., 2016). An identical set of 

paired hole centroids (n = 7 to 10) on cryo-FLM and cryo-EM images were used for 

registration while the prediction errors were measured through the standard ‘Leave-one-out’ 

method (Kukulski et al., 2011). CorRelator performed equivalently to the MATLAB Affine 

Transformation, eC-CLEM/ICY Rigid Transformation, and 3DCT that corrects translation, 

rotation, scaling, and shearing, the performance of which was better than the MATLAB’s 

Projective Transformation function (Fig. 6, Supplementary Fig. 5B).

The closed-form solution and non-linear product transformation require at least four 

reference points to avoid a singular/coplanar matrix, as is always the case when there are 

only three reference coordinates between two coordinate systems (Horn, 1987). To evaluate 

the variance in transformation performance caused by selection of alignment markers, we 

used a set of five reference coordinate pairs of hole centroids, defined either locally within 

a bounding area of ~ 3% of the entire field of view (cyan points), or across the entire image 

spanning roughly 50% (red points), to calculate the subsequent transformation matrices 

in CorRelator, MATLAB (affine and projective transformation), rigid eC-CLEM/ICY, and 

3DCT (Fig. 6A). The calculated matrices were then applied to the same set of ROIs 

(Leave-out-one, non-registration hole centroids) to obtain the prediction errors. Using either 

adequately dispersed or locally clustered registration points, linear transformation performed 
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better than non-linear projective transformation (Fig. 6B). Reference coordinate pairs (n ≥ 5) 

were able to achieve an overall high-accuracy cryo-FLM-to-cryo-EM coordinate correlation 

when the registration pairs were roughly distributed across 50% of the entire image (Fig. 

6D). The prediction error for ROIs that were closer to the picked reference coordinates were 

smaller than those located farther away. Increasing the number of local reference coordinates 

marginally improved the prediction error. We note that more uniformly distributed reference 

coordinates help obtain an optimum cryo-FLM to cryo-EM correlation. Compared to 

fluorescent bead-aided alignment, the distribution of holes is regular, uniform, and abundant 

by nature, and therefore more tolerant of prediction error caused by mispositioning reference 

pairs.

3.6. Adaptability of the CorRelator workflow

One of the major strengths of CorRelator is its flexibility and adaptability in cryo-CLEM 

applications. Provided the file format is supported, CorRelator can import images from 

any existing fluorescent microscope systems and perform 2D linear transformation and 

correlation with cryo-EM. While correlating cryo-FLM and cryo-EM on identical vitrified 

samples maximizes the alignment accuracy, live-cell fluorescent microscopy captures 

dynamic biological behaviors and allows for high NA and oil immersion objective lens 

imaging for a much higher resolution (Fu et al., 2019; 2011; Jun et al., 2013; Sartori­

Rupp et al., 2019). Here, to study dynamic RSV viral budding process, we adapted the 

cryo-CLEM-CorRelator routine and developed an integrated live-cell-FLM-plunge-freezing­

cryo-FLM-cryo-EM/ET workflow that takes advantages of both approaches. The procedure 

illustrated in Fig. 7A, used CorRelator to align to cryo-EM data live-cell-FLM images (Fig. 

7E, H) acquired on a DMi8 Leica wide-field microscope or cryo-FLM images (Fig. 7F, 

I) from a Leica cryo-CLEM system of the same RSV-infected HeLa cells prior to and 

after plunge-freezing (Fig. 7G). Both light microscopy systems revealed unique fluorescent 

ROIs. Following the grid-level rough correlation of the cryo-EM map (Fig. 7B) and live­

cell-FLM grid mosaic (Fig. 7C), the use of the high NA and oil immersion objective (63 

×, 1.4NA) distinguished clear green signals of a budding virus (red box in Fig. 7H, J) 

from the crowded background in raw unprocessed data, which was barely identifiable even 

in the SVCC-processed correlated cryo-FLM-cryo-EM image (red box, Fig. 7I). Similar 

relocation errors of both fluorescent microscopy systems (260 nm ± 131 in live-cell-FLM­

cryo-EM versus 283 nm ± 158 in cryo-FLM-cryo-EM) suggest a reliable hole-centroid 

registration and alignment performance by CorRelator both in the presence and absence of 

ice (Supplementary Fig. 6). In addition, three-channel live-cell FLM imaging was performed 

(Fig. 7E). We noticed that the limit to the number of fluorescent channels used is mainly 

determined by the filter cube accommodation/suitability for different chromophores in 

(cryo-) FLM, and considerations for the inevitable effects of spectral bleed-through. The 

accurate ROI assignment may suffer from bleed-through or misidentification of probe 

species and further image processing correction may be necessary (Kim et al., 2013). 

Overall, our results demonstrate the adaptability and flexibility of CorRelator and the 

workflow to other microscope systems for accurate correlative cryo-EM/ET applications.

Yang et al. Page 16

J Struct Biol. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

The application of diverse FLM and cryo-FLM approaches in combination with cryo-EM 

has led to advances in workflow and software development (Supplementary Table 1). There 

is an increasing need for easy and accurate correlative alignment for real-time cryo-CLEM. 

Here, we introduce a new system-independent and user-friendly cryo-CLEM application, 

CorRelator (Fig. 1, Supplementary Fig. 2), that can be coupled with SerialEM for real-time 

automated cryo-EM/ET data collection. CorRelator provides software-aided and feedback­

based registration to achieve and improve the standard bead-aided prediction error of 20 to 

100 nm for 2D post-acquisition cryo-correlation, and 100 to 700 nm relocation precision 

for real time cryo-EM/ET acquisition using hole centers of a support film as registration 

references. Integration of advanced image processing steps in cryo-CLEM improved ROI 

assignment and subsequent correlation accuracy. CorRelator has proven to be adaptable to 

existing live-cell-FLM, cryo-FLM, or cryo-EM systems for cryogenic correlative imaging 

applications, expanding the scope of system-independent operation. CorRelator aims to 

bridge between live-cell- and cryo-FLM and cryo-EM/ET for a smooth transition during 

real-time registration, alignment, and automated cryo-EM/ET data collection.

No specialized hardware requirements are needed for the FLM and TEM microscopes 

and cameras to achieve high-accuracy correlation with CorRelator. In general, minimizing 

microscope lens misalignment improves the nonradical transformation estimation from 

3-D to 2-D, from the real object space (to camera coordinates) to image-space, then to 

pixel coordinates displayed on the screen (Gonzalez & Woods, 2002; Szeliski, 2011). 

SerialEM calibrations on the TEM that support Navigator usage and improve image 

alignment between various magnifications, makes stage movement and automated image 

acquisition more robust. The performance evaluations shown were from a range of TEM 

instrumentation including two Titan Krios instruments, a Talos L120C, a Tecnai TF30, and a 

Tecnai T12.

Because geometrical distortions are normally considered negligible at cryogenic conditions, 

rigid linear transformation has proven to accurately transform plunge-frozen ROIs across 

multiple modalities from cryo-FLM to cryo-FIB/SEM, then to cryo-EM/ET (Arnold et al., 

2016; Fu et al., 2019; Fukuda et al., 2014; Kukulski et al., 2011; Li et al., 2018; Rigort et 

al., 2010; Sartori et al., 2007; Schellenberger et al., 2014; Schorb & Briggs, 2014; Schorb 

et al., 2017; Schwartz et al., 2007; van Driel et al., 2009). Here, we adopted the linear 

closed-form ordinary least squares (OLS) solution to an overdetermined system (Horn, 

1987) in CorRelator. The use of OLS method has two main advantages. It is preferred over 

manual and semi-automated point-matching registration where a “smaller” set of paired 

reference points are usually provided, speeding up the matrix computing and calculation, 

as well as being robust to outliers. Second, it limits unnecessary liberty in a non-rigid, non­

linear transform that could warp and distort images that lead to increased target registration 

error during correlation (Paul-Gilloteaux et al., 2017). Using the same set of registration 

references and ROIs, CorRelator is able to achieve comparable and reliable transformation 

in both live-cell- and cryo-FLM to cryo-EM schemes (Fig. 6, Supplementary Fig. 5).
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EM data quality can be highly variable due to many factors, such as sample preparation 

steps, ice inhomogeneity from plunge-freezing, and routine grid transfer and handling. As 

a result, non-linear distortion might be present in FLM and cryo-EM imaging, under which 

case non-rigid transformation is required. Thus, we further evaluated the performance of 

the non-rigid transformation algorithm—thin plate spline (TPS) (Bookstein, 1989) on both 

live-cell-FLM to cryo-TEM and cryo-FLM to cryo-EM workflows. The TPS is chosen 

because it is a well-studied spline model in geometric mapping that can be cleanly 

decomposed into affine and non-affine subspaces while minimize a bending energy for 

correction (Gonzalez & Woods, 2002; Holden, 2008; Zhou et al., 2018). Previously, the TPS 

algorithm has shown success in correcting non-linear, warping and stretching deformation in 

CLEM (Paul-Gilloteaux et al., 2017). We found no significant difference in prediction errors 

of identical ROIs between two algorithms, when the same set of registration references 

were used (Supplementary Fig. 5). Here, the reliable and consistent performance of the 

OLS algorithm confirmed that little deformative artifacts and geometric distortions arose 

from plunge-freezing, careful grid handling, or cryogenic imaging (Fukuda et al., 2014; 

Sartori et al., 2007; Thompson et al., 2016) in cryo-CLEM. This highlights that linear 

and rigid transformations have superior performance under cryogenic conditions when 

the specimen is usually “rigid” (Arnold et al., 2016). CorRelator has not been tested on 

plastic-embedded (chemical fixation) or high-pressure frozen (resin-embedded or vitreous 

sectioning) samples (Kukulski et al., 2011; Paul-Gilloteaux et al., 2017) where larger 

structural changes and sample distortions can occur. Such scenarios may require non-rigid, 

dedicated transformation parameter selections (Paul-Gilloteaux et al., 2017).

Another possible variable in alignment performance might be the thickness of ice in which 

the ROIs are embedded. In cryo-FLM, the emitted light travels through a thin layer of 

vitrified ice, immersion media such as cold air (Schorb et al., 2017) or low-freezing point 

cryo-fluid (Nahmani et al., 2017), and possibly a glass coverslip (Rigort et al., 2012a, 2012b; 

Sartori et al., 2007) before entering the front objective lens. The change in refractive index 

and thickness of the ice could act as a prism to deflect the light, possibly introducing small 

errors in target assignment (Nahmani et al., 2017). With the existing cryo-CLEM (50 ×, 

0.9NA) and RT-FLM (40 ×, 0.6NA) systems, we evaluated the impact of the ice layer 

by plotting the embedding ice thickness against the prediction errors of TetraSpeck beads 

(200 nm) using the “Leave-one-out” approach (Supplementary Fig. 6). We observed an 

undetectable difference in prediction accuracy of thicker-ice (above 500 nm) and thinner-ice 

(below 100 nm) embedded ROIs (Supplementary Fig. 6C, D). Our results did reconfirm the 

importance of registration point selection and assignment on transformation accuracy when 

the estimated resolution of the cryo-FLM system is 400 to 600 nm (Supplementary Fig. 4, 

(Schorb et al., 2017)). Embedding ice thickness might be a considerable factor in the case 

of super-resolution cryo-FLM where the resolving power could reliably reach below 20 nm 

(Wang et al., 2019).

We validated the potential improvements that CorRelator can provide for robust real-time 

registration and ROI mapping using the combination of a hole identifying algorithmic 

approach with sufficient expert user intervention. A recent report on cryo-super resolution 

CLEM has shown that the most robust and accurate registrations are from manual 

hole center identifications, as opposed to purely automated approaches (Dahlberg et al., 
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2020), indicating the necessity for human intervention. While great efforts have been 

put into developing automated correlative workflows (Fu et al., 2019; Paul-Gilloteaux et 

al., 2017; Schorb et al., 2019), the registration process remains tedious and potentially 

challenging. On-going development will continue to improve interactive approaches that 

iteratively converge on registration references while allowing for expert intervention 

when an alignment error threshold is reached. Integration of 3D multi-modal correlative 

microscopy, e.g., cryo-FLM-FIB-SEM-ET (Arnold et al., 2016; Fukuda et al., 2014; 

Gorelick et al., 2019; Hoffman et al., 2020; Kuba et al., 2021; Rigort et al., 2010; 

Wu et al., 2020), will be pursued for CorRelator development and subsequent software 

releases. CorRelator supports interoperability with other imaging tools and provides utility 

by lowering the barrier for cross-platform workflows and entry of new users to cryo-CLEM 

imaging. CorRelator is a flexible solution for high-precision correlative cryo-TEM and 

FLM workflows independently or when coupled with SerialEM for real-time automated 

cryo-EM/ET data acquisition and is freely available to the community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix-A: 

The Navigator module is one of the key functions in SerialEM to save entry metadata, 

link microscope stage positions and image coordinates, mark positions of interests on 

map images, guide the stage movements, and to track and reload map images through 

relative paths. The Navigator maintains a list of Item entries including points and maps. 

A map is a specialized single-frame image or multi-tile montage that serves as a canvas 

and defines an area with its four corner stage positions. A point is a single stage location 

made on a Map. Users start a Navigator file by generating a map that could be collected 

at a suitable magnification. Targets of interest are made as single points on one map. 

Under each Item are an organized block of sections, among which values of MapScaleMat, 

RawStageXYZ, and MapHeightWidth store pixel-to-stage-position matrix information to 

transform points in pixel positions made on an image to corresponding stage positions. The 

transformation Mstage2pixel is determined by stage shift calibration (the relationship between 

stage movements and position on the camera at a particular magnification) in SerialEM, and 
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reported in the map item entries of PtsX and PtsY (X- and Y- stage coordinates of points), 

MapScaleMat (Stage to pixel scale and rotation matrix for drawing, based on pixels of initial 

map image), MapWidthHeight (size of initial map image in pixels) and RawStageXY (raw 

stage position before adjustment for translation). The 2D transformation must fit in:

PtsX −  RawStageX
PtsY −  RawStageY *  MapScaleMat   + 0.5MapWidtℎ

0.5MapHeigℎt =
Px
Py

Where 
PtsX
PtsY  is the stage position and 

Px
Py

 is the corresponding image coordinate pair.

Appendix B.: Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/

j.jsb.2021.107709.

Abbreviations:

CLEM correlative light and electron microscopy

CSV comma-separated value

EM electron microscopy

ET electron tomography

FIB-SEM focused ion-beam scanning electron microscopy

FLM fluorescence light microscopy

FWHM full-width at half-maximum

GUI graphic user interface

NA numeric aperture

OLS closed-form ordinary least-squares solutions

PSF point spread function

ROI region of interest

RSV respiratory syncytial virus

RT room temperature

SVCC small volume computational clearance

TEM transmission electron microscopy

TPS thin plate spline

2D/3D two-/three-dimensional
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Fig. 1. 
Overview of the cryo-CLEM workflow with CorRelator and SerialEM. (A) Integration 

of a feedback-based alignment loop in CorRelator with SerialEM. (B) Flowchart for 

the algorithm implemented in CorRelator that supports three applications for flexible 

correlations, labeled as ① or ② for on-the-fly cryo-CLEM operation, and ③ for post­

acquisition correlation. ** is indicative of optional inputs (e.g., independent csv files, 

cryo-FLM/EM frames for post-acquisition correlation) and optional outputs (e.g., overlay 

of correlated cryo-FLM/EM images). The dashed grey box (A and B) highlights the main 

operations performed in CorRelator, the solid grey box (A) for the main operations in 

SerialEM, overlap areas for SerialEM navigator file 1(Nav_1) and file 2 (Nav_2) that link 
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CorRelator and SerialEM. Purple arrows (A and B) indicate the iterative flow of user-in-the­

loop alignment until an optimal accurate correlation is achieved.
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Fig. 2. 
Intuitive graphical user interfaces (GUI) of CorRelator. The main GUI features include a 

Project view, Wizard view, Alignment windows, iterative registration and aligned image 

views. To start, the user can choose to begin the alignment either in the main Project 
window or through step-by-step Wizard route accessible in the Project window. Once import 

of images, navigator file and or coordinate files is done, the user can choose alignment 

algorithms and transform FLM to TEM. At any time, the user can edit, add, or delete 

new coordinates for registration reference or ROIs in an interactive image viewing window. 

The alignment results are quickly accessible for precision assessment and a new round of 

registration can be initiated until a satisfying transformation is reached.
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Fig. 3. 
High accuracy cryo-CLEM with CorRelator. (A-C) Rough correlation: Cryo-EM grid 

map (A) was correlated with the Cryo-FLM mosaic (B) in CorRelator. (C) Screenshot 

of SerialEM after rough correlation. Squares of interest (blue and red boxes in C) were 

acquired TEM square maps. (D-G) Fine correlation: In CorRelator, representative cryo-FLM 

(D, cyan boxed in C) of a square was correlated with the TEM square map using hole 

centroids (visible in blue, F) for registration. (G) Superposition of the two correlated images. 

White boxed areas (a and b) indicate the transformed fluorescent ROIs corresponding to 

red numbers 1 and 2 in E, respectively. High magnification images and cryo-tilt series 

were recorded. (H-I) Higher magnification correlated overlays of a and b in (G). (J-K) A 

tomographic slice view (thickness of ~ 9 nm, J) of the position a in (G) and (H), and slice 
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view of an un-labeled RSV particle (thickness of ~ 9 nm, K). (j) and (k) are a magnified 

view of the blue- and black-boxed areas in J and K. (L) The linear profiles of j (blue line) 

and k (black line) that highlight various RSV structural components. Scale bars: 200 μm in 

A, B, D, 10 μm in E, G, 2 μm in H, I, 500 nm in J, K, 20 nm in j and k.
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Fig. 4. 
Cryo-CLEM-CorRelator with THUNDER-processed cryo-FLM images. (A) Raw widefield 

cryo-FLM image of a RSV-infected cell displaying a fluorescent reporter gene in RSV­

infected cells (red) and labeled RSV F glycoprotein (green). (B) Overlay of a cryo-EM 

image and the transformed fluorescence image. (C) Magnified view of the cyan boxed 

area marked in B. (D-F) the same images (A-C) processed with THUNDER Small Volume 

Computational Clearance (SVCC). The orange and red asterisks indicate RSV glycoprotein 

fluorescent signals marked as ROIs on pre- and post-SVCC. (G) Magnified cryo-EM 

montage view of the star ROIs in E and F of the immuno-labeled RSV particles (green). 

The RSV filaments extend from the cell plasma membrane and cell protrusions (dashed 

yellow line). (H-I) Central sections (thickness of ~ 9 nm) through the tomograms collected 
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at the marked ROIs. White triangles indicate the RSV ribonucleoprotein (RNP) inside the 

RSV filament. The black arrows note the RSV glycoproteins bound to antibodies and 6-nm 

gold (peak 1 in Fig. 3I). Scale bars: 10 μm in A-F, 2 μm in G, 500 nm in H and I.

Yang et al. Page 35

J Struct Biol. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Accuracy performance of on-the-fly (Cryo)-CLEM with CorRelator. (A-G) Cryo-CLEM­

CorRelator application on vitrified HeLa cells infected by RSV viral particles. (A) Bright­

field and fluorescent channel merged FLM map used to provide a representative ROI (pink 

cross in the white box). The labeled RSV filaments appear green. (B) SerialEM screenshot 

of the post-correlated FLM map of (A) after reloading the Nav_2. (C) Higher magnification 

cryo-EM image of the ROI after moving the TEM stage to the identified ROI (pink cross 

in A and B). (D-F) For three other areas, the center coordinate (yellow cross in D-F) of 

each TEM frame corresponds to the predicted stage position by CorRelator (pink across) 

after moving the stage. (G-M) RT-CLEM-CorRelator application on Tetraspeck beads. (G) 

Superposition of the correlated TEM and FLM map. (H-M) Acquired high-magnification 

images at the pink ROIs in (G) after moving the stage to the predicted positions (yellow 

cross). The pink circle was centered on the actual ROIs using the 2D Gaussian fit. (L) 

Distribution plot of the coordinate deviation by CorRelator between the actual ROIs (pink) 

and predicated positions (yellow) under cryogenic (n = 50) and ambient conditions (n = 19). 

Scale bars: 10 μm in A and a, 2 μm in C-D, 500 nm in E-G, 10 μm in H, 500 nm in I-N.
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Fig. 6. 
Comparison of registration point selections on the alignment accuracy of different 

algorithms. (A) Five registration points and nine target points (leave-oneout method) picked 

on a 2D cryo-FLM image of vitrified cells and used for comparison of predicted errors 

shown (B). Adequately dispersed reference points are red (n = 5); locally clustered reference 

points are cyan (n = 5); target points are magenta (n = 9). (B) Comparison of predicted 

errors of the picked targets (magenta, A) in X and Y by several software tools. From 

left to right: X/Y and X**/Y** (black boxed) are errors predicted by CorRelator using 

dispersed (white) and locally clustered (blue, **) registration points, Xaff /Yaff and Xaff**/ 

Yaff** by MATLAB affine transformation, Xpro/Ypro and Xproc**/Yproc** by MATLAB 

projective transformation, XicyR/YicyR and XicyR**/YicyR** by eC-CLEM (ICY package) 

transformation, X3DCT/Y3DCT and X3DCT**/Y3DCT** by 3DCT (3D Correlation Toolbox). 
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(C) Adequately dispersed reference points (red, numbered) and targets (magenta) picked 

to monitor the predicted error as the reference points increase. (D) Predicted errors on 

monitored three magenta targets (represented by circles, hollow circles, and triangles, 

repectively) in (C). The X axis is number of points used for the reference, labeled in (C). 

Scale bars = 10 μm.
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Fig. 7. 
CorRelator adaptability for cryo-CLEM imaging of RSV. (A) A schematic diagram to apply 

both (a) ambient oil immersion objective lens at magnification of 63 × (live-cell-FLM) prior 

to plunge-freezing, and (b) cryogenic objective lens at magnification of 50 × and cryo-stage 

(cryo-FLM) to study vitrified RSV-infected cells on a gold TEM grid. (B) Cryo-EM grid 

map. (C) Live-cell-FLM mosaic (workflow a in A) of the same whole grid, fluorescent 

signals from RSV-infected cells (red), the RSV F glycoprotein on RSV-infected cells or 

released particles (green), and cellular DNA Hoechst stain (blue). (D) SerialEM screenshot 

of cryo-TEM map of (B) after being correlated with live-cell-FLM map of (C) in CorRelator. 

The maps for ROI squares were identified and collected (blue box). (E-G) live-cell-FLM 

square image (workflow a), SVCC-processed cryo-FLM image (workflow b), and cryo-EM 
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map of 470 × of the region (G) corresponding to the green boxed and zoomed-in square 

in D. (H-I) Superimpositions of the correlated live-cell-FLM image (E, H) and processed 

cryo-FLM image (F, I) with EM map in G, respectively. The same ROIs of RSV particles 

were present and identified in both FLM modalities, highlighted in matching colored boxes. 

(J) Central section (thickness of ~ 9 nm) through the tomogram of RSV collected at the red 

boxed region. Scale bars: 100 μm in B-C, 10 μm in E-I, 200 nm in J.
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Table 1

Data Sets On the fly deviation (nm) Post-acquisition deviation (nm)

RSV particles (Sample 1 and 2) or 
TetraSpeck (Sample 3)

Hole Centroids (2 μm) TetraSpeck (500 nm)

Sample 1: Cryo-CLEM, nanogold-Alexa 
labeled RSV on a Quantifoil grid

X X Y X Y Y

147.9
(27)

141.7
(27)

69.8
(20)

72.5
(20)

46.2
(12)

54.2
(12)

Sample 2: Cryo-CLEM nanogold-Alexa 
labeled RSV on a Quantifoil Finder grid

173.5
(23)

155.6
(23)

67.3
(24)

61.2
(24)

49.9
(12)

30.8
(12)

Sample 3: RT-CLEM, TetraSpeck of 100 nm 
on a Quantifoil Finder grid

28.4
(19)

29.0
(19)

14.1
(12)

16.7
(12)

4.8
(12)

5.7
(12)

Measurements of alignment accuracy for cryo-FLM to cryo-EM and RT-FLM to TEM by CorRelator. Two independent data sets (sample 1 and 
2) of vitrified HeLa cells infected by RSV growing on two types of grids and one independent data set of TetraSpeck beads on Quantifoil Finder 
grid were used. The hole centroid pairs (n = 9) picked through automated Circular Hough Transform function were used for registration. The 
non-registration hole centers (leave-outone method) and TetraSpeck beads were considered as ROIs and used to calculate predicted errors in the 
application of post-acquisition deviation (left). The mean relocation error in X and Y after TEM stage movement during on-the-fly TEM relocation 
of ROIs was calculated.
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