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Epithelial‑mesenchymal transition 
sensitizes breast cancer cells to cell 
death via the fungus‑derived 
sesterterpenoid ophiobolin A
Keighley N. Reisenauer1, Yongfeng Tao2, Provas Das1, Shuxuan Song1, Haleigh Svatek1, 
Saawan D. Patel1, Sheridan Mikhail1, Alec Ingros1, Peter Sheesley1, Marco Masi3, 
Angela Boari4, Antonio Evidente3, Alexander Kornienko5, Daniel Romo2 & Joseph Taube1*

The epithelial–mesenchymal transition (EMT) imparts properties of cancer stem‑like cells, including 
resistance to frequently used chemotherapies, necessitating the identification of molecules that 
induce cell death specifically in stem‑like cells with EMT properties. Herein, we demonstrate that 
breast cancer cells enriched for EMT features are more sensitive to cytotoxicity induced by ophiobolin 
A (OpA), a sesterterpenoid natural product. Using a model of experimentally induced EMT in 
human mammary epithelial (HMLE) cells, we show that EMT is both necessary and sufficient for 
OpA sensitivity. Moreover prolonged, sub‑cytotoxic exposure to OpA is sufficient to suppress EMT‑
imparted CSC features including sphere formation and resistance to doxorubicin. In vivo growth 
of CSC‑rich mammary cell tumors, is suppressed by OpA treatment. These data identify a driver 
of EMT‑driven cytotoxicity with significant potential for use either in combination with standard 
chemotherapy or for tumors enriched for EMT features.

Breast cancer patients who have triple-negative breast cancer (TNBC) face poor prognoses driven by high rates 
of metastasis and early  recurrence1–6. TNBC is characterized as histologically negative for estrogen receptor 
(ER), progesterone receptor (PR), and amplified human epidermal growth factor receptor-2 (HER2), preventing 
the use of hormone- or HER2-targeted therapies. Instead, treatment with anthracycline (doxorubicin) and/or 
taxanes is capable of providing 5-year survival in only about half of TNBC  patients7–10.

TNBC is comprised of mostly basal-like and claudin-low intrinsic subtypes, both of which have been char-
acterized as enriched for cancer stem-like  cells11–13. Cancer stem-like cells (CSCs) are defined by their ability to 
re-initiate tumor growth upon transplantation and are hypothesized to fuel metastasis and primary tumor recur-
rence, resulting in an overall decrease in  survival14–17. To improve TNBC patient outcomes, novel and specific 
approaches targeted at CSCs are needed.

One proposed mechanism driving the emergence of CSC-like cells is the epithelial-mesenchymal transition 
(EMT)16,18. EMT is a trans-differentiation process characterized by acquisition of a spindle-like morphology, 
loss of apical-basal polarity, increased motility, and a tolerance to anoikis. These phenotypic shifts are driven 
by gene expression changes mediated by transcription factors SNAIL (SNAI1), TWIST (TWIST1), and ZEB1, 
effects of which include upregulation of vimentin and downregulation of epithelial markers E-cadherin (CDH1) 
and miR-200c19–25.

Cells that have undergone an EMT typically acquire CSC properties including decreased sensitivity to conven-
tional chemotherapies used to treat TNBC. This chemoresistance is driven by drug efflux pumps, enhanced DNA 
repair capacity, and epigenetic  changes16,26–31. There are currently no approved therapies that specifically target 
CSCs. A leading pre-clinical compound is salinomycin, reported to decrease the sub-population of CSCs, tumor 
initiating capability, and chemoresistance, with negligible side  effects32. Other naturally occurring compounds 
such as curcumin and quercetin have been reported to reduce the effects of EMT by inhibiting key proteins 
associated with migration (SNAIL, MMP-2/9), anoikis tolerance (BCL2), cell-to-cell adhesion (N-cadherin), 
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and signaling cascades (JAK/STAT, ERK)33–36. This breadth illustrates the potential for applying natural products 
to persistent issues in oncology.

Ophiobolin A (OpA) is a natural product produced by fungi in the genera Aspergillus, Bipolaris, Cephalo-
sporium, Cochliobolus, and Drechslera37. This sesterterpenoid (25-carbons) is a secondary metabolite that has 
long been studied for its phytotoxic effects in a variety of plants and has begun to be evaluated for its anti-cancer 
properties 37. Published cell culture-based experiments describe a role for OpA in motility  inhibition38, membrane 
 depolarization39–42, roles in  inflammation43, and reduction in  stemness44. In vivo data demonstrate that OpA 
is tolerated in mice and is effective in an orthotopic model of  glioblastoma39,45,46. Herein, we investigated the 
applicability of OpA on EMT-enriched breast cancer and found that experimentally induced EMT enhances the 
susceptibility of mammary epithelial cells to OpA-induced cell death. Furthermore, breast cancer cell lines treated 
with OpA experience loss of EMT-associated stemness attributes, demonstrating that OpA induces selective 
cytotoxicity in cells that have undergone EMT. Additionally, OpA is effective in reducing tumor burden in mice 
with orthotopic, EMT-positive, mammary tumors, highlighting the potential of EMT-targeted cancer treatment.

Results
Mammary epithelial cells that have undergone EMT are more sensitive to OpA. Given the pre-
viously published link between OpA and CSC-targeted  activity44, we investigated a potential link between OpA 
and EMT using an experimental model of EMT induction. Immortalized human mammary epithelial (HMLE) 
cells have an epithelial morphology (Fig. 1A) and express E-cadherin (Sup Fig. 1A). We used HMLE cells, as 
well as HMLE cells transformed with the Ras oncoprotein (HMLER) that are induced to undergo EMT through 
lentiviral transduction of  the EMT-inducing transcription factor (TF)  TWIST25,47, resulting in the acquisition 
of a mesenchymal morphology (Fig. 1A) and protein expression (Sup Fig. 1A). TWIST expression also induces 
stemness properties including a greater prevalence of cells expressing high levels of CD44 and low levels of CD24 
 (CD44hi/CD24lo) (Sup Fig. 1B) and an increased sphere formation efficiency (Sup Fig. 1C)16,25. To identify EMT-
selective, highly active molecules, we measured the level of TWIST-induced sensitivity to molecules shown 
to inhibit CSC properties including  salinomycin48,  OpA44,  curcumin49,  genistein50, and  disulfiram51. Only two 

Figure 1.  Sensitivity to OpA is enhanced by EMT. (A) Representative morphology of non-transformed, 
immortalized, mammary epithelial cells expressing TWIST or control vector. Scale bar represents 20 µm. (B) 
Cytotoxic activity of the indicated compounds was measured, in triplicate, by MTS assay. Mean and standard 
deviation of  IC50 values are reported. Selectivity index is calculated as (HMLER Vector  IC50))/(HMLER TWIST 
 IC50). (C) Representative data indicating cytotoxicity for the indicated cell lines. Error bars represent standard 
deviation. (D) Mean and standard deviation of  IC50 values for OpA, n = 3 or 4, two-tailed student’s unpaired 
t-test used to test significance. n.d. = not determined, n.a. = not applicable.
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such molecules demonstrated selectivity towards EMT-positive cells, salinomycin and OpA, and only OpA also 
demonstrated consistently sub-micromolar cytotoxic activity (Fig. 1B). Furthermore, induction of EMT through 
expression of TWIST or through another EMT-TF,  SNAIL52, in either HMLE or HMLER cells increased sensi-
tivity to OpA-driven cytotoxicity (Fig. 1C). Indeed, EMT decreased the  IC50 value from a mean of 137–147 nM 
for epithelial cells to a mean of 85–91 nM for mesenchymal cells (Fig. 1D). These results stand in stark contrast 
to EMT-driven resistance to many commonly used chemotherapeutic drugs including doxorubicin and stauro-
sporine (Sup Fig. 1D).

miR‑200c suppression is necessary for sensitivity to OpA. Because we observed that OpA selec-
tively impacts cells that have undergone EMT, we next evaluated whether reversing the EMT status of these cells 
would be sufficient to undermine OpA sensitivity. To do this, we introduced an epithelial-specific microRNA 
into HMLE-TWIST cells. miR-200c expression has been shown to be sufficient to reverse EMT and associated 
CSC  features53. First, we verified over-expression of miR-200c in HMLE Twist cells (Fig. 2A) and confirmed the 
expected effects on the prevalence of  CD44hi/CD24lo cells (Sup Fig S2A) and sphere formation (Sup Fig. 2B). 
We next measured sensitivity to OpA and found that induction of miR-200c partially compromised sensitivity 
to OpA (Fig. 2B). This indicates that miR-200c-driven suppression of the CSC state impacts sensitivity to OpA.

Persistent treatment with OpA alters cellular phenotypes. Triple-negative breast cancer cell lines 
of the basal-like or claudin-low subtype typically exhibit greater EMT and CSC  features54. To examine the effect 
of OpA on breast cancer cells, we measured the cytotoxic activity on the ER-positive, CSC-poor, epithelial-like 
MCF7 and triple-negative, CSC-rich, mesenchymal-like MDA-MB-231 cell lines. While both cell lines were 
highly responsive to an elevated dose of OpA (400 nM), the MDA-MB-231 cells displayed significantly greater 
cell death at an 80 nM dose, compared to MCF7 cells (Fig. 3A). We next considered whether exposure to OpA, in 
addition to exerting a cytotoxic effect, might also abrogate EMT and CSC-associated cell phenotypes. To evalu-
ate the impact of sub-cytotoxic doses of OpA on EMT and CSC phenotypes, we performed experiments on CSC-
rich MDA-MB-231 cells using continuous, multi-day treatment of 30 nM OpA, 100 nM OpA, (Fig. 3B—blue 
and purple arrows, respectively), or vehicle. Continuous treatment with a sub-cytotoxic doses of OpA triggered 
modest changes in cell morphology toward a more compact and cobblestone-like appearance, characteristic of 
epithelial cells (Fig. 3C). To evaluate the effect on EMT, we measured markers of EMT following exposure to 
OpA. Cells treated with 100 nM OpA, but not 30 nM, showed increased expression of CDH1 (E-cadherin) and 
decreased expression of CDH2 (N-cadherin), indicative of a partial EMT reversion (Fig. 3D,E). As EMT is nec-
essary for the migratory capacity of MDA-MB-231 cells, we ascertained whether OpA could inhibit migration 
using a wound healing assay. Consistent with an effect on EMT properties, cells pre-treated with sub-cytotoxic 
doses of OpA failed to migrate in response to a scratch wound (Fig. 3F). We next measured the effect of OpA on 
anchorage-independent growth using a mammosphere assay and on the prevalence of CSC-associated  CD44hi/
CD24lo cells. Consistent with an effect on CSC properties, we observed that pre-treatment of MDA-MB-231 cells 
with OpA reduced sphere formation (Fig. 3G). While pre-treatment at 30 nM had no effect on the prevalence 
of  CD44hi/CD24lo cells, pre-treatment at 100 nM had a minor, though statistically significant effect (Fig. 3H). In 
summary, persistent treatment of a CSC-rich breast cancer cell line with OpA diminishes sphere formation and 
migratory properties associates with CSC and EMT.

Figure 2.  miR-200c overexpression enhances sensitivity to OpA. (A) Mean and standard deviation of miR-200c 
expression in HMLE TWIST cells expressing ectopic miR-200c or a control vector. n = 6 (B) Mean and standard 
deviation of relative viability for indicated doses of OpA in HMLE and HMLE TWIST cells expressing ectopic 
miR-200c or a control vector. n = 3, two-tailed student’s unpaired t-test used to test significance.
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OpA treatment increases sensitivity to chemotherapy. EMT-promoted stemness drives resistance 
to commonly used chemotherapies. One approach to overcoming this problem is to consider dual-treatment 
therapies that combine CSC-targeting compounds with conventional drugs. To examine the relationship between 
EMT and the combinatorial impact of OpA treatment, we co-treated cells with a dilution series of OpA and 
either doxorubicin or paclitaxel. Co-treatment of MDA-MB-231 cells with as little as 12.5 nM OpA enhanced 
the cytotoxic response from doxorubicin (Fig. 4A), while 50 nM OpA enhanced the cytotoxic response from 
paclitaxel (Sup. Fig. 3A). Notably, addition of 50 nM OpA was sufficient to maintain cytotoxic activity despite a 
25-fold reduction in the dose of doxorubicin (Fig. 4A-orange bar) and a fivefold reduction in the dose of pacli-
taxel (Sup. Fig.  3A-orange bar).When analyzed using  Combenefit55, these dose combinations tended toward 
synergistic effects (Fig. 4B, Sup. Fig. 3B). Combination treatment using the synthetic derivative, 3-deoxy-OpA 
(Sup. Fig. 3C) did not result in altered activity (Sup. Fig. 3D–F). To test whether the EMT state or degree of CSC 
enrichment was relevant for synergistic activity of OpA and doxorubicin, we performed combination treatment 
analysis on MCF7, HMLE vector and HMLE TWIST cells. MCF7 cells displayed less synergy and more antago-
nism than MDA-MB-231 cells (Fig. 4C). HMLE vector cells treated with OpA and doxorubicin also exhibited 
strong antagonism which was diminished in the HMLE TWIST cells (Fig. 4D,E). The capacity of OpA to act in 
concert with clinically useful chemotherapeutic agents indicates that co-treatment may be useful to more effec-
tively treat breast cancer.

OpA is tolerated in vivo and suppresses growth of mammary cell tumors with exogenous 
TWIST‑expression. We next assessed whether OpA treatment alone is sufficient to reduce growth of a 
mammary cell tumor, which is composed exclusively of EMT-positive cells, in mice. As such, immunocompro-
mised mice were orthotopically injected with Ras-transformed HMLE cells constitutively expressing the TWIST 

Figure 3.  Treatment with OpA suppresses EMT-driven cell behavior. (A) Mean and standard deviation of 
relative viability for indicated doses of OpA in MCF7 and MDA-MB-231 cells, n = 8, two-tailed student’s 
unpaired t-test used to test significance. (B) Representative data indicating cytotoxicity of OpA to MDA-MB-231 
at the indicated doses. Blue and purple arrows indicate doses used for sub-cytotoxic pre-treatment in (C–H). 
(C) Representative morphology of MDA-MB-231 cells treated with OpA at 30 nM or 100 nM for 4 days 
followed by 24 h of culture in clean media. Scale bar = 100 µm. (D/E) qRT-PCR for CDH1 (D) and CDH2 (E) 
from cells treated as in (C), n = 3, mean and standard deviation are shown, two-tailed student’s unpaired t-test 
used to test significance. (F) MDA-MB-231 cells, treated with OpA at 30 nM for 4 days, were cultured in clean 
media for 12 h then subjected to a wound healing assay. The percentage of cells with both high CD44 and low 
CD24 is shown. Mean and standard deviation are shown; n = 3, two-tailed student’s unpaired t-test used to test 
significance. Representative images are shown from 0 h post-scratch and 9 h post-scratch. (G, H) MDA-MB-231 
cells, treated as in (C) were subjected to a (F) sphere-forming assay n = 8, unpaired t-test, scale bar = 100 μm or a 
(G) flow cytometry assay for CD44 and CD24.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10652  | https://doi.org/10.1038/s41598-021-89923-9

www.nature.com/scientificreports/

transcription factor to induce EMT (HMLER-TWIST). Following the emergence of palpable tumors, mice were 
randomly assigned to either the control (DMSO diluted into saline) or OpA treatment groups. Thrice weekly 
injections for 3 weeks consisting of 10 mg/kg of OpA were not well tolerated as mice exhibited weight loss greater 
than 20% of initial body weight and two adverse outcomes were recorded prior to the final dose (Fig. 5A). How-
ever, a dose of 5 mg/kg was better tolerated with weight loss less than 15% and one adverse outcome, while a 
dose of 2.5 mg/kg had no statistically significant impact on body weight (Fig. 5A). A dose of 5 mg/kg of OpA was 
sufficient to significantly suppress the growth of HMLER-TWIST tumors (Fig. 5B) and to reduce the endpoint 
tumor volume of HMLER-TWIST tumors (Fig. 5C). We sought to ascertain whether OpA treatment contrib-
utes to increased cell death within treated tumor tissue by staining for cleaved caspase-3, a marker of apoptosis. 
Unexpectedly, staining for cleaved caspase-3 in the primary tumors revealed no significant difference between 
untreated and OpA-treated mice (Sup. Fig. 4). However, OpA has been shown to induce non-apoptotic cell death 
in other  models39,56. Because HMLER-TWIST tumors metastasize to the lung and other  organs25, we analyzed 
lungs from OpA-treated mice to determine if metastatic burden was reduced. Despite the observed effects on 
migration in vitro, there was no significant reduction in lung metastatic burden associated with OpA treatment 
(Sup. Fig. 4).

Figure 4.  EMT-associated combinatorial activity for OpA with doxorubicin. (A,B) Representative data 
indicating cytotoxicity to a range of doses of OpA and doxorubicin for MDA-MB-231 (A), n = 4. (B) Data from 
(A) are represented using Combenefit. Blue-shaded areas represent dose combinations with synergistic effects. 
(C–E) Representative data indicating interactions between OpA and doxorubicin for MCF7 (C), HMLE Vector 
(D) and HMLE TWIST (E) cells.

Figure 5.  OpA is tolerated in vivo and suppresses tumor growth from cells over-expressing TWIST. (A,B) 
Mice, bearing tumors composed of HMLER-TWIST cells, were injected with 10 mg/kg (n = 2), 5 mg/kg (n = 5), 
2.5 mg/kg (n = 3) of OpA, or vehicle control (n =5), thrice weekly for three weeks. (A) Body weight was tracked. 
Arrows indicate endpoint criterion met for an individual animal. Statistical significance measured using the 
Holm-Sidak method with an alpha of 5%. (B) Tumor volume was measured at the indicated timepoints by 
caliper and is given as length ×  width2 divided by 2. n = 5. Statistical significance of the difference between 
volumes at 17 days is indicated as determined by two-tailed student’s unpaired t-test. (C) End-point tumor 
volume was compared by two-tailed student’s unpaired t-test, n = 4.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10652  | https://doi.org/10.1038/s41598-021-89923-9

www.nature.com/scientificreports/

Discussion
Currently, conventional chemotherapeutic drugs are able to elicit high response rates in about half of TNBC 
patients; however, the remaining patients eventually develop progressive  disease2, with some even experiencing 
more aggressive and CSC-rich tumors after  therapy14,57. Identification of molecules with specificity for CSC-
rich cell populations will facilitate the development of novel therapies and may improve responses to currently 
available therapies.

While several other natural products have been linked to CSC-targeting33,34,48,58–63, our work highlights a 
natural product that selectively kills breast CSCs exhibiting EMT features. Further, we show a reduction of EMT 
phenotypes such as migration, as well as reduction in sphere-forming capacity and changes to CSC-rich sub-
populations in a TNBC cell model. Extending OpA’s efficacy in reducing CSC-related properties, our data suggest 
increased sensitivity to conventional chemotherapeutics doxorubicin and paclitaxel when co-treated with OpA. 
Finally, we evaluate the efficacy of OpA in vivo and show suppressed growth of an EMT-positive, primary tumor.

Evolution-driven selection of natural products imparts biological activities useful for disease treatment 
and which may not be mimicked by selective kinase inhibitors. Other successful natural products that have 
driven cancer therapies include taxol, vinblastin, anthracyclines, daunomycin and  doxorubicin64. Several 
 studies39,41,42,46,65–68 have evaluated one such natural product, OpA, in cancer settings, predominantly using 
in vitro models, and, similar to our present study, these studies report  IC50 values in the low nanomolar range. 
Our work is one of the first to evaluate OpA in vivo and is the first to describe the impact of EMT on OpA sen-
sitivity. By focusing on the effects on EMT and stemness phenotypes, this work opens the door for the discovery 
of essential molecular pathways and for the investigation of OpA derivatives as a future cancer treatment.

Materials and methods
Cell lines. MCF7, and MDA-MB-231, were received from ATCC; HMLE, HMLER, HMLE Snail, HMLER 
Snail, HMLE TWIST, and HMLER TWIST were kindly gifted from Dr. Sendurai Mani (MD Anderson Can-
cer Center). Breast cancer cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Corning Inc., 
Kennebuck, ME, USA) supplemented with 10% fetal bovine serum (FBS) (Equitech-Bio Inc., Kerrville, Texas, 
USA) and 1X antibiotics (Penicillin/Streptomycin, Lonza, Basel, Switzerland). Immortalized human mammary 
epithelial cells (HMLE) and derivatives were maintained as in Elenbaas et al.69. Cell lines were tested monthly 
for mycoplasma and validated via STR testing. Incubation occurred at 37 °C with 5%  CO2. miR-200c overexpres-
sion was generated using lentiviral transduction of pCMV-MIR (Origene Rockville, MD). Transduced cells were 
selected using puromycin.

Reagents. Curcumin, genestein, doxorubicin, and paclitaxel were obtained from Selleckchem (Houston, 
TX, USA), salinomycin from Cayman Chemicals (Ann Arbor, MI USA), and disulfiram from Tocris Bioscience, 
(Bristol, UK). OpA was produced by fermentation of the fungus D. gigantea. It was extracted from the fungal 
culture filtrates, purified, crystallized and identified by 1H NMR and ESI MS spectra as previously  reported70. 
The purity of OpA was > 98% as ascertained by 1H NMR and HPLC analyses.

3-Deoxy OpA was synthesized from ophiobolin  I71,72 which was also obtained through fermentation as previ-
ously  reported70. A two-step synthetic sequence involving conjugate reduction of the enone which proceeded 
with high diastereoselectivity (> 19:1 by 600 MHz 1H NMR) followed by a Ru(IV)-mediated oxidation of the 
primary alcohol to the aldehyde delivered 3-deoxy OpA. It should be noted that the methyl group at C3 is epi-
meric with respect to the C3-methyl group in OpA. However, the importance of the C3-hydroxy group and/or 
the stereochemistry of this methyl group was verified through studies described below and 3-deoxy OpA served 
as a negative control. Further details are provided in Supplemental Figure 5.

Viability. Cells were plated with 2000 cells per well in a 96-well plate and allowed to adhere overnight. Com-
pounds, suspended in DMSO and diluted into PBS, or vehicle were added to the culture medium and incubated 
for 72 h at 37 °C, 5%  CO2. Following manufacturer suggested protocol, 20 µL CellTiter  96®  AQueous One Solution 
Cell Proliferation Assay (MTS; Promega, Madison, WI, USA) was added and incubated 1–4 h at 37 °C, 5%  CO2. 
Absorbance was measured at 490 nm using a 96-well plate reader (Fisher Scientific, Hampton, NH, USA).

RNA extraction and detection. Cells were lysed in the presence of  Trizol® Reagent (Thermo Scientific, 
Waltham, MA, USA) and total RNA extracted following manufacturer protocol recommendations. Relative 
quantification of the mRNA levels was performed using the comparative Ct method with the formula  2−ΔΔCt. For 
microRNA analysis small nucleolar RNA U6 was used for normalization while for mRNA analysis GAPDH was 
used for normalization, Taqman and SYBR PCR Master Mixes were obtained from Applied Biosystems (Thermo 
Scientific,Foster City, CA, USA). All quantitative reverse transcription-PCR (RT-PCR) experiments were run in 
technical quadruplicates and biological triplicates and a mean value was used for the determination of mRNA 
levels.

Western blotting and antibodies. Cells were lysed in the presence of 100 µl radio-immunoprecipitation 
(RIPA) buffer containing protease inhibitors (Alfa Aesar, Stoughton, MA, USA) on ice. Protein was quantified 
using the Bradford Assay (BioRad, Hercules, CA, USA). Twenty micrograms of total protein from each sample 
was resolved on a 4–12% SDS-PAGE gel and transferred to PVDF membranes. Sister blots were then probed 
with antibodies including anti-E-cadherin (Cell Signaling, Danvers, MA, USA), anti-vimentin (Protein Tech-
nologies, Tucson, AZ, USA), or anti-β-actin (BD Biosciences, San Jose, CA) antibody. Chemiluminescent signals 
were detected with ECL™ prime (Thermo Fisher Scientific) using the Biorad ChemiDoc system. If necessary, 
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blots were stripped with ECL Stripping Buffer (Li-Cor, Lincoln, NB, USA) following manufacturer protocol. 
Bands were quantified using ImageJ.

Mammosphere assay. Cells were harvested and suspended in serum-free mammary epithelial growth 
medium (MEGM) supplemented with 1% methyl cellulose, 20 ng/mL FGF, 10 ng/mL EGF, and 4 μg/mL heparin. 
Cells were plated in 4 replicates in a flat-bottom ultra-low attachment 96-well plate (Corning) and allowed to 
grow at 37 °C, 5%  CO2 for 10–14 days and were monitored microscopically to ensure that they did not become 
confluent during the experiment. 100 µL low-attachment media was added every 3–4 days. Wells were imaged 
using 4× magnification on a computer-assisted phase contrast microscope (Nikon, Tokyo, Japan). Spheres larger 
than 100 µm were counted.

Flow cytometry. For flow cytometry, cells were harvested, counted and  105 cells were incubated with 5 µl 
of either CD44 (BV421 Mouse Anti-Human CD44 # 562890; BD Biosciences, San Jose, CA, USA) and/or CD24 
(PE-Mouse Anti-human CD24 #555428; BD Biosciences) in PBS with 1% serum for 1 h on ice, minimizing light 
exposure. Cells were then pelleted at low-speed and washed with PBS with 1% serum twice before measurement 
of fluorescence using BD FACS Melody (BD Biosciences).

Migration. For migration assay, cells were serum-starved overnight and scratch wounds were created using 
a sterile pipette tip on the cell monolayer or by plating cells in 2-well culture inserts (Ibidi, Madison, WI). Cell 
migration rates were determined by measuring the distance between cell fronts after the indicated number of 
days in culture. The distance between the two edges at multiple points was quantified using ImageJ at the indi-
cated timepoints.

Co‑treatment and interaction. Cells were treated with compound or matched-percentage DMSO or 
other vehicle in serial dilutions and incubated for 72 h before measuring viability using MTS (Promega, Madi-
son, WI, USA). Interactions were quantified using the Combenefit program with the Loewe model and dose–
response surface  mapping55.

Tumor growth. Female Scid/bg (CB17.Cg-PrkdcscidLystbg-J/Crl) mice (5–8  weeks old) were obtained 
from Charles River Laboratories (Wilmington, MA, USA). Animals were maintained under clean room condi-
tions in sterile filter top cages with autoclaved bedding and housed on high efficiency particulate air–filtered 
ventilated racks. Animals received sterile rodent chow and acidified water ad libitum. All of the procedures were 
conducted in accordance with the Institute for Laboratory Animal Research Guide for the Care and Use of Labo-
ratory Animals and with Baylor University Animal Care and Use Committee guidelines. HMLER-TWIST cells 
were harvested, pelleted by centrifugation at 2000×g for 2 min, and resuspended in sterile serum-free medium 
supplemented with 30% to 50% Matrigel (BD Biosciences, San Jose, CA, USA). Cells (2 ×  106 in 100 µl aliquots) 
were implanted into the left fourth mammary fat of each mouse and allowed to grow until measurable by caliper. 
Then, OpA or vehicle was administered by intraperitoneal injection three times weekly for 3 weeks at 2.5 mg/
kg, 5 mg/kg or 10 mg/kg. Tumor volume and body weight were recorded concurrently with injection  protocol73. 
At designated times, mice were humanely euthanized, and tumors and lungs were collected. Experiments were 
approved by Baylor University IACUC (#1441130). This study was carried out in compliance with ARRIVE 
guidelines (http:// www. nc3rs. org. uk/ page. asp? id= 1357).

Tissue staining. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue. The 
Leica Bond Max automated platform was used to perform the immunohistochemistry. The antibodies used were 
as follows: Caspase 3 Lot#GR3265151-4 (Abcam, Cambridge, MA). Antibodies were diluted at 1:1000.

Statistical analysis. Unless otherwise stated, statistical differences were determined using a student’s t-test. 
The GraphPad PRISM software v6 was used to perform these analyses. Statistical significance levels are anno-
tated as n.s. = non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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