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Abstract
The ventral temporal cortex (VTC) of the human cerebrum is critically engaged in computations related to
high-level vision. One intriguing aspect of this region is its asymmetric organization and functional lateralization.
Notably, in the VTC, neural responses to words are stronger in the left hemisphere, whereas neural responses to
faces are stronger in the right hemisphere. Converging evidence has suggested that left-lateralized word responses
emerge to couple efficiently with left-lateralized frontotemporal language regions, but evidence is more mixed
regarding the sources of the right-lateralization for face perception. Here, we use individual differences as a tool to
adjudicate between three theories of VTC organization arising from: 1) local competition between words and faces,
2) local competition between faces and other categories, 3) long-range coupling with VTC and frontotemporal
areas subject to their own local competition. First, in an in-house functional MRI experiment, we demonstrated
that individual differences in laterality are both substantial and reliable within a right-handed population of
young adults. We found no (anti-)correlation in the laterality of word and face selectivity relative to object
responses, and a positive correlation when using selectivity relative to a fixation baseline, challenging ideas of local
competition between words and faces. We next examined broader local competition with faces using the large-scale
Human Connectome Project (HCP) dataset. Face and tool laterality were significantly anti-correlated, while
face and body laterality were positively correlated, consistent with the idea that generic local representational
competition and cooperation may shape face lateralization. Last, we assessed the role of long-range coupling in
the development of VTC laterality. Within our in-house experiment, substantial correlation was evident between
VTC text laterality and several other nodes of a distributed text-processing circuit. In the HCP data, VTC face
laterality was both negatively correlated with frontotemporal language laterality, and positively correlated with
social perception laterality in the same areas, consistent with a long-range coupling effect between face and social
processing representations, driven by local competition between language and social processing. We conclude that
both local and long-range interactions shape the heterogeneous hemispheric specializations in high-level visual
cortex.

1 Introduction
Visual recognition is a fundamental skill performed by humans and animals alike, important both in its own right
and for guiding higher-order interactions with inanimate objects and social agents. The neural substrate of visual
recognition is implemented in the ventral visual pathway and is comprised of a hierarchy of regions that transform
retinal inputs into high-level features suitable for recognition across large naturalistic variation in the inputs (Mishkin
et al., 1983; Felleman and Van Essen, 1991; DiCarlo and Cox, 2007; Yamins and DiCarlo, 2016b). After processing in
the early retinotopic areas, signals are propagated to the ventral temporal cortex (VTC), a large extrastriate area
encompassing multiple stages of mid- and high-level visual processing.

Many investigations have characterized the functional organization of VTC—how representations of stimulus
and task properties are spatially organized across the cortical surface (Kanwisher, 2010). For example, in almost all
participants, a face-preferring region can be found on the fusiform gyrus (Kanwisher et al., 1997; Chen et al., 2023), a
word-preferring region can be found near the occipitotemporal sulcus (McCandliss et al., 2003; Rueckl et al., 2015),
and a place-preferring region can be found near the parahippocampal gyrus (Epstein et al., 1999) and collateral sulcus
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(for review, see Grill-Spector and Weiner, 2014). In addition to the presence of category-selective areas, a different
perspective has noted super-areal spatial organization for higher-order properties, such as animacy and real-world size
(Konkle and Caramazza, 2013), or, more abstractly, dimensions of object space (Bao et al., 2020). Within this object
space perspective, the first two dimensions of organization were proposed to be animacy and stubbiness/spikiness (Bao
et al., 2020); however, one study, controlling for image-based confounds, has suggested that the distinction between
faces and bodies holds greater importance in the organization of human VTC than stubiness/spikiness (Yargholi and
Op de Beeck, 2023). Recently, work has demonstrated that both the low dimensions of object space (Bao et al., 2020),
as well as the higher dimensions are topographically organized in the macacque inferotemporal cortex (Yao et al.,
2023), in line with other research demonstrating hierarchical topographic organization of different properties within
VTC (Tanaka, 1996, 2003; Brants et al., 2011; Sato et al., 2013). Many aspects of VTC topographic organization have
recently been shown to emerge within self-organizing neural network models, given pressures to perform high-level
object recognition tasks under spatial pressures to keep connectivity short or to exhibit local correlation (Blauch
et al., 2022b; Doshi and Konkle, 2023; Margalit et al., 2024).

1.1 Faces and words in VTC
Humans are expert at recognizing faces, a skill acquired over evolutionary timescales (Parr, 2011). As such, the
presence of one or more visually face-selective areas in VTC has been seen as tantalizing support of a possible adaptive
and evolved functional network (Kanwisher, 2010; Ratan Murty et al., 2020). However, most humans are also expert
at the visual recognition of words, a skill which has only become widespread in most societies over the last few hundred
years (Roser and Ortiz-Ospina, 2018), which is too short of a timeline for human brains to have evolved a particular
mechanism for this ability (Dehaene and Cohen, 2007; Polk and Farah, 1998). Nevertheless, a word-selective region
emerges in VTC in virtually all readers (McCandliss et al., 2003; Dehaene et al., 2010), but is absent in illiterate
individuals (Dehaene et al., 2010). That VTC contains a response profile selective for words is strong evidence for the
idea that experience-dependent plasticity can drive the large-scale functional organization of VTC to reflect the visual
statistics of ecologically relevant tasks (Dehaene and Cohen, 2007; Yamins and DiCarlo, 2016a).

Importantly, faces and words demonstrate complementary lateralization patterns, with face selectivity typically
stronger in the right hemisphere (RH), and word selectivity typically stronger in the left hemisphere (LH). Rather
than being confined to a single selective area, there are multiple areas that respond preferentially for each of these
categories within VTC in many or most observers. For face processing, there is general consensus of the presence of
an occipital face area, OFA (Gauthier et al., 2000), and two fusiform face-selective areas: FFA-1 and FFA-2 (also
referred to as pFus-faces and mFus-faces) in the posterior and middle fusiform gyrus, respectively (Grill-Spector
et al., 2017; Weiner et al., 2017). These regions are generally considered to be part of a core hierarchical network
(Gobbini and Haxby, 2007), homologous to the macaque face-patch system that has been studied in greater detail
(Tsao et al., 2003, 2008; Bao et al., 2020). For words, it is thought that there are posterior regions in each hemisphere,
L-VWFA-1 and R-VWFA-1, that support perceptual feature extraction, and a more anterior and left-dominant region,
L-VWFA-2, that communicates with downstream language areas (Lerma-Usabiaga et al., 2018; White et al., 2019).
White et al. (2019) has suggested that interhemispheric communication prior to VWFA-2 allows for the combination
of word-related information from each visual hemifield to converge in the left VWFA-2, where word recognition is
accomplished. Additionally, face and word recognition have each been viewed as recruiting an extended distributed
cortical network, with regions in VTC being seen as critical nodes involved in higher-level feature extraction, part
of the general processing demands for each of these categories (Gobbini and Haxby, 2007; Rosenthal et al., 2017;
Bouhali et al., 2014; Stevens et al., 2017; Vin et al., 2024).

1.2 Individual variability
The functional organization of VTC is broadly consistent across individuals, as reflected in the success of group-level
analyses. However, examination of individual functional maps also reveals substantial inter-participant variability.
Indeed, this variability has motivated the widespread use of functional localizers that are designed to demarcate a
selective cluster of voxels within an anatomical search space so that the response profile of the functionally-defined
region can be analyzed on a single-participant basis (Kanwisher et al., 1997; Kanwisher, 2010). This approach
circumvents the spatial blurring of heterogeneous functional regions across individuals; in the case of the VWFA,
individual variability obscures the observation of word-selective responses in VTC using a purely anatomical definition
(Glezer and Riesenhuber, 2013).

Somewhat surprisingly, however, the individual variability in spatial organization that motivates the use of
functional localizers—variability not only in the location, but also in the size, shape, and hemispheric organization
of functional regions, as well as in the number of functional regions—has received only limited consideration. This
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has painted a somewhat rigid view of the mosaic of functional topography in VTC, emphasizing a principled
developmental outcome rather than a principled developmental process. Notably, although the classic VWFA
(VWFA-2) is typically left-lateralized, it exhibits a rightward laterality in participants exhibiting rightward language
dominance in frontotemporal areas (Cai et al., 2008, 2010; Van der Haegen et al., 2012; Gerrits et al., 2019). This
finding would be expected if VWFA inherits its laterality through functional coupling with downstream language
lateralization(Behrmann and Plaut, 2020), and preferential anatomical and functional connectivity between VWFA
and language areas (Bouhali et al., 2014; Saygin et al., 2016; Stevens et al., 2017). Moreover, recent work has
demonstrated clear individual differences in both the size and number of face-selective regions in VTC (Gao et al.,
2022; Chen et al., 2023). Overall, the marked variability challenges the claim of canonical areal organization (Felleman
and Van Essen, 1991; Kanwisher, 2010), suggesting a more stochastic developmental process with multiple possible
local and global solutions in terms of areal organization and inter-areal connectivity (Sporns et al., 2004; Astle et al.,
2023). In this way, individual variability may provide clues into the developmental origins of VTC organization
(Davies-Thompson et al., 2016; Dundas et al., 2015).

1.3 Competition between words and faces?
What gives rise to the topographic and hemispheric organization of words and faces? The neuronal recycling (NR)
hypothesis (Dehaene and Cohen, 2007) suggests that the VWFA emerges in a specific LH region that both receives
foveal inputs and has connectivity with LH language regions, satisfying the input and output demands of reading.
A related theory of graded hemispheric specialization (GHS) has proposed that the acquisition of literacy creates a
competitive pressure with faces in the LH VTC, which leads to the rightward lateralization of face processing (Plaut
and Behrmann, 2011; Behrmann and Plaut, 2015). Specifically, both words and faces compete to be proximal to
high-acuity visual information in lateral cortical regions, with words competing more strongly in the LH to also be
proximal to left-lateralized language areas. Critical to GHS, this competition is not monolithic and varies across
individuals, resulting in graded degrees of lateralization (Behrmann and Plaut, 2020). Objects, which are recognized
with less expertise and thus place less demand on foveal resources, and scenes, which place greater demands on
peripheral vision, are thus proposed to be largely spared from this competition, in line with their weaker lateralization
(Hasson et al. 2002, for related ideas, see Levy et al. 2001).

One important difference between NR and GHS is that, while GHS agrees that neuronal recycling may be at play,
it considers cortical competition more generally, encompassing both recycling (i.e. one category “stealing” the resouces
of another) and blocking (i.e. preventing the acquisition of a category in a neural region) (see also Dehaene-Lambertz
et al., 2018, discussed below). However, both NR and GHS can be considered as instances of reading-based lateralized
neuronal competition (or reading-LNC ) theories (Rossion and Lochy, 2022), where local competition between word
and face representations drive rightward face lateralization. Reading-LNC (see Figure 1 for a schematic) has been
supported by multiple lines of evidence. First, compared to illiterate individuals, literate individuals show a reduction
in face responses in the anatomical peak of the left VWFA (Dehaene et al., 2010). Second, the onset of reading
instruction predicts both behavioral signatures of rightward face lateralization (Dundas et al., 2013) and lateralized
neural responses to faces measured with EEG (Dundas et al., 2014). Similarly, assessing individual differences, Dundas
et al. (2015) demonstrated that laterality of the N170 to faces increased with a stronger LH N170 for words, and to a
weaker extent, greater degree of right-handedness (among left- and right-handers). Lastly, computational modeling
has supported the plausibility of the GHS claims (Plaut and Behrmann, 2011; Blauch et al., 2022a), demonstrating
that the pressure for words to engage LH language representations can result in both leftward lateralization for words,
and a compensatory weaker rightward lateralization for faces.

1.4 Challenges to local competition between words and faces
Recently, however, there have been some important challenges to the claim that face lateralization is driven by local
recycling or competition with emerging word representations. Two longitudinal studies have examined children’s
reading acquisition to document the emergence of word selectivity, and to examine retroactively the site of eventual
word-selective cortex before children were exposed to orthography. In the first study, Dehaene-Lambertz et al. (2018)
found that word-selective cortex did not recycle previously face-selective cortex. Rather, eventual word-selective
voxels appeared to show weak selectivity prior to the onset of reading, with some voxels showing mild preferences for
tools, but not for faces. These findings led Dehaene-Lambertz and colleagues to revise the NR hypothesis, suggesting
that word selectivity emerges from weakly selective voxels; in contrast, right-hemispheric face lateralization emerges
due to a blocking mechanism, whereby left-lateralized word selectivity prevents the expansion of left-hemisphere
face selectivity, yielding a relative rightward bias for faces. In a second study, Nordt et al. (2021) found that
left-lateralized word selectivity emerged from voxels that were weakly selective for limbs but not body parts more
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generally (the Dehaene-Lambertz et al. (2018) study did not include a limb category). Limb selectivity was found
to wane over development, with the more weakly limb-selective voxels converting to word-selectivity, along with
other non-selective voxels. These findings led Kubota et al. (2023) to conclude that faces and words develop along
independent trajectories (although this proposal leaves the rightward face lateralization unexplained). While the
evidence does not support direct NR of face-selective cortex by words (Dehaene-Lambertz et al., 2018; Nordt et al.,
2021), broader competitive relationships between reading and face processing would appear important in explaining
the various empirical relationships found between reading skill and face lateralization (Ben-Shachar et al., 2011;
Dehaene et al., 2010; Dundas et al., 2013, 2014; Kubota et al., 2019; Pinel et al., 2015).

Rossion and Lochy (2022) recently offered similar challenges to the proposed local competition between words and
faces in VTC, noting inconsistency in the findings of studies that have attempted to assess this prediction. While
Brederoo et al. (2020) found a relationship between word and face laterality measured behaviorally using reaction
time, and Dundas et al. (2014, 2015) found a relationship between the laterality of word and face-related ERPs, fMRI
studies examining individual differences have revealed a murkier picture with mixed findings but generally lacking
support for a direct relationship between the laterality indices of word and face selectivity in VTC (Davies-Thompson
et al., 2016; Pinel et al., 2015; Canário et al., 2020).

1.4.1 Long-range lateralized neuronal competition

Rossion and Lochy (2022) suggested an alternative mechanism of cortical competition, whereby competition between
language processes (relevant for words) and spatial and social processes (more relevant for faces) outside of VTC results
in a domain-relevant lateralization that then influences the lateralization of VTC, through a coupling mechanism
similar to that proposed between visual word and language representations. Rossion and Lochy (2022) refer to this
theory as the lateralized neural competition (LNC) theory, to contrast it with reading-LNC theories emphasizing
the role of local, reading-induced competition within VTC. The LNC theory has received recent empirical support,
with demonstrations of a spatially precise competition between language and social processing (in a social task
reliant on spatial perception; Rajimehr et al., 2022), with RH homologues of left-lateralized language areas showing
selectivity for social stimuli. Thus, this complementary rightward lateralization for social processing may encourage
rightward lateralization of VTC face representations through long-range cooperative pressures (see also Powell et al.,
2018, for related ideas regarding coupling with medial prefrontal cortex playing a role in the location of VTC face
selectivity). Intriguingly, Pinel et al. (2015)—who failed to find competition between word and face laterality in
VTC—demonstrated a positive correlation between VTC face laterality and reading skill (see also Dundas et al.,
2013), as well as between both VTC word and face laterality and the laterality of the superior temporal sulcus (STS)
in a spoken language task. For our purposes, we will refer to the LNC theory as long-range-LNC (schematized in
Figure 1), to emphasize the role of competition in areas that show long-range coupling with VTC in giving rise to
VTC face lateralization, and to contrast with the final theory we examine here.

1.4.2 General local lateralized neuronal competition

This final theory considers more general local competition within VTC between faces and other categories, without
lending privileged status to words and, instead, suggesting that the entire graded topography of VTC is subject to
lateralized competition and cooperation for representational and physical space (Figure 1). Accordingly, we term
this theory local-LNC. This theory arises naturally from a locally interactive view of the topography of VTC, where
topography emerges in a graded fashion due in part to the visual properties that must be learned in service of
general high-level visual tasks (Blauch et al., 2022b; Doshi and Konkle, 2023; Prince et al., 2024). On this view,
interactions between categories may be more generic, with hemispheric organization being one facet of topographic
organization that is dependent on graded competition between domains. The graded competition may be initiated by
coupling between a distal source and particular local representation, but the outcome for other categories depends
on the similarity of local representations. Despite the appearance of local category processing modules, VTC is
known to contain highly distributed information content (Haxby et al., 2001, 2011), where stimuli from non-preferred
categories can be decoded from category selective areas. Such information appears to arise due to the systematicity of
non-preferred responses, which is not idiosyncratic but extends across subjects (Downing et al., 2006; Prince et al.,
2024) and is well captured by deep neural network models (Prince et al., 2024). This distributed information is
thus not inconsistent with local functional specialization (Spiridon and Kanwisher, 2002), but it also points to the
graded and interactive nature of representations in VTC. Critically, the overlap in neural responses for different
categories predicts the behavioral ability to process multiple objects, with greater difficulty in processing multiple
exemplars from categories with similar neural representations (faces and objects) than from categories with more
distinct neural representations (faces and scenes) (Cohen et al., 2014). Similarly, neural representational similarity of
pairs of categories in VTC strongly predicts visual search results (Cohen et al., 2017).
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Figure 1: Visual schematic of the three lateralized neuronal competition (LNC) theories examined here. Competitive
and cooperative relationships proposed in each theory are color coded according to the legend: blue for reading-LNC,
green for long-range LNC, and red for local-LNC. Additionally, black indicates relationships that are accepted by all
the theories (along with interhemispheric projections between corresponding areas, which are not shown). The size
of blobs indicate the relative hemispheric specialization. Briefly, we describe the theories. Reading-LNC : learning
to read gives rise to a left VTC laterality for words, to couple with language (black arrows between yellow blobs).
Rightward VTC face laterality results from local competition with left-lateralized VTC word representations, which
demand similar foveal inputs but require distinct representations from faces. Local-LNC : Representational overlap of
different categories influences the sign and degree of correlated laterality. Rightward VTC face laterality emerges
through local lateralized neuronal competition and cooperation more generally, not specific to words. Long-range-LNC :
Frontotemporal language areas compete with face-relevant processes, such as social perception, giving rise to rightward
lateralization. VTC face laterality is induced by long-range coupling with these right-lateralized processes.

Thus, the trajectory of local lateralized competition may be determined largely by the similarity structure of VTC
representations, not just the similarity of input and output demands. To the extent that some categories recruit
lateralized processing outside of VTC, this could incite local lateralized competition with other categories depending
on the overlap in representation. Notably, in addition to language lateralization impacting the lateralization of words,
visual tool processing is known to elicit a left lateralized circuit in right-handed individuals (Johnson-Frey, 2004;
Lewis, 2006)—including in VTC (Chao et al., 1999; Downing et al., 2006)—presumably due to visuomotor interactions
supporting visually-guided tool use with the dominant (right) hand. Of interest, representations of tools are known to
overlap specifically with representations of hands (Bracci et al., 2012; Knights et al., 2021), which are located next to
general body representations (Bracci et al., 2010), themselves being next to face representations (Downing et al., 2001,
2006). Such systematicity may give rise to a relationship between face laterality and both tool and body laterality.

1.5 The present study
In the current work, we focus on elucidating the laterality of human ventral temporal cortex, with a focus on face
processing. Since face representations begin to develop very early in life, longitudinal “recycling” studies (Nordt et al.,
2021; Dehaene-Lambertz et al., 2018), which have been useful for studying word representations, may be less well
suited to examine the emergence of face lateralization. Rather, assessing the variation across individuals may yield
greater insight into general lateralized neuronal competition with face representations in VTC.

Here, with a sample of over 50 participants, we present the results of a neuroimaging study aimed at elucidating
patterns of individual variability in the hemispheric organization of high-level visual representations. Additionally, we
incorporate analyses of the large-scale Human Connectome Project (Barch et al., 2013; Glasser et al., 2013), which
has greater statistical power to test related ideas in ways that are not possible with a smaller dataset. We begin by
demonstrating strong individual variability in the topographic and hemispheric organization of VTC. We then use
this variability as an inferential method to study the sources of lateralization in VTC, analyzing local competition and
long-range coupling. Specifically, our data will adjudicate between three hypotheses regarding the role of lateralized
neuronal competition (LNC), extending the terminology of Rossion and Lochy (2022) (see Figure 1).
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1. Reading-LNC: rightward VTC face laterality results from local competition with left-lateralized word represen-
tations;

2. Local-LNC: rightward VTC face laterality emerges through local lateralized neuronal competition and cooperation
more generally, not specific to words;

3. Distributed-LNC: VTC face and text laterality are induced by long-range coupling with external lateralized
processes; specifically, VTC text laterality is induced by coupling with LH frontotemporal language areas, and
VTC face laterality is induced by coupling with RH frontotemporal areas involved in processes that compete
locally with language, such as social processing.

2 Methods
2.1 Main neuroimaging experiment
2.1.1 Participants

A total of 55 right-handed young adults completed a 1-hour session of MRI scanning and two hours of behavioral
experiments. Diffusion imaging and behavioral results were not analyzed for this study. Individuals were excluded if
they met any of the following criteria: left-handed, non-native English speaker, multilingualism in childhood, presence
of metal in body, significant neurological or psychiatric history, claustrophobia, or any other contraindication for MRI.
One participant was excluded from the analysis as they did not complete the imaging session.

The procedures used in this study were reviewed and approved by the Institutional Review Board of Carnegie
Mellon University. All participants gave informed consent prior to their participation, and were paid $50 for their
participation.

2.1.2 Experimental protocol

Imaging data were acquired on a Siemens Prisma 3T scanner with a 64-channel head coil at the BRIDGE Center
of Carnegie Mellon University and the University of Pittsburgh. The imaging sequence included a T1-weighted
anatomical image, diffusion-weighted images, and functional images. Five runs of functional imaging data (TE=30 ms,
TR=2000 ms) were collected, at isotropic resolution of (2mm)3. Each run lasted approximately 5 minutes, containing
several mini-blocks of multiple images from a given category presented rapidly at fixation while the participants
performed a 1-back stimulus identity task. We used a modified version of the functional localizer of (Stigliani et al.,
2015), referred to as fLoc, but with 6 categories: words, faces, objects, inverted faces (or scrambled, see next section),
inverted words, and non-word letter strings. The object, face, and inverted face categories contained two subcategories,
cars and guitars for objects, and adult and children for faces, using the original stimuli from (Stigliani et al., 2015).
Rest mini-blocks were intermixed with the category mini-blocks, and were treated the same as stimulus mini-blocks
in terms of frequency and duration. The order of mini-blocks was fully counterbalanced across categories, such that a
mini-block of each category preceded a mini-block of each other category exactly once in a run. Each mini-block lasted
6s, containing 12 stimuli (or 0 in the rest condition), each presented for 400ms with a 100ms inter-stimulus interval
(ISI). Participants performed a 1-back stimulus identity task in the scanner. The first block began 10s after imaging
acquisition, to allow for the scanner to reach a steady state. Additional imaging acquisition lasting 14s preceded the
final block of stimuli, allowing for the BOLD signal to return to baseline. Example stimuli and a schematic for the
experimental design are shown in Figure 2.

The data reported here were aggregated from two slightly different protocols. The first set of 28 participants
performed the fLoc task with 6 categories: faces, inverted faces, words, inverted words, letter strings, objects (also
used in Vin et al., 2024). The second set of 27 participants performed a similar fLoc task in the scanner, but the
inverted faces condition was replaced with a scrambled image condition in order to assess selectivity relative to a
baseline that allows for the removal of response estimation overlap in the raw beta coefficients, but does not enforce
the selectivity map to contain only the most preferential responses for a given category. When functional data are
aggregated across the two protocols for a particular analysis (e.g., computing the selectivity for a particular category),
the inverted faces and scrambled conditions are ignored.

2.1.3 Functional imaging data pre-processing

The functional imaging data were preprocessed using fMRIPrep 1.4.1 (Esteban et al., 2018b,a), which is based on
Nipype 1.2.0 (Gorgolewski et al., 2011, 2018). Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham
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Figure 2: Experimental design. A. example stimuli from each of 6 categories, and the number of participants who
viewed each category. B. a schematic of 1 run of the experiment. Note that the repeat condition could be anywhere
within the block, not only at the end. Note: faces have been masked to conform to the policy of bioRXiv not to show
human faces.

et al., 2014), mostly within the functional processing workflow. For more details of the pipeline, see the section
corresponding to workflows in fMRIPrep’s documentation. Here, we quote the methods output directly from fMRIPrep
as applied in our experiment, a procedure encouraged by the fMRIPrep authors to ensure accuracy of the methods
description. Slight modifications were made to remove the details regarding estimation of unused confounds.

For each of the 5 BOLD runs per participant, the following preprocessing was performed. First, a
reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.
A deformation field to correct for susceptibility distortions was estimated based on two echo-planar
imaging (EPI) references with opposing phase-encoding directions, using 3dQwarp (Cox and Hyde, 1997)
(AFNI 20160207). Based on the estimated susceptibility distortion, an unwarped BOLD reference was
calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was
then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based
registration (Greve and Fischl, 2009). Co-registration was configured with nine degrees of freedom to
account for distortions remaining in the BOLD reference. Head-motion parameters with respect to the
BOLD reference (transformation matrices, and six corresponding rotation and translation parameters)
were estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002).
The BOLD time-series were resampled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series
will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. Several confounding
time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS
and three region-wise global signals. FD and DVARS were calculated for each functional run, both
using their implementations in Nipype (following the definitions by Power et al., 2014). Additionally, a
set of physiological regressors was extracted to allow for component-based noise correction (CompCor,
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Behzadi et al., 2007). Principal components were estimated after high-pass filtering the preprocessed
BOLD time-series (using a discrete cosine filter with 128s cut-off) for the anatomical CompCor variants
(aCompCor).
This subcortical mask was obtained by heavily eroding the brain mask, which ensures that it does not
include cortical GM regions. For aCompCor, components were calculated within the intersection of
the aforementioned mask and the union of CSF and WM masks calculated in T1w space, after their
projection to the native space of each functional run (using the inverse BOLD-to-T1w transformation).
Components were also calculated separately within the WM and CSF masks. The head-motion estimates
calculated in the correction step were also placed within the corresponding confounds file. The confound
time series derived from head motion estimates and global signals were expanded with the inclusion of
temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). All resamplings can be
performed with a single interpolation step by composing all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos,
1964). Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

2.1.4 fMRI General Linear Model (GLM)

fMRI data were analyzed using SPM12. For each participant, a general linear model was specified in order to model
the effect of each stimulus category on the BOLD response of every voxel in the brain. Specifically, each mini-block
was modeled as a single event specified by its onset and a duration of 6s. The design matrix thus contained 6 stimulus
regressors, one per condition, each of which were convolved with a canonical hemodynamic response function. A
reduced set of fMRIPrep-generated confounds was retained for nuisance regression; specifically, we retained 6 motion
parameters (X, Y, Z motion and rotation), the top 6 principal components of the aCompCor decomposition, and the
framewise-displacement, yielding a total of 13 nuisance regressors, along with a runwise mean regressor, which were
appended to the design matrix. Finally, an autoregressive-1 model was used within SPM12 to reduce the effects of
serial correlations. We fit voxels only within the brain mask defined by fMRIPrep. Estimation of the GLM resulted
in a beta-weight for each stimulus condition and run, which were used for subsequent univariate and multivariate
analyses.

2.1.5 Regions of interest

The primary region of interest (ROI) for this work is a large ventral temporal cortical (VTC) area, whose anatomical
mask consisted of the union of the inferior-temporal and fusiform ROIs defined in the Freesurfer aparc atlas. We
also defined multiple regions of interest outside of VTC, using the Glasser atlas (Glasser et al., 2016), following the
approach of (Vin et al., 2024). Inferior frontal gyrus (IFG) was defined as the union of areas ’44’,’IFJa’,’6r’, and
’IFSp’; superior temporal sulcus and gyrus (STSG) was defined as the union of areas ’STSdp’,’TPOJ1’,’A5’, and
’STV’; precentral gyrus was defined as the union of areas ’55b’ and ’PEF’; IFG pars orbitalis (IFGorb) was defined as
the union of areas ’IFSa’, and ’45’; Intraparietal sulcus (IPS) was defined as the union of areas ’IP0’, ’IP1’, ’IP2’, and
’IPS1’; early visual cortex (EVC) was defined as the union of areas ’V1’, ’V2’, and ’V3’.

2.1.6 fMRI hemispheric selectivity and laterality

Hemispheric selectivity for various contrasts was computed separately and used to compute laterality. The intersection
of two masks—anatomical and stimulus-responsive—was used to constrain voxel selection for the computation of
selectivity in each hemisphere. Each ROI was associated with one or more anatomical parcels used to construct the
anatomical mask. The stimulus-responsive mask was defined as voxels whose response was significantly greater during
the stimulus periods than rest periods, with p < 10−4. Selectivity was computed from whole-brain statistical maps
computed in SPM12, which used contrasts comparing voxelwise activation of some set of conditions to another. As
words, letter strings, and inverted words evinced similar responses in ventral regions (see Vin et al., 2024, for explicit
consideration of differences in activation across text conditions within this dataset), we grouped words, inverted
words, and letter strings into a “text” domain. Responses to inverted faces were not analyzed in this work. Contrasts
were balanced in total weight across numerator and denominator, as well as across any sampled domains within
the numerator or denominator (i.e. faces, objects, text), to avoid biasing our selectivity metrics to the more heavily
sampled domains (i.e. text). We computed text selectivity with the contrast (Words + Inverted Words + Letter
Strings)/3 − (Faces + Objects)/2. Likewise, to compute face selectivity, we used the contrast (Faces) − ((Words
+ Inverted Words + Letter Strings)/3 + Objects)/2. Last, we computed object selectivity as Objects − (Faces +
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(Words + Inverted Words + Letter Strings)/3)/2. We examined three dependent measures of hemispheric selectivity:
summed positive t-statistics, peak t-statistic, and number of selective voxels. Where not stated, we used summed
selectivity as the metric of selectivity, as it best captures the total profile of selectivity considering both the size
of the region as well as the magnitude of the selectivity within the selective region; while it is useful to correct for
total cortical volume of the bilateral anatomical ROI when assessing hemispheric selectivity, the laterality ratio is
unaffected by this correction. An illustration of our approach can be seen in Figure 3. For each metric, selectivity
was computed for a given category C in selected voxels of a given hemisphere H, denoted SC,H . Finally, hemispheric
laterality for a given category C, LC , was computed as:

LC = SC,L − SC,R

SC,L + SC,R

P

A

face selectivity (full baseline)  

VTC = fusiform + inferiortemporal aparc ROIs

Mask VTC

L R

Threshold
Sum selectivity 
and compute laterality

Figure 3: Computing summed hemispheric selectivity and laterality in VTC, using face selectivity in an example
participant. The ventral inflated cortical surface is shown. Posterior-anterior axes are labeled with P and A, and left
and right hemispheres with L and R. The t-statistic map (left) is first masked anatomically by the VTC ROI, and
then thresholded at 0. Positive t-statistics are then summed to compute selectivity in the left and right hemisphere,
SL and SR, respectively. Finally, laterality is computed.

2.1.7 Functional contrasts

To assess competition across domains, we used multiple different contrasts. The purpose of this approach was to
minimize confounding factors in the establishment of correlations across domains. In all cases, statistical confounding
was prevented by using independent runs of data to compare laterality values across domains; however, category-based
confounding may still persist by way of different selectivity contrasts containing overlapping sets of categories .
Considering the standard full baseline for faces and text, it is clear that both positive and negative biases exist in the
correlation of the two contrasts. First, to the extent that object responses and laterality are reliable across subsets of
runs, the presence of objects in both denominators induces a positive correlation between the two contrasts. Perhaps
more problematically, under the same assumption of reliability for faces and text, the swapped presence of faces
and text in numerator and denominator across the two contrasts induces a bias towards negative correlation. Thus,
comparisons using full contrasts may be inappropriate for discovering true patterns of correlation across participants,
being biased by category-based confounds due to overlap in the contrasts. The simplest solution is to assess the
laterality of each domain against the fixation baseline, using a one-sample t-test of beta coefficients against 0. However,
this may fail to eliminate a large degree of shared variability that may be overestimated due to the fast event-related
design used here. Thus, we take two additional approaches. First, we use the held-out category as the baseline in
the selectivity contrast (e.g., faces vs. objects, text vs. objects, in the comparison of faces and text). Second, we use
the fixation baseline selectivity contrasts, and regress out the laterality of the held-out category using the fixation
baseline.

2.1.8 Whole-brain atlas-based laterality

In some analyses, we computed laterality across the whole-brain using a fine-grained cortical parcellation. For this
purpose, we used the Yan homotopic atlas with 500 parcels per hemisphere (Yan et al., 2023).

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618268doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618268
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.1.9 Cortical surface visualization

Pycortex (Gao et al., 2015) was used for visualization. All visualizations were performed in fsaverage surface-space,
following a sulcal-based alignment (Fischl et al., 1999) implemented in Freesurfer. The boundaries of parcels from
the Human Connectome Multi-Modal Parcellation (HCPMMP) atlas (Glasser et al., 2016) were manually drawn in
Inkscape and added to the Pycortex ‘overlays.svg‘ file as a visual guide to viewing the surface images.

2.2 Analysis of the Human Connectome Project
In addition to the analyses of our in-house dataset, we took advantage of the large-scale Human Connectome Project
(HCP) dataset to perform additional, complementary analyses. For computational convenience, we downloaded
pre-computed category selective maps available on Amazon Web Services S3 storage, under the HCP_1200 folder. We
focused on the Working Memory, Language, Social, and Emotion tasks. These tasks have been discussed extensively
in prior literature, so we will discuss only the basics here and refer the reader to Glasser et al. (2016) for more specific
details.

We extracted surface-based contrast maps in the 32k_fs_LR group CIFTI space of the HCP preprocessing
pipeline (Glasser et al., 2016), using standard sulcal-based alignment rather than the multimodal-surface-matching
procedure (Robinson et al., 2014), due to the latter’s use of functional data to compute the alignment, which could
introduce dependencies between estimates of different functional topographies. We acquired the maps smoothed with
a Gaussian kernel of 2mm FWHM, which was the smallest amount of smoothing available. The hcp_utils(https:
//rmldj.github.io/hcp-utils/) Python package was used as a source of a CIFTI-based HCPMMP atlas, similar
to the one used in our main analyses. The HCPMMP atlas was used for all selectivity analyses. We constructed a
VTC ROI as the union of several HCPMMP parcels: V8, pIT, FFC, VVC, PHA1, PHA2, PHA3, TE2p, TF, PH,
VMV1, VMV2, VMV3. This VTC ROI—shown in the inflated surface panels of Figure 6—is similar to the VTC ROI
used in the main experiment (see Figure 3). Selectivity analyses were performed in the 32k_fs_LR space; however,
for the purposes of visualization in PyCortex (Gao et al., 2015), we transformed relevant maps to the standard higher
resolutionfsaverage cortical surface space using Connectome Workbench tools wrapped within the hcp_utils package.

2.2.1 Visual working memory task

The visual working memory (WM) task consisted of a block design of visual categories—faces, bodies, tools, and
places—with a 0-back or 2-back working-memory task, which was used to index category selectivity in VTC and
neural mechanisms for visual working memory. Our focus is on the former usage. For the WM experiment, HCP
provides contrasts of each category against baseline (fixation), as well as against the average of all other categories.
The former contrast essentially accounts for the signal in beta weights for a given category across runs, given the
noise in the estimates, whereas the latter contrast is a more typical index of “selectivity” for one category versus
the others. Neither of these choices is ideal for assessing individual differences in selectivity across participants:
contrasting each category versus baseline is too lenient and results in widespread positive correlations between all
conditions, whereas contrasting each category versus the average of all others introduces negative correlations due
to statistical dependence between the contrasts for each category. We constructed new contrasts by making use of
the category versus baseline contrasts. We chose “places” as a baseline category to compare bodies, tools, and faces.
These contrasts were constructed by subtracting the places versus fixation contrasts from each category versus fixation
contrast.

2.2.2 Language task

The language (LANG) task consisted of a block design of story listening or math problem-solving blocks (Binder
et al., 2011; Glasser et al., 2016). The contrast of primary interest was stories versus baseline, following Glasser et al.
(2016) and Rajimehr et al. (2022).

2.2.3 Social task

The social (SOCIAL) experiment consists of a block design alternating blocks of interactions between simple shapes
that are either social or random in nature, with the task being to determine whether the interaction is social or not
(Glasser et al., 2016). As in Rajimehr et al. (2022), we used the “social − random” contrast as an index of social
processing.
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2.2.4 Emotion task

The emotion (EMOTION) task presents blocks of emotional face stimuli alternating with blocks of non-emotional
simple shape stimuli (e.g., rectangles, ovals). Participants are tasked with matching a left or right stimulus with
a target stimulus above the two sample stimuli. We computed emotional face selectivity and laterality using the
contrast (faces − shapes).

2.2.5 Language typicality clusters

Language typicality clusters were extracted from functional responses during the HCP language task using the
approach of Labache et al. (2023), facilitated through direct sharing of post-processed results. This approach derives
clusters based on 5 features of task-driven and intrinsic activity in a set of predefined anatomical parcels involved
in language processing. Task-driven laterality metrics are computed at the network and hub level, providing the
first two features, and intrinsic activity (i.e. resting state functional correlation) was used to derive 3 additional
features: averaged homotopic connectivity, asymmetry of RSFC node strength, and sum of node strength. Clustering
is performed on the array of 5-D values across participants, and a 3 group solution was selected and determined to
correspond well to groups of “strong typical”, “mild typical”, and “atypical” laterality groups. We restricted our
analysis to right-handed individuals (Edinburgh handedness > 40).

2.2.6 Whole-brain atlas-based laterality

As in the main experiment, we performed an analysis based on the laterality computed in a fine-grained cortical
parcellation. For greater facilitation with the CIFTI-based HCP data, we used the HCP parcellation, containing 180
parcels per hemisphere (Glasser et al., 2016).

3 Results
3.1 Individual differences in VTC organization
Our first goal was to determine the degree of individual variation present in VTC organization by gathering and
analyzing our own empirical data. Figure 4A shows the resulting distribution of laterality indices for each category
contrast, demonstrating that there is substantial variation in the magnitude of laterality for each domain (even among
the right-handed college-aged population examined in this study). At the group-level, as expected, face selectivity
is significantly right-lateralized and text selectivity is significantly left-lateralized, while object selectivity is weakly
right-lateralized; group-level maps are additionally plotted in Figure S1.

We next quantified the reliability in subject-level laterality indices, by correlating laterality values across two
independent splits of the data (using either the even or odd runs) from the same participant, with the relationships
shown in Figure 4B. We found that the reliability in laterality is extremely high for each category (all Spearman’s
ρ > 0.8, all p < 10−10). These reliable within-individual differences can be further visualized in Figure 4D, which
shows example individual participant maps for face and text selectivity (all subjects are shown in Figures S6 and S7.
In addition to stable individual differences in laterality, differences in within-hemisphere topography—including the
location, size, and number of selective regions—are clearly present.

To quantify the general variability in topography across participants, and its reliability within participants, we
computed the overlap of category-selective regions across participants and compared it with the overlap across
independent splits of the data within participants (Figure 4C). Specifically, we binarized the fsaverage selectivity
maps to be 1 if positive selectivity exceeded p<0.001, and 0 otherwise; we then computed the dice coefficient across
maps masked within the VTC region. Whereas the overlap within participants is relatively high for most regions,
indicating reliability, overlap is much weaker across participants, indicating the presence of substantial individual
differences in functional topography.

Having established the presence of individual differences in VTC organization, we next sought to examine how
different aspects of VTC organization are related to each other (across participants), in order to draw implications for
the various theories of functional competition.

3.2 Local competition between faces and words
Rossion and Lochy (2022) argued that a key prediction of reading-LNC theories like NR and GHS is that the
lateralization of faces and words should be linked or interdependent within VTC. We tested this prediction in young
adults with competent reading skills. We compared laterality of faces, text, and objects, pairwise across participants,
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Figure 4: Individual differences in VTC laterality. A. Distributions of laterality for each category contrast. B.
Consistency of individual laterality indices across even and odd subsets of runs. C. Overlap of category-selective
areas across even and odd runs, across-participant (blue), and within-participant (orange). Overlap is computed as
the dice coefficient applied to category-selective masks computed from even or odd runs, thresholded at p < 0.001. D.
Example individual participant maps for face and text selectivity, demonstrating large inter-individual variability and
within-individual reliability.

using multiple fMRI contrasts (see section 2.1.7). In all cases, we used separate subsets of runs to compare laterality
to ensure statistical independence of the contrasts. We first assessed the relationship between face and text laterality,
shown in Figure 5A, which these two accounts predict should be negatively correlated. In contrast to this prediction,
we found no clear correlation between faces and text when using the full baseline (r = 0.079, p > 0.05). When using
responses to the held-out category (objects) as the baseline, we found a small positive correlation in face and text
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Figure 5: Pairwise laterality comparisons for faces, objects, and text. A. face vs. text selectivity. B. object vs.
text selectivity. C. face vs. object selectivity. For each subfigure, the first (leftmost) plot uses the full baseline (all
categories), the second plot uses the held-out domain as the baseline, the third plot uses a fixation baseline, and the
fourth plot uses a fixation baseline after regressing out the held-out category’s laterality (against a fixation baseline)
from both laterality values. In each case, even runs are used to compute the laterality for the X-axis, and odd runs
are used to compute the laterality for the Y-axis.

laterality (r = 0.079, p > 0.05). Lastly, when using a fixation baseline1 (i.e. computing selectivity as a one-sample
t-test of beta coefficients against 0), we found a strong positive correlation (r = 0.705, p < 0.00001). This correlation
is largely reduced, but not abolished, when regressing out object versus fixation laterality from both face and text
laterality (r = 0.316, p < 0.05). In contrast to predictions from reading-LNC theories, rather than being negatively
correlated, the laterality of faces and text appear to be positively correlated, except when using the full baseline for
which there is a category-based bias towards negative correlation.

Importantly, the lack of evidence for lateralized competition between words and faces was not changed by using
two more typical measures of selectivity indexing either the strength (peak) or size (number of selective voxels) of the

1Due to the smaller available sample with a scrambled condition (n=27), we do not use these maps for studying individual differences.
However, in exploratory analyses, we again found no relationship between face and text using the scrambled baseline.
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selective region (Figures S4, S5. Taken together, these results do not provide evidence supporting the reading-LNC
(NR and GHS) hypothesis that VTC face laterality emerges from local competition with word representations (Rossion
and Lochy, 2022; Behrmann and Plaut, 2020; Dehaene et al., 2010).

As noted above, prior work has suggested that words may compete more broadly with object-responsive cortex,
rather than with face-responsive cortex specifically (Kubota et al., 2019). Accordingly, we also compared the laterality
of objects and text across participants (Figure 5B). Using the full baseline, we found a small negative correlation
(r = −0.282, p < 0.05), indicative of competition. However, when the held-out category of faces alone is used as
a baseline in selectivity contrasts, we found a lack of competition (r = 0.077, p > 0.05), indicating that the prior
result was likely due to the presence of the category-based confound. When using the fixation baseline, there is a
very strong positive correlation between object and text laterality (r = 0.695, p < 00001); however, this correlation is
abolished when regressing out the face versus fixation laterality (r = 0.11, p > 0.05).

3.3 Local correlation between faces and objects
Prior work demonstrated that the overlap in neural representations for faces and objects predicted the behavioral cost
in representing exemplars from each of these categories, which was stronger than that for more distinct categories
(e.g. faces and scenes) (Cohen et al., 2014). To determine whether there is also a shared laterality for faces and
objects, we next compared their laterality patterns across participants (Figure 5C). Using the full baseline for each, we
found a weak and non-significant trend towards positive correlation (r0.146, p > 0.05). However, using the held-out
text baseline, we found a strong correlation in face and object laterality (r = 0.58, p < 0.0001). As both the lack
of positive correlation in the full baseline, and the strong positive correlation in the held-out baseline, could be
driven by category-based confounding in the baselines, we next assessed the results using the fixation baseline. As in
the previous cases, there is a strong positive correlation in laterality (r = 0.812, p < 0.00001). As a final test, we
examined this correlation after regressing out text vs. fixation laterality; the correlation remained strong (r = 0.627,
p < 0.00001). This suggests that faces and objects exhibit a true correlation in their laterality across participants,
despite faces being typically more lateralized, in line with the local-LNC theory.

3.4 Local competition between faces and other categories
We next evaluated the claim of the local-LNC theory that generic local competition within VTC, not specific to words
or reading, shapes the lateralization of face processing. For this purpose, we leveraged the Working Memory (WM)
experiment of the Human Connectome Project (HCP), which has the advantage of having a much larger cohort of
participants and thus greater statistical power to detect any effects. As discussed in Methods 2.2, this experiment
consists of blocks of faces, places, bodies, and tools. Noting that the selectivity for places was substantially more medial
than that of faces, bodies and tools, we opted to use places as a common baseline. Group-level category-selective maps
of standard and modified contrasts can be seen in Figure S2. Faces, while present in the WM task, were also shown
to participants in a separate Emotion experiment, consisting of a block design of emotional faces, and non-emotional
simple shape stimuli. This yields the opportunity for an independent comparison of face laterality and laterality for
other categories, not confounded by shared or opposing selectivity baselines. As a sanity check, we confirmed that
face laterality is similar across WM and Emotion tasks, throughout VTC (r = 0.483, p < 0.00001), and particularly
in the fusiform face complex (FFC) parcel (r = 0.683, p < 0.00001). Thus, emotional face laterality is a suitable
independent measure of face laterality to compare with body and tool laterality from the WM experiment. We used
contrasts of bodies−places, tools−places, and emotional faces−shapes to compute summed selectivity in each parcel
of the symmetric HCPMMP atlas. Lastly, we computed laterality values for each pair of homologous parcels.

To assess lateralized competition between face representations and those of bodies and tools, we correlated face
laterality with body and tool laterality for each parcel, as well as at the level of the full VTC. For tools−places (Figure
6A), we found significant negative correlations within VTC, notably in the FFC parcel (ρ = 0.17, p < 0.00001). For
bodies−places (Figure 6B), we found significant positive correlations within VTC, including in FFC (ρ = 0.13, p <
0.001), along with a broader swath of individual regions across ventral and lateral occipitotemporal cortex, peaking
in the parcel immediately medial to FFC, known as the ventral visual complex (VVC; ρ = 0.316, p < 0.00001).
These results are in line with the idea of local representational cooperation between faces and bodies, and local
representational competition between faces and tools.

The correlations between tools/bodies and faces are largely opposite in sign and might be complementary. To test
this, we computed the contrasts tools−bodies and bodies−tools, and performed the same analyses. The tools−bodies
contrast (Figure 6C) reveals a larger number of negative correlations in VTC (despite a weaker correlation at the
level of the full VTC swath), and an increase in the magnitude of the negative correlation with emotional face
laterality in FFC. Similarly, bodies−tools (Figure 6D), reveals a strengthening of positive correlations with emotional
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Figure 6: Comparing the laterality of selectivity for the faces−shapes contrast in the Emotion task, with laterality
of selectivity for other contrasts encompassing tools and bodies. A-D. Left: parcel-level correlation, computed within
each parcel of the HCPMMP atlas. Significant correlations following FDR correction over 180 regions are plotted in
a flat map and inflated ventral view. Right: correlations for individual regions, including ventral temporal cortex
(VTC; pink outline), a large region made up of several HCPMMP parcels and the fusiform face complex (FFC; green
outline). A. Tools−places. B. Bodies−places. C. Tools−bodies. D. Bodies−tools.

face laterality, including increases in VTC and FFC. Notably, the magnitude of the correlation is strongest in VTC
and FFC when using the contrast bodies−tools. These results indicate that laterality for tools and bodies are
independently negatively and positively correlated with the laterality of faces, combining to produce the strongest
prediction of face laterality when directly contrasted. The slight increase in correlation magnitude for bodies−tools
versus tools−bodies may be expected from the greater overlap in face and body responses (Figure S3). In contrast,
tool selectivity is typically adjacent to face-selectivity and more likely to overlap body-selective responses, making
direct parcel-to-parcel correlation a less perfect test of competition, since the rise of leftward laterality in parcel B
may correspond more to a rise in rightward laterality in parcel A versus parcel B. Nevertheless, the neighboring and
partially overlapping responses give rise to a competitive laterality of faces with tools, and a cooperative laterality
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with bodies. The distributed pattern of correlations indicates that the co-fluctuation of laterality across these domains
spans a large anatomical substrate. These patterns of local competition and correlation were consistent across a large
range of handedness and language laterality thresholds (Figure S8). Interestingly, as shown in Figure S10, when
we compared the faces−places contrast with tools−places contrast, we found that competition in VTC was masked
by broad baseline-driven correlation; we were able to recover competition within the WM experiment only when
additionally adding bodies to the baseline.

In summary, our analysis of the HCP data identified local competition between faces and tools, and local
cooperation between faces and bodies, thereby supporting claims of the local-LNC theory.

3.5 Distributed coupling of laterality
We’ve provided evidence in line with certain forms of local competition and cooperation—competition between faces
and tools, and cooperation between faces and bodies. However, the apparent relationship between reading onset
and face laterality (Dundas et al., 2013, 2014; Behrmann and Plaut, 2020) was not explained in our data by local
competition in VTC between representations of faces and words. However, beyond local constraint theories, other
theories have emphasized the role of long-range connectivity in shaping the topographic and hemispheric organization
of VTC (Rossion and Lochy, 2022; Price and Devlin, 2011; Mahon, 2022; Li et al., 2020). Here, we focused on the
long-range-LNC theory (Rossion and Lochy, 2022), which states that the left lateralization of language places has a
primary long-range coupling effect with reading in VTC, and a primary local competition effect with social processing
in the vicinity of frontotemporal language processing regions (Rajimehr et al., 2022); this local competitive effect with
social processing is then argued to drive a secondary competitive effect of language lateralization on face lateralization
in VTC, through a primary long-range coupling effect between VTC face representations and social processing in the
superior temporal sulcus.

To test the predictions of this theory, we began by examining the coupling of laterality for text across a large
distributed network activated by text, a network examined in our prior work with the same dataset (Vin et al., 2024).
Given that each node in this circuit exhibits significant leftward laterality (Vin et al., 2024), we predicted that the
laterality would also covary across the distributed circuit: that is, individuals with greater laterality in VTC would
also have greater laterality in the other nodes of this circuit.

Following Vin et al. (2024), and as described further in Methods 2.1.5, we defined several anatomical regions
of interest based on subsets of parcels from the Glasser atlas (Glasser et al., 2016); we used the same ROIs, with
the exception of EVC, which we constructed as the union of V1, V2, and V3. Thus, we had six regions of interest:
early visual (EVC), dorsal visual (IPS), ventral high-level visual (VTC), and language-related (IFG, IFGorb, PCG,
STSG)2 (see Figure 7B and also Fedorenko et al., 2010, 2024). Within these regions, we computed selectivity and
then laterality. We then correlated the laterality of each region with that of our VTC parcel. As shown in Figure 7C,
we found that the laterality in VTC is positively correlated with that of each region in this circuit (all rho > 0.33, all
p < 0.05).

To ensure this pattern is not due to our particular choice of anatomical ROIs, we performed a finer-grained
and more generic analysis using a symmetric atlas with 500 parcels in each hemisphere (Yan et al., 2023). We
computed summed selectivity in each parcel, and then computed laterality for all homotopic pairs of parcels (Figure
7D). Next, we computed the between-participant correlation of parcel laterality with VTC laterality, using different
subsets of runs (odd for VTC, even for other parcels). We plot these correlations, excluding VTC, in Figure 7E. To
determine whether lateralized regions generally covary in their degree of laterality across participants, we computed
the correlation between the average laterality of each parcel, and its across-participant correlation with VTC. As
shown in Figure 7F, we found a strong correlation between a parcel’s average laterality and its correlation in laterality
with VTC across participants. Selecting a subset of the 50 most lateralized parcels, we found that these parcels have
consistently high correlations in their laterality with VTC (Figure 7G).

We performed a complementary analysis for faces in Figure S11. While we did find a significant correlation
between the parcel laterality and correlation with VTC laterality (rho = −0.17, p < 0.001; the negative sign indicating
that greater rightward parcel laterality corresponds to greater correlation in laterality with VTC), this relationship
is weaker than it is for words, and less visually apparent (Figures S11A,B,D). Rather than being driven by a large
distributed circuit, as seen for text laterality, the coupling for faces appears to be driven mostly by a cluster of parcels
in the posterior lateral temporal cortex, just outside of VTC.

In summary, these results provided support for a primary long-range coupling between frontotemporal language
processing and word processing in VTC, which appears to percolate to other nodes of the word processing network

2While we did not perform functional localization of language-selective voxels within these areas, our use of summed selectivity sidesteps
the issue of aggregating unrelated neighboring responses, since negative preferences in the same parcel do not influence this measure.
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Figure 7: Laterality of extra-visual areas correlate with the hemispheric profile of VTC text selectivity. A. Text
selectivity across the cortical surface (# of participants with significant activation, p<0.001). B. Anatomical parcels
chosen for laterality comparisons, consisting of language network, dorsal visual, and early visual areas, along with
VTC. C. Laterality of VTC text selectivity is correlated with laterality of text selectivity across this distributed
network. Note that for C. and E-F below, separate sets of runs were used to compute laterality in VTC and other
regions, eliminating trial-level correlations. D. Mean of individual atlas parcels across participants. Red corresponds
to leftward lateralization, whereas blue corresponds to rightward lateralization. E. Correlation of individual patterns
of laterality in each parcel with that of VTC, across participants, excluding parcels that overlap with the large
VTC parcel. F. Scatter plot comparing the parcel-level mean laterality with the across-participant correlation of
laterality between the parcel and VTC, along with a line of best fit and result of a spearman correlation across parcels.
G. Results of B. masked to show only the 50 parcels with the largest mean laterality. The vast majority of these
lateralized parcels show an across-participant correlation in laterality with VTC.

including IPS and EVC. However, these results did not provide strong support for long-range coupling of face
processing in VTC with other regions.

3.6 Distributed lateralized neural competition
Last, we assessed the claim of the long-range-LNC theory that face lateralization emerges due to pressures to
couple with downstream lateralized social processing regions, which are right-lateralized through competition with
left-lateralized language processes (Rajimehr et al., 2022).

Given the broad coupling in laterality for text processing across frontotemporal areas, VTC, EVC, and IPS (Figure
7), a natural prediction of the long-range-LNC account is that selectivity for faces in VTC should compete with text
laterality in these other regions. To assess this prediction, we adopted a data-driven approach similar to that used
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for the individual category whole-brain coupling analyses (Figures 7D-G, S11). In this case, however, we compared
VTC face laterality to the text laterality of ROIs across the entire cortex, using the object baseline. We found little
coupling in VTC face laterality with broader cortical text laterality (Figure S12). Moreover, we found no significant
relationship between ROI-level text laterality and VTC face laterality, and the top text-lateralized ROIs show little
consistency or strength in their correlation with VTC face laterality.

Generally, these results do not support the long-range-LNC account, although it should be kept in mind that
the perceptual demands of visual text processing—while activating downstream language regions (Vin et al., 2024;
Stevens et al., 2017)—may not lead to robust engagement of linguistic processing mechanisms. Moreover, the shared
object baseline may mask negative correlations, as discussed in the earlier section examining reading-LNC.

A more direct prediction of the long-range-LNC account is that face processing laterality should correlate negatively
with language laterality (Rossion and Lochy, 2022). To test this prediction, we took advantage of the language HCP
task, and a widely-used anatomical atlas for language network regions (Fedorenko et al., 2010, 2024). This language
atlas (lanA) was built by clustering a probability map of activation to the contrast language−scrambled across 220
subjects, and includes 6 regions in each hemisphere, as shown in Figure 8A. We then used the story−baseline contrast
within HCP to constrain voxel selection within each of these parcels to be selective for language (t > 2), creating
functional regions of interest (fROIs) at the individual participant level. fROIs were created in the LH, and then
mirrored to the RH, following (Rajimehr et al., 2022). Finally, we computed language laterality within each fROI,
and correlated each set of values across subjects with VTC face processing laterality computed from both the WM
and Emotion tasks.

The results, shown in Figure 8B., demonstrate a significant negative correlation between language laterality in
middle frontal gyrus (MFG; similar to PCG and area 55b Vin et al., 2024; Rajimehr et al., 2022) and VTC face−place
laterality; a similar magnitude of negative correlation was seen for MFG language laterality and VTC emotional
face−shape laterality, but this did not survive statistical correction. A similar trend was seen between anterior
temporal (antTemp) language laterality and VTC emotional face laterality.

Noting that laterality is more variable among left-handers (Labache et al., 2023), we opted to take a broader
look at the relationship between language and face laterality across the full spectrum of handedness cutoffs, rather
than just the right-handed population we have examined to this point. We repeated the same analysis as described
above, at handedness thresholds spaced in scores of 10 from -100 to 90, where -100 corresponds to including all
subjects, 90 corresponds to including only the most right-handed subjects, and 40 corresponds to the previous analysis.
The results, plotted in Figure 8C, demonstrate a stronger negative correlation between language laterality and
VTC face laterality at slightly weaker handedness thresholds, but otherwise, a minimal dependence on handedness
threshold. Moreover, the relationships between VTC face laterality and language laterality survived after regressing
out handedness, suggesting that they are not explained by handedness, but rather are dependent on having sufficient
variability in lateralization, variability which is found across a more relaxed handedness cutoff.

In a related analysis, we examined the relationships as a function of language laterality inclusion threshold, where
we progressively excluded individuals whose language lateralization was most rightward (i.e. atypical). These results
(Figure S9) were highly similar to those as a function of handedness threshold. In addition to the relationships with
face laterality, we analyzed the relationships with tool and body laterality as reference points. The relationship
between language and VTC tool laterality was significant in all parcels besides MFG—curiously, the parcel showing
the strongest relationship with face laterality—whereas no significant relationships were seen for body laterality.

A second direct prediction of long-range-LNC is that, due to the important relationship between face perception
and social processing, face processing laterality in VTC should be positively correlated with social processing laterality,
particularly in the STS, where the strongest competition was seen with language (Rajimehr et al., 2022), among
other language-selective regions. Following this work, we turned to the Social task of HCP to index social processing,
using the "theory of mind" minus "random" contrast (TOM−random; see Methods 2.2 for more details). We used the
same set of language fROIs (defined functionally in the LH and mirrored anatomically to the RH) to constrain our
selectivity search. We found a trending correlation between emotional face−shape laterality and social processing
laterality in postTemp, in line with the prediction, in contrast to no trending results using the face−place contrast.
No trending correlations were seen for either body or tool laterality with any of the language fROIs at the main
handedness threshold.

As for language, we also looked at laterality correlations across a broad range of handedness thresholds. We found
that a significant correlation between emotional face−shape laterality and social processing laterality in postTemp
emerged at a handedness cutoff just below our a priori threshold, and stayed at a similar magnitude for all weaker
thresholds. Similar results were seen across language laterality thresholds (Figure S9). These results indicate a
correspondence between face processing laterality in VTC and social processing laterality that is dependent upon
the face processing task: a more socially-relevant emotional task was necessary to elicit this coupling in laterality.
However, the results depended on a weaker handedness threshold
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Figure 8: Long-range coupling in laterality for high-level vision, and language and social processing within functionally
defined language ROIs. A Fedorenko language atlas (lanA; updated 220 subject version) registered to fsaverage and
plotted on the flattened cortical surface, along with the VTC ROI. B Correlations between face laterality in VTC
and the laterality in functionally-defined language parcels constrained anatomically by the lanA atlas, swept across a
range of subject-inclusion thresholds defined by language laterality. Language laterality was defined based on the
summed selectivity within all parcels of the language network, defined anatomically. To create fROIs for laterality
correlations, a threshold of t > 2 for the Story contrast was used to define language selective voxels in each LH region,
and a RH region was created as the mirror projection of the LH region (Rajimehr et al., 2022). Face laterality from
WM and Emotion tasks is compared with social and language processing laterality in lanA parcels. Note that while
the RH projection technique biases the Story laterality computation to be leftward, this has no bearing on individual
difference correlations.

In summary, the results provide weak positive support for the long-range-LNC theory of face lateralization, through
both negative correlations of face processing laterality and language laterality, and a positive correlation between
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specifically emotional face processing laterality and social processing laterality.

4 Discussion
The current study examines individual variability in organization of visual categories within VTC, and leverages
this variability to infer sources of its laterality. Although individuals show a generally similar arrangement in the
global topographic organization of category selectivity in VTC (Kanwisher, 2010; Grill-Spector and Weiner, 2014),
we demonstrated substantial individual variability in fine-grained category-selective topographic organization and
hemispheric laterality, which are stable across individual measurements within individuals but much more variable
across individuals. These findings suggest that various forces may cause differences in organization across development
(Behrmann and Plaut, 2020). In the current work, we tested the predictions of developmental theories which propose
lateralized neuronal competition (LNC), relying on individual differences to infer the mechanisms of functional
interactions, and examining both local and long-range competitive/cooperative factors.

4.1 No evidence for graded lateralized competition between words and faces in VTC
First, we tested the prediction of Neuronal Recycling (NR) (Dehaene and Cohen, 2007) and Graded Hemispheric
Specialization (GHS) (Behrmann and Plaut, 2020)—two theories captured under the umbrella of reading-related
lateralized neural competition (reading-LNC) theories (Rossion and Lochy, 2022)—of a competitive relationship in
lateralization for written text and faces in VTC. While it is known that both face and text selectivity can have flipped
dominance in the case of rightward language laterality (Gerrits et al., 2019)—which is more common, albeit still rare,
in left-handed individuals—here we sought to test competition within right-handed individuals with gradations in
the left lateralization of text selectivity. Across three different contrasts and three different selectivity measures in a
relatively large group of proficient readers, we found no evidence of a competitive relationship between faces and text.
Rather, if anything, we found what seems to be a weak positive correlation between the laterality of faces and text,
and a stronger positive correlation between the laterality of faces and objects.

The lack of competition between the laterality of any of the categories is surprising (Dehaene et al., 2010; Dundas
et al., 2013, 2014, 2015; Centanni et al., 2018), but replicates another recent fMRI study (Davies-Thompson et al.,
2016) that computed laterality based on either peak response or number of selective voxels. Our larger sample,
assessment of more contrasts, and assessment of the additional summed selectivity measure—which accounts for
both the strength and size of the selective region—thus strongly corroborates this prior study (Davies-Thompson
et al., 2016). While our results appear to be directly at odds with the study of Centanni et al. (2018), which found a
negative correlation in the size of left VWFA and left FFA in children learning to read, this study used confounding
baselines, comparing the size of regions defined with opposite contrasts (letters > faces for VWFA, faces > letters
for FFA). Thus, it is entirely possible that the category-based confound explains their effect, rather than a true
competition between letter and face responses. Moreover, our results are consistent with a recent study that found no
correlation in the laterality of face and word selectivity in either children or adults (Liu et al., 2024). Last, our results
are also in line with recent longitudinal studies demonstrating that emerging text representations do not recycle
face-selective cortex, but rather appear to emerge in previously non-selective cortex (Dehaene-Lambertz et al., 2018)
or weak, waning limb-selective cortex (Nordt et al., 2021; Kubota et al., 2023).

4.2 Evidence for more general local neuronal competition
Given the lack of evidence for local competition between faces and text, we wondered whether the laterality of faces
might instead be related to individual laterality patterns across a range of other categories in VTC. Notably, individual
variability in topographic organization for faces and other categories in VTC can be predicted with models that
consider shared information spaces with individual spatial tuning, in a way that generalizes to new stimuli (Haxby
et al., 2020; Feilong et al., 2023), in line with distributed and overlapping information patterns in VTC (Ishai et al.,
1999; Haxby et al., 2001). Thus, local cooperation and competition between representations involved in the perception
of a much broader range of categories may influence face laterality on an individual basis; we termed this idea the
local-LNC theory, which, while emphasizing generic local representational competition, is not mutually exclusive with
the possible role of reading (reading-LNC) or long-range coupling (long-range-LNC) in shaping VTC laterality.

We first found a strong correlation in the lateralization for face and object selectivity in VTC, across the held-out
category baseline, the fixation baseline, and the fixation baseline after regressing the held-out category vs. fixation
laterality; this correlation was not seen, however, when using the full baseline, including a category-based negative
confound (i.e. faces - objects + text vs. objects - faces + text). A weaker correlation was also seen between faces
and text that survived the same 3/4 contrasts, however it was about half the magnitude of that between faces and
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objects. In contrast, the laterality correlation between objects and text was present only for the raw fixation baseline,
implying it is not a true correlation. The strong laterality correlation between faces and objects is in line with the
local-LNC theory, and in particular with the finding of a stronger cost in simultaneously represented faces and objects,
compared to other more neurally distinct categories (e.g. faces and scenes) (Cohen et al., 2014).

Next, an analysis of data from the Human Connectome Project revealed distinct pairwise relationships in laterality
among visual categories, with face laterality positively correlated with body laterality and negatively correlated
with tool laterality, even across independent tasks. Local (anti-)correlations were widespread in VTC, and notably
strong within the fusiform face complex (FFC) anatomical parcel, the most frequent site of face selectivity. When we
constructed explicit contrasts of bodies versus tools, the magnitude of relationships with face laterality was enhanced
relative to either individual category; moreover, the relationship was stronger for bodies versus tools than for tools
versus bodies, in line with the greater overlap in selectivity for faces and bodies.

What might explain the relationships between faces, bodies, and tools? Notably, body selectivity overlaps strongly
with both face selectivity (Downing et al., 2006; Peelen et al., 2009) and tool selectivity (Bracci et al., 2012), which
have a complementary lateralization profile. In particular, tool and hand selectivity overlap in the lateral fusiform
gyrus (Bracci et al., 2012). That the viewing of faces frequently co-occurs with viewing bodies, and both inform
person recognition and social processing, may give rise to the partially overlapping responses in VTC. Similarly, the
co-occurence of viewing hands and tools—both ones own, and those of others observed using tools—may give rise to
the partial overlap in their functional organization. While hand—and more broadly limb (Weiner and Grill-Spector,
2010)—selectivity overlaps with body selectivity, body selectivity overlaps more strongly with face selectivity (Peelen
et al., 2009), compared to the weaker overlap of limb and face selectivity (Weiner and Grill-Spector, 2010); however, in
HCP, the bodies condition contains limbs, hands, and headless bodies, so finer-grained conclusions cannot be drawn.

Moreover, prior studies make clear that the functional organization of VTC is graded, with each category selective
area falling in a particular preference zone that partially explains responses to multiple categories (Konkle and
Caramazza, 2013; Bao et al., 2020; Yao et al., 2023). The local-LNC account claims that this graded topography
is the product of cooperative and competitive pressures occurring locally, albeit influenced by both bottom-up and
top-down demands. This idea is in line with computational models that consider VTC as a unitary representational
space with graded topographic specialization encompassing selectivity for (and representations of) both categories
and other visual features, which evolve in an inherently dependent fashion (Blauch et al., 2022b; Doshi and Konkle,
2023), even if the outcome is a large degree of specialization.

One challenge to the local-LNC theory comes from the study of (Cohen et al., 2014). Whereas their finding of a
stronger cost in simultaneously representing faces and objects—driven by greater neural representational overlap—is in
line with our results of correlated laterality between faces and objects, they also found a weaker cost in simultaneously
representing faces and bodies, which appears at odds with our results of correlated laterality between faces and bodies.
Similarly, the face/body distinction has been proposed as a strong organizational principle for VTC (Yargholi and
Op de Beeck, 2023). Nevertheless, face and body representations have been shown in several studies to strongly
overlap (Downing et al., 2006; Peelen et al., 2009), and both score high on the animacy dimension, which is proposed
as one of the two main organizing dimensions of VTC (Yargholi and Op de Beeck, 2023; Konkle and Caramazza, 2013;
Bao et al., 2020). Notably, self-supervised deep neural networks that learn visual representations without semantic
tasks show a particular relationship between face and body responses; specifically, lesioning face-selective units leads
to a strong cost in representing the categories that exhibit the strongest cost when lesioning body-selective units
(Prince et al., 2024). This implies that the visual statistics of viewing faces and bodies is sufficient to drive meaningful
overlap in their neural responses, which appears to manifest as shared laterality. However, the body stimuli in the
study of (Cohen et al., 2014) can be distinguished largely based on the limbs, which have a more separable neural
representation with faces (Weiner and Grill-Spector, 2010), perhaps explaining their finding of a weaker cost in
simultaneous representation of faces and bodies.

4.3 Long-range coupling of laterality
Last, we explored long-range coupling as a mechanism for the emergence of VTC lateralization. It is widely accepted
that the lateralization of language drives the lateralization of text processing in VTC (Dehaene et al., 2010; Li et al.,
2020). Accordingly, VWFA hemispheric dominance has been shown to track the hemispheric dominance of language
in left-handers with greater variability in language dominance (Gerrits et al., 2019). However, whether variability in
VTC text lateralization similarly corresponds with that in language areas has not been explored within the more
modest variability seen among right-handers. Here, we found that an entire distributed and lateralized cortical
circuit of regions involved in text processing (Vin et al., 2024) showed correlated text laterality with VTC across
subjects. The correspondence in laterality between VTC and frontotemporal regions corresponds well with prior
work using functional and structural connectivity with language areas to predict the location of the VWFA (Saygin
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et al., 2016; Stevens et al., 2017; Li et al., 2020). However, the correspondence with IPS and EVC is more surprising
(but see Kay and Yeatman, 2017), suggesting that text processing engages a highly recurrent and interactive cortical
circuit in which language lateralization percolates to text processing in all of the nodes. Whether the lateralization of
processing in EVC and IPS emerges temporally before or after top-down feedback is an interesting question that
could be addressed with more time-resolved methods such as MEG; if in advance of top-down feedback, it would
suggest that the bottom-up tuning of these regions has been shaped by the lateralization of language, as is thought to
be the case for text selectivity in VTC (Dehaene and Cohen, 2007; Price and Devlin, 2011).

Given this finding of long-range coupling in laterality for text, we next sought to explore the direct predictions
of the long-range-LNC account regarding face lateralization: that is, face laterality should negatively correlate
with language laterality, and positively correlate with social processing laterality in homotopic frontotemporal areas
encompassing the typically left-dominant language network (Rossion and Lochy, 2022). Indeed, a competition has
recently been found between social and language processing laterality in these regions (Rajimehr et al., 2022), and
our goal was to test whether this may explain variation in the laterality of face processing in VTC.

We performed a targeted analysis of language network regions (Fedorenko et al., 2010, 2024), finding that VTC
laterality for both face processing tasks was negatively correlated with language processing laterality in multiple
language network regions, and positively correlated with social processing laterality only in the posterior temporal area
and only for the emotion processing task. These results are broadly in line with the predictions of the long-range-LNC
account. However, in both cases, the effects were somewhat weak and sometimes dependent on using a slightly more
relaxed handedness cutoff (although not requiring the inclusion of left handers). These weak effects would be expected
to be quite difficult to discover in smaller studies, which might partially explain our inability to find a correlation in
non-VTC text laterality with VTC face laterality in our in-house data. However, in the case of social processing,
the small effect sizes are likely also due to the imperfect match between the social demands required in HCP task
(simple theory-of-mind judgments regarding the motion of simple shapes), and the social demands required in typical
real-world face processing scenarios.

In exploratory analyses, we found somewhat stronger relationships between language laterality and the laterality
of tools, as compared to faces. In line with our findings, tool processing has generally been found to be left lateralized
in humans (Chao et al., 1999; Downing et al., 2006; Johnson-Frey, 2004; Lewis, 2006), reflecting personal handedness
and use but also the statistics of the handedness of viewed tool use (Gainotti, 2015). It also corroborates previous
findings that distributed laterality patterns for tool pantomiming and verb generation are highly correlated across
individuals with typical and atypical language laterality (Vingerhoets et al., 2013). Indeed, the left laterality of neural
mechanisms underlying tool processing has been proposed as a causal link in the evolution of a left-lateralized speech
controller (Frost, 1980; Stout and Chaminade, 2012). In contrast, we found an absence of long-range coupling between
language laterality and VTC body laterality, an important baseline to the positive results seen for faces and tools.

4.4 Limitations
Our results suggest that there is local lateralized competition between faces and tools in VTC, but not between faces
and text, and long-range coupling between faces and social processing, as well as between text and tools and language
processing. However, there are some important limitations that warrant caution in an overly strong interpretation of
our results.

First, with respect to our null findings for reading-LNC, responses for objects, faces, and text appear to meaningfully
overlap—not just in estimated responses (which could be due to overlapping hemodynamic responses), but also
in selectivity relative to a scrambled image baseline. This representational overlap made it difficult to construct
unbiased selectivity contrasts. In general, given three categories A, B, C, when comparing the laterality of category
A and B, there are four natural options: 1) compare A and B directly, 2) compare A−C and B−C, using a shared
baseline to account for general activation-increasing effects such as arousal, 3) compare A−B and B−A 4) compare
A−(B+C) and B−(A+C), using the “full” baseline which would make up a standard category selectivity contrast.
None of these choices is ideal: option 1 yields strongly positive correlations, due in part to the imperfect ability of the
GLM to fully identify the true sources of activation, and thus partially blurring responses across different categories;
option 2 induces a bias towards positive correlation due to the shared baseline; option 3 may be meaningful due to
the asymmetry imposed by summation of positive selectivity, but induces an obvious strong bias towards negative
correlation; and option 4 exhibits competing biases towards negative and positive correlation, which do not simply
magically cancel out.

By using independent splits of data to compute each contrast, we were able to remove statistical bias in our
correlations of laterality, but not category-based biases arising from shared categories across compared selectivity
contrasts. We used options 1, 2, and 4 in our analyses of faces, text, and objects (Figure 4. None of the options
revealed competition between faces and text, whereas only option 4 revealed competition between text and objects;
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however, this competition between text and objects appeared to be driven by the shared (face) baseline, as it was
eliminated when either option 1 or 2 was used. Competition was not found when we replaced the sum selectivity
metric with either of two more standard options: peak voxel selectivity, or number of selective voxels.

In line with these ideas, the demonstration of anti-correlated laterality between tools and faces relied on having
entirely independent contrasts (e.g., no overlapping conditions) across two separate experiments (WM and Emotion).
When we used overlapping contrasts in HCP (faces−places vs. tools−places), the competition was not observed
(however, in this case, statistical dependence could not be eliminated, as contrasts were built across only two runs
collected in opposite phase-encoding directions). Additionally, the substantially larger size of HCP provides greater
statistical power to discover the competitive relationships of interest, so the results from the two experiments cannot
be compared directly. That said, the lack of trending competitive effects between face and text selectivity in the main
experiment suggests that statistical power was likely not an issue.

Last, while there is a clear connection between our results and prior literature on the overlap in mechanisms
for tool and language processing, the associations between tool and language laterality in this experiment must be
viewed with caution. Many of the tool images contained tools with textual brand labels (e.g., DeWalt), implicitly
encouraging participants to verbally recode while viewing some of the tool images and thereby driving language
processes in the brain. To the extent that such language processes activate VTC (e.g. Woolnough et al., 2021; Li
et al., 2023), the linguistic—rather than tool-based—properties of tool images might drive both the correlation in
laterality with language areas, and the anti-correlation in local laterality with face processing.

4.5 Distinguishing between theoretical accounts
Why might faces exhibit local competition with tools but not text? One relevant factor is the relatively late acquisition
of reading, which occurs after face processing and selectivity has already substantially developed (Nordt et al., 2021;
Kosakowski et al., 2022), albeit certainly not fully (Scherf et al., 2007; Peelen et al., 2009). In contrast, humans explore
manipulable objects and have significant experience viewing body parts and most other broad visual categories at a
young age; indeed, words are an exceptional visual category insofar as visual expertise is introduced at a relatively late
point in life. Prior work has demonstrated that the acquisition of the Devenagari script introduces new text response
patterns without strongly interfering with pre-existing response patterns for other categories (Hervais-Adelman et al.,
2019), a finding deemed “recycling without destruction”. This is in line with the overlap we found in VTC category
selectivity versus a scrambled baseline (Figure S1), suggesting that faces and text may not compete in the way that
has been previously suggested (Behrmann and Plaut, 2020), due to greater overlap than commonly appreciated.
Indeed, a recent intracranial study in humans found that 39 % of word-selective electrodes in the right hemisphere
and 47 % of such electrodes in the left hemisphere could discriminate faces from the other object categories excluding
words (Boring et al., 2021), indicating overlap in representations at a spatially precise level. Given this overlap, it
would be interesting to re-examine how the emergence of word responses, rather than word selectivity, relates to
prior face selectivity, during the acquisition of reading Roman script in English and French children in the datasets
collected by (Nordt et al., 2021) and (Dehaene-Lambertz et al., 2018), respectively. Examining only the word-selective
voxels may inherently exclude those voxels which gain new responses to words but retain strong responses to faces
(Dehaene-Lambertz et al., 2018; Nordt et al., 2021).

If words do not induce local competition with faces in VTC, the previous findings of a link between literacy and
face lateralization (Dehaene et al., 2010; Dundas et al., 2013, 2014, 2015) need to be explained in other terms. The
long-range-LNC account (Rossion and Lochy, 2022) was proposed to do just this; however, it does not immediately
explain why face lateralization increases developmentally after the onset of literacy. One relevant factor is the broad
cortical changes that are seen when learning to read, including in VTC, but also in occipital, superior temporal, and
frontal areas (Dehaene et al., 2010; Monzalvo and Dehaene-Lambertz, 2013; Chyl et al., 2018; Hervais-Adelman et al.,
2019). Additionally, the acquisition of reading literacy is usually accompanied with the acquisition of writing, which
may compound the effects on distributed brain circuits (Hervais-Adelman et al., 2022). These global changes might
enhance distributed competitive lateralizations between text-related (e.g., language) and face-related (e.g., social)
processes, giving rise to an increase in long-range pressures on face laterality with the emergence of reading, even
without local recycling or competition. This idea is supported by a concurrent study to ours, which demonstrated a
correlation between sentence reading laterality in Broca’s area (i.e. IFG) and face laterality in VTC in adults but not
children, where the laterality in Broca’s area also increased over development (Liu et al., 2024).

Lastly, we must emphasize that the finding of local (anti-)correlations in laterality between faces and tools/bodies
are not inconsistent with the idea that these patterns are driven by long-range coupling. Rather, local and long-range
factors likely work synergistically to produce individual laterality patterns. Future work will be required to untangle
the more precise contributions of each factor.
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4.6 Conclusion
Our work explores the principles of local representational competition and cooperation and long-range coupling with
domain-relevant processing systems—principles which are essential to the theories of graded hemispheric specialization
(Behrmann and Plaut, 2015, 2020; Plaut and Behrmann, 2011) and neuronal recycling (Dehaene and Cohen, 2007;
Dehaene et al., 2010). However, it calls into question the claim made by both of these theories that VTC face laterality
emerges specifically as a result of local competition with words (Kubota et al., 2023). While our results do not strictly
rule out this competition, we find evidence only for local competition with tools, vis-a-vis the negative correlation
between tool and face laterality within VTC. Instead, VTC face laterality generally appears to be correlated with VTC
object laterality, body laterality, and even text laterality. Assessing the possible role of coupling in lateralization with
distant regions, we find evidence that VTC face laterality is both negatively correlated with language laterality, and
positively correlated with social processing laterality, within left frontotemporal language areas and their rightward
homologues. Our work is thus consistent with both local and long-range lateralized neuronal competition. We
speculate that laterality patterns between other categories are similarly coupled—even when those categories show
weak group-level laterality—with gradations across categories related to the overlap in their input and output demands.
Future work may be able to take advantage of existing datasets to test this idea using the methods developed here,
specifically focused on the full profile (size and strength) of selectivity. Additionally, the success of large-scale
naturalistic imaging paradigms in elucidating the nature of visual representations in human VTC (Allen et al., 2022;
Chang et al., 2019) motivates the use of similar approaches in a larger cohort of subjects to facilitate individual
difference analyses that could provide greater clarity on the coordinated development of topographic and hemispheric
organization. Last, advancing computational models with increasingly realistic visual inputs (Russakovsky et al.,
2015; Gan et al., 2020), processing mechanisms (Yamins et al., 2014; Kubilius et al., 2018; Spoerer et al., 2017), tasks
(Bakhtiari et al., 2021; Mineault et al., 2021; Nayebi et al., 2023; Zhuang et al., 2020; Konkle and Alvarez, 2022), and
spatial embedding (Blauch et al., 2022b; Keller and Welling, 2021; Achterberg et al., 2022; Margalit et al., 2024), will
make it increasingly possible to make quantitative predictions about representational cooperation and competition in
silico, which may reduce demands on—and aid the interpretation of—costly future experiments.
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5 Supplementary Material
5.1 Group category-selective maps

A.
Text − others

B.
Faces − others

C.
Objects − others

D.
Text − objects

E.
Faces − objects

F.
Objects − text

G.
Text − scrambled

H.
Faces − scrambled

I.
Objects − scrambled

Figure S1: Group selectivity maps for relevant contrasts in the main experiment. Each map shows the number
of participants that yielded significant selectivity for a given vertex in group surface space, where significance was
determined as the selectivity value having p<0.001. Note: 55 participants were scanned, but only 28 saw the scrambled
condition used in the second row.

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618268doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618268
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.
WM: FACE – AVG

B.
WM: BODY – AVG

C.
WM: TOOL – AVG

D.
WM: PLACE – AVG

E.
WM: FACE – PLACE

F.
WM: BODY – PLACE

G.
WM: TOOL – PLACE

H.
EMOTION: FACE – SHAPE

Figure S2: Group selectivity histograms for HCP contrasts. Color map goes from 0 to 700 participants showing
selectivity (p < 0.001).

5.2 Overlap of category-selective responses
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Figure S3: Overlap of category-selective regions in VTC, using the HCP WM contrasts of faces, tools, and bodies
against places. A threshold of 3 was used to binarize the contrast maps before computing the dice coefficient.
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5.3 Laterality using different metrics of selectivity
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Figure S4: Laterality correlations using peak selectivity

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618268doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618268
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.0 0.5 0.0 0.5 1.0
VTC text laterality

1.0

0.5

0.0

0.5

1.0

VT
C 

fa
ce

s l
at

er
al

ity
A

Full baselines

rho=0.249, p=0.07829, n=51

1.0 0.5 0.0 0.5 1.0
VTC text laterality

Faces vs. text (nvox)
Held-out category baselines

rho=0.274, p=0.05422, n=50

1.0 0.5 0.0 0.5 1.0
VTC text laterality

fixation baseline

rho=0.726, p<0.00001, n=51

1.0 0.5 0.0 0.5 1.0
VTC text laterality

fixation baseline
(regress out held-out category)
rho=0.371, p=0.00737, n=51

1.0 0.5 0.0 0.5 1.0
VTC text laterality

1.0

0.5

0.0

0.5

1.0

VT
C 

ob
je

ct
s l

at
er

al
ity

B
Full baselines

rho=-0.232, p=0.10510, n=50

1.0 0.5 0.0 0.5 1.0
VTC text laterality

Objects vs. text (nvox)
Held-out category baselines

rho=0.009, p=0.95102, n=49

1.0 0.5 0.0 0.5 1.0
VTC text laterality

fixation baseline

rho=0.728, p<0.00001, n=51

1.0 0.5 0.0 0.5 1.0
VTC text laterality

fixation baseline
(regress out held-out category)
rho=0.152, p=0.28686, n=51

1.0 0.5 0.0 0.5 1.0
VTC faces laterality

1.0

0.5

0.0

0.5

1.0

VT
C 

ob
je

ct
s l

at
er

al
ity

C
Full baselines

rho=0.048, p=0.74028, n=50

1.0 0.5 0.0 0.5 1.0
VTC faces laterality

Faces vs. objects (nvox)
Held-out category baselines

rho=0.312, p=0.02731, n=50

1.0 0.5 0.0 0.5 1.0
VTC faces laterality

fixation baseline

rho=0.858, p<0.00001, n=51

1.0 0.5 0.0 0.5 1.0
VTC faces laterality

fixation baseline
(regress out held-out category)
rho=0.688, p<0.00001, n=51

Figure S5: Laterality correlations using the number of selective voxels as a selectivity metric

5.4 Individual category-selective maps
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sub-53 sub-54 sub-55 sub-56 sub-57 group frequency

Figure S6: Individual face-selective maps for all subjects in our in-house experiment. The same approach as used in
Figure 4D. was used to generate these maps, except all 5 runs (rather than even or odd) were used.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618268doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618268
http://creativecommons.org/licenses/by-nc-nd/4.0/


sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07

sub-08 sub-09 sub-10 sub-11 sub-12 sub-13 sub-14

sub-15 sub-16 sub-17 sub-18 sub-19 sub-20 sub-21

sub-23 sub-24 sub-25 sub-26 sub-27 sub-28 sub-29

sub-31 sub-32 sub-33 sub-34 sub-35 sub-36 sub-37

sub-38 sub-39 sub-40 sub-41 sub-42 sub-43 sub-44

sub-45 sub-46 sub-47 sub-48 sub-49 sub-50 sub-51

sub-53 sub-54 sub-55 sub-56 sub-57 group frequency

Figure S7: Individual text-selective maps for all subjects in our in-house experiment. The same approach as used in
Figure 4D. was used to generate these maps, except all 5 runs (rather than even or odd) were used.
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5.5 VTC laterality correlations across handedness or language laterality thresholds
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Figure S8: Local laterality relationships as a function of handedness (A.) language laterality threshold (B.)
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Figure S9: Distributed coupling of laterality between VTC and language network parcels, as a function of global
language laterality threshold.

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618268doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618268
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.6 Additional contrasts for parcel-level laterality correlations in HCP

A. TOOL-PLACE
vs.
FACE-PLACE

B. TOOL-BODY+PLACE
vs.
FACE-BODY+PLACE

C. TOOL-PLACE
vs.
BODY-PLACE

Figure S10: Within-experiment parcel-level laterality correlations in HCP. This scenario more closely mimics the
approach used in the main experiment.
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5.7 Long-range face coupling analyses
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Figure S11: Data-driven assessment of whole-brain laterality coupling of face selectivity in the main experiment.
A. Mean of individual atlas parcels across participants. Red corresponds to leftward lateralization, whereas blue
corresponds to rightward lateralization. B. Correlation of individual patterns of laterality in each parcel with that of
VTC, across participants, excluding parcels that overlap with the large VTC parcel. C. Scatter plot comparing the
parcel-level mean laterality with the across-participant correlation of laterality between the parcel and VTC, along
with a line of best fit and result of a spearman correlation across parcels. D. Results of B. masked to show only the
50 parcels with the largest mean laterality.
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Correlation between VTC face and ROI text laterality

roi-level text laterality

co
rr

el
at

io
n 

w
ith

 V
T

C
 fa

ce
 la

te
ra

lit
y

0.5 0.0 0.5

VTC meta-correlationA. B.

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2

0.4

0.2

0.0

0.2

0.4

(rho=-0.07, p=0.161)

Figure S12: Data-driven assessment of whole-brain coupling of text selectivity with VTC face selectivity in the
main experiment. A. Correlation of individual patterns of text laterality in each parcel with face laterality in VTC,
across participants. B. Scatter plot comparing the parcel-level mean laterality with the across-participant correlation
of laterality between the parcel and VTC, along with a line of best fit and result of a spearman correlation across
parcels.
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Figure S13: Laterality correlations across face tasks in VTC and functionally-defined language ROIs using HCP. The
same approach as in Figure 8 is used. Laterality coupling with VTC is strong in postTemp within both tasks, as well
as IFGorb, IFG, antTemp, and AngG for the WM task ("face − place"), however coupling is significantly reduced when
comparing across tasks. The one exception is comparing VTC "face − place" laterality with downstream "emotional
face − shape" laterality in postTemp, which survived FWE correction across areas (pF W E < 0.05). This suggests that
face laterality coupling between VTC and postTemp may be dependent on the degree of social or emotional processing
inherent to the face processing task. One caveat to this result is that we were unable to construct independent subsets
of data within each task, so long-range correlations may be driven by non-task-based co-fluctuations in the signal.
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