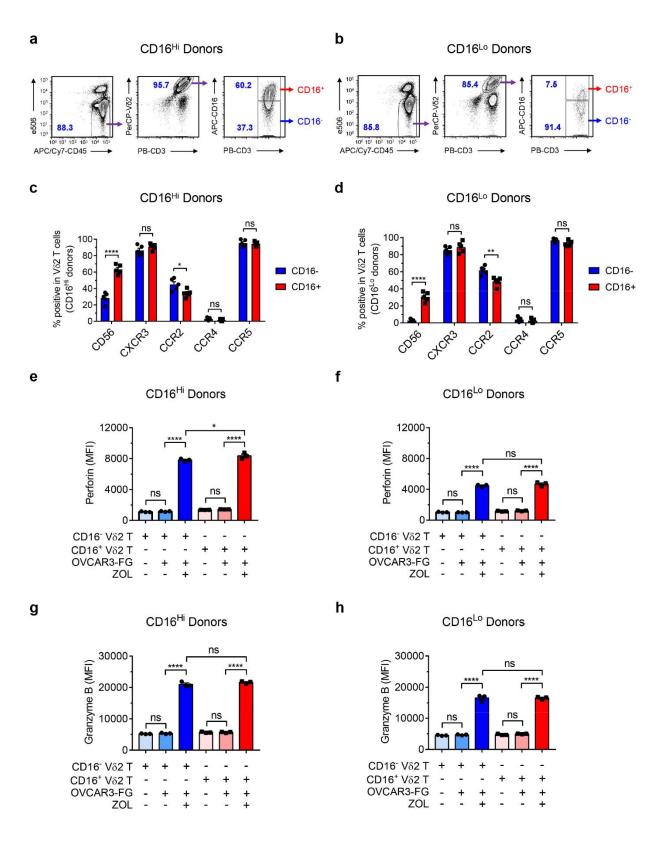
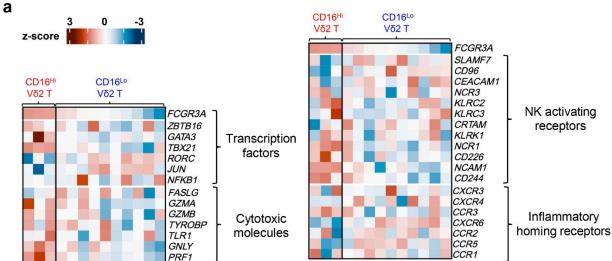
Supplementary Information for

Unlocking the potential of allogeneic V δ 2 T cells for ovarian cancer therapy through CD16 biomarker selection and CAR/IL-15 engineering

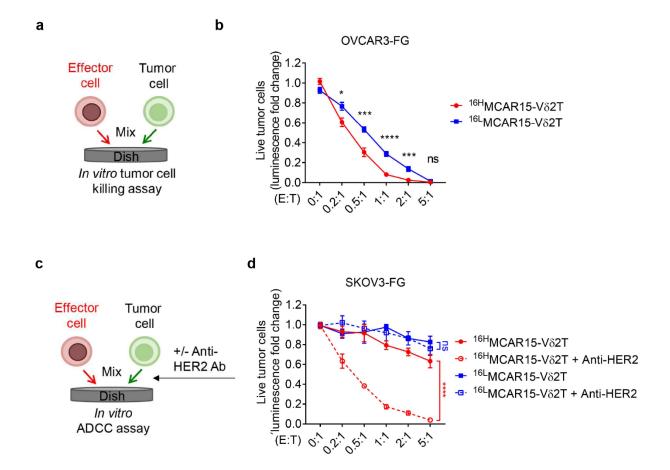

Authors

Derek Lee^{1,†}, Zachary Spencer Dunn^{1,2,†}, Wenbin Guo^{3,†}, Carl J. Rosenthal¹, Natalie E. Penn¹, Yanqi Yu¹, Kuangyi Zhou¹, Zhe Li¹, Feiyang Ma⁴, Miao Li¹, Tsun-Ching Song¹, Xinjian Cen¹, Yan-Ruide Li¹, Jin J. Zhou⁵, Matteo Pellegrini^{3,4,6}, Pin Wang², and Lili Yang^{1,6,7,8*}

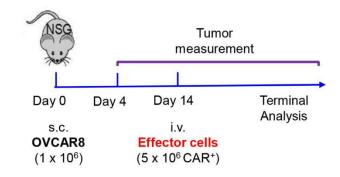

Affiliations

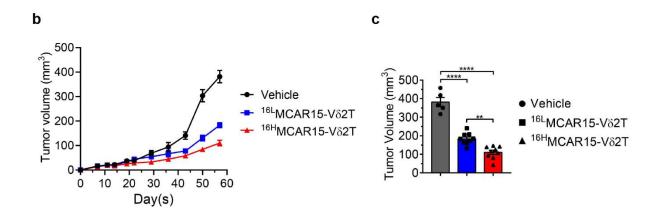
- ¹ Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA.
- ² Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
- ³ Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- ⁴ Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
- ⁵ Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
- ⁶ Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- ⁷ Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- ⁸ Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- [†] These authors contributed equally: Derek Lee, Zachary Spencer Dunn, Wenbin Guo
- *Correspondence: liliyang@ucla.edu; Tel.: (+1-310-825-8609)

The SI includes Supplementary Figures 1-5.


Supplementary Fig. 1 Characterization of the CD16^{+/-} Vδ2 T cells generated from the CD16^{Hi} or CD16^{Lo} donors. Vδ2 T cells were generated from the CD16^{Hi} or CD16^{Lo} donor PBMCs following the experimental design shown in Fig. 1a, then were subject to FACS analysis for **a, b** the gating strategy to select CD16⁺ and CD16⁻ Vδ2 T cells from CD16^{Hi} or CD16^{Lo} donors, **c, d** surface expression markers (n = 5), and **e-h** intracellular perforin and granzyme B production at 24 h after tumor co-culture (E:T ratio = 1:1; n = 3 from 3 different donors). CD16⁺ and CD16⁻ Vδ2 T cells were gated based on cell surface CD16 expression. Representative of >10 (**a, b**), 2 (**c, d**), and 3 (**e-h**) experiments. Data are presented as the mean \pm SEM. ns, not significant; *p < 0.05; **p < 0.01; ****p < 0.0001 by Student's *t* test (**c, d**) or by one-way ANOVA (**e-h**). Source data and exact p values are provided as a Source Data file.

b


Supplementary Fig. 2 Transcriptome characterization of V δ 2 T cells in relation to CD16 expression. a Heatmaps showing the expression levels of the selected genes in V δ 2 T cells generated from three CD16^{Hi} PBMC donors and ten CD16^{Lo} PBMC donors. b Gene set enrichment analysis showing the relationship between CD16 expression and biological process pathways in V δ 2 T cells generated from all 13 PBMC donors (including the three CD16^{Hi} donors and ten CD16^{Lo} donors). The top 30 most significantly activated or suppressed biological process pathways are shown. Representative of 1 experiment.



Supplementary Fig. 3 Comparing the *in vitro* antitumor efficacy of CD16^{Hi} and CD16^{Lo} MCAR15-Vô2T cells. Vô2 T cells were cultured from the CD16^{Hi} or CD16^{Lo} donor PBMCs and were engineered to express MCAR and IL-15. The resulting cell products are denoted as 16H MCAR15-Vô2T or 16H MCAR15-Vô2T cells, respectively. **a, b** *In vitro* tumor cell killing assay. An OVCAR3-FG human ovarian cancer cell line was used. **a** Experimental design. **b** Tumor cell killing data collected as 24 h after co-culture (n = 3; n indicates different donors). **c, d** *In vitro* antibody-dependent cell-mediated cytotoxicity (ADCC) assay. A SKOV3-FG human ovarian cancer cell line was used. **c** Experimental design. **d** Tumor cell killing data collected at 24 h after co-culture (Anti-HER2 Ab concentration = 0.1 μ g/mL; n = 3; n indicates different donors). Representative of 3 experiments. Data are presented as the mean \pm SEM. ns, not significant; *p < 0.05; ***p < 0.001; ****p < 0.0001 by Student's *t* test (**b, d**). Source data and exact p values are provided as a Source Data file.

Supplementary Fig. 4 MCAR15-V δ 2T cells can target M2-polarized human macrophages. a Experimental design to generate human monocyte-derived macrophages (MDM), either non-polarized (M0) or M2-polarized. M-CSF, macrophage colony-stimulating factor; M ϕ , macrophage. **b** FACS detection of CD11b and CD14 expression on M2-polarized macrophages. **c** FACS detection of M2 macrophage markers (i.e., CD163 and CD206) on M2-polarized macrophages. **d, e** Studying the *in vitro* killing of M2-polarized macrophages by MCAR15-V δ 2T effector cells. **d** Experimental design. **e** Data collected at 24 h after co-culture (E:M ϕ ratio = 1:1, n = 3). Data are presented as the mean \pm SEM. ns, not significant; *p < 0.05; ***p < 0.001; ****p < 0.0001 by one-way ANOVA (**e**). Source data and exact p values are provided as a Source Data file.

Supplementary Fig. 5 Comparing the *in vivo* antitumor efficacy of CD16^{Hi} and CD16^{Lo} MCAR15-V δ 2T cells. V δ 2 T cells were cultured from the CD16^{Hi} or CD16^{Lo} donor PBMCs and were engineered to express MCAR and IL-15. The resulting cell products are denoted as ^{16H}MCAR15-V δ 2T or ^{16H}MCAR15-V δ 2T cells, respectively. **a** Experimental design. Three experimental groups were included: Vehicle (mice receiving no effector cells; n = 5), ^{16L}MCAR15-V δ 2T (mice receiving ^{16H}MCAR15-V δ 2T cells; n = 9 from 3 different donors), and ^{16L}MCAR15-V δ 2T (mice receiving ^{16L}MCAR15-V δ 2T cells; n = 9 from 3 different donors). **b** Tumor growth over time. **c** Tumor sizes measured on day 57. Representative of 2 experiments. Data are presented as the mean \pm SEM. **p < 0.01; ****p < 0.0001 by one-way ANOVA (**c**). Source data and exact p values are provided as a Source Data file.