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Denitrifying bacteria produce and utilize nitrous oxide (N2O), a potent 

greenhouse gas. However, there is little information on how organic 

fertilization treatments affect the denitrifying communities and N2O emissions 

in the semi-arid Loess Plateau. Here, we  evaluated how the denitrifying 

communities are responsible for potential denitrification activity (PDA) and N2O 

emissions. A field experiment was conducted with five fertilization treatments, 

including no fertilization (CK), mineral fertilizer (MF), mineral fertilizer plus 

commercial organic fertilizer (MOF), commercial organic fertilizer (OFP), and 

maize straw (MSP). Our result showed that soil pH, soil organic carbon (SOC), 

and dissolved organic nitrogen (DON) were significantly increased under 

MSP treatment compared to MF treatment, while nitrate nitrogen (NO3
−−N) 

followed the opposite trend. Organic fertilization treatments (MOF, OFP, 

and MSP treatments) significantly increased the abundance and diversity of 

nirS- and nosZ-harboring denitrifiers, and modified the community structure 

compared to CK treatment. The identified potential keystone taxa within the 

denitrifying bacterial networks belonged to the distinct genera. Denitrification 

potentials were significantly positively correlated with the abundance of nirS-

harboring denitrifiers, rather than that of nirK- and nosZ-harboring denitrifiers. 

Random forest modeling and structural equation modeling consistently 

determined that the abundance, community composition, and network 

module I of nirS-harboring denitrifiers may contribute significantly to PDA and 

N2O emissions. Collectively, our findings highlight the ecological importance 

of the denitrifying communities in mediating denitrification potentials and the 

stimulatory impact of organic fertilization treatments on nitrogen dynamics in 

the semi-arid Loess Plateau.
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Introduction

Climate change mitigation is essential for carbon-neutral 
agriculture and food security (Zhang et al., 2020). Nitrous oxide 
(N2O) is a potential greenhouse gas, contributing to stratospheric 
ozone layer depletion (Cuello et  al., 2015). Agricultural soils 
account for nearly 55% of global N2O emissions in 2015, and this 
percentage is projected to increase to 59% by 2030 (Hu et al., 
2015). The transformations of nitrogenous compounds by soil 
denitrifying bacteria with excess fertilizer application is one of the 
main sources of N2O emissions (Tang et al., 2019).

During denitrification processes, nitrate (NO3
−) is converted 

to nitrite (NO2
−), nitric oxide (NO), N2O, and finally to dinitrogen 

(N2). These conversions are facilitated by nitrate reductase (NAR), 
nitrite reductase (NIR), nitric oxide reductase (NOR), and nitrous 
oxide reductase (NOS), respectively (Cui et al., 2016; Azziz et al., 
2017). Nitrate reductase reduces NO2 to NO, a rate-limiting step of 
denitrification encoded by the copper-containing reductase gene 
(nirK) and cytochrome cd1 nitrite reductase gene (nirS) (Yoshida 
et al., 2009; Jang et al., 2018). Nitrous oxide reductase is encoded 
by nosZ gene, and functions in reducing N2O emissions (Yang 
et al., 2018). These functional genes are appropriate for studying 
the changes in nirK-, nirS-, and nosZ-harboring denitrifiers under 
different fertilization regimes (Yu et al., 2018; Chen et al., 2020).

Organic fertilization treatments considerably affect the 
abundance, diversity, and structure of the denitrifying 
communities, but their effects are not consistent (Ouyang et al., 
2018). For instance, organic fertilizers have no significant effect on 
the abundance of denitrifiers (Yin et al., 2014), while the combined 
application of organic and mineral fertilizers increases the 
abundance of nirS- and nosZ-harboring denitrifiers and reduces 
N2O emissions (Zhang et  al., 2015; Shi et  al., 2019). The 
incorporation of crop straw increases soil organic carbon (SOC) 
and dissolved organic nitrogen (DON), and improves the 
abundance of nirS-harboring denitrifiers in alkaline soils (Huang 
et al., 2019). The changes in soil factors can differentially influence 
the nirK-, nirS-, and nosZ-harboring denitrifiers, thereby affecting 
their contributions to N2O emissions (Cui et al., 2016; Xiong et al., 
2017). The network-based analytical approach is a powerful 
approach to investigate microbial associations and identify 
potential keystone taxa in the complex bacterial community 
(Barberán et  al., 2012). Keystone taxa have highly linked 
functional features and greatly explain network structure. They are 
critical for minimizing community fragmentation and 
maintaining microbial community functioning (Williams et al., 
2014; Herren and McMahon, 2018). Although the co-occurrence 
network of nirK-, nirS- and nosZ-harboring denitrifiers has 
recently been investigated in natural forest soil and arable black 
soil (Chen et al., 2019a; Yang et al., 2020b), little is known about 
the impact of organic fertilization treatments on denitrifying 
bacterial networks in the semi-arid loess plateau.

A growing body of studies has recently examined the effects 
of organic amendments on N2O emissions (Pang et al., 2019; Yang 
et al., 2020a). However, there is still limited knowledge on the 

mechanisms of the denitrifying communities in driving N2O 
emission in agroecosystems. It is critical to uncover the 
associations between the denitrifying bacterial communities and 
denitrification in the semi-arid loess plateau. For this purpose, 
we conducted a field experiment with the objectives to (1) evaluate 
soil properties, and the abundance, structure and co-occurrence 
network of nirK, nirS, and nosZ-harboring denitrifiers in response 
to fertilization treatments; (2) investigate the effect of organic 
fertilization treatments on the co-occurrence network of 
denitrifying communities; and (3) explore the relationships of soil 
properties and the denitrifying community with N2O emissions. 
We  hypothesized that organic fertilization treatments would 
significantly improve the abundance and diversity of denitrifying 
communities, and alter the structure of denitrifying community 
by improving SOC and nutrient availability. We expected close 
links between the denitrifying community and N2O emissions 
across fertilization treatments.

Materials and methods

Experimental site and description of 
treatments

The field experiment was performed at the experimental 
station of Gansu Agricultural University in Dingxi, northwestern 
China (35°28′N, 104°44′E). The study area has a semi-arid 
environment with an annual frost-free period of 140 days and an 
average elevation of 2,000 m. The average annual rainfall in this 
area is 390 mm, with most rain falling between July and September. 
Calcaric cambisol is the aeolian soil type at this site, with a sandy 
loam texture. The tested soil has a pH value of 8.7, SOC content of 
8.52 g kg−1, total nitrogen (TN) content of 0.93 g kg−1, and available 
phosphorus (AP) content of 15.3 mg kg−1. The maximum and 
minimum temperature of this site were 38°C in July and −22°C 
in January.

The experiment was started in 2012, including five treatments 
arranged in a completely randomized design with three replicates. 
The five fertilization treatments were: (i) no fertilization (CK); (ii) 
mineral fertilizer (MF) contained 200 kg N ha−1 of urea and 150 kg 
P2O5 ha−1 of triple superphosphate; (iii) mineral fertilizer plus 
commercial organic fertilizer (MOF) contained 3.03 t ha−1 of 
organic commercial fertilizer, 100 kg N ha−1 of urea, and 120 kg 
P2O5 ha−1 of triple superphosphate; (iv) Organic fertilizer (OFP) 
contained 6.06 t ha−1 of commercial organic fertilizer, and 90 kg 
P2O5 ha−1 of triple superphosphate; and (v) maize straw (MSP) 
contained 28.5 t ha−1 combined with triple superphosphate of 
36 kg ha−1. In the spring, all fertilizers were spread evenly on the 
soil surface. The experimental plots were 13 m long and 3.3 m 
wide, with alternating narrow (15 cm high × 40 cm wide) and wide 
(10 cm high × 70 cm wide) ridges (Supplementary Figure S1). All 
ridges were covered with plastic film to increase soil temperature, 
reduce evaporative losses, and promote plant productivity. The 
seeds of maize (cultivar Pioneer 335) were sown at a density of 
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52,500 plants ha−1 in late April and harvested in October. Weeding 
was done manually between sowing and harvesting.

Soil sampling and analysis

Soil samples were collected using a soil auger (5 cm diameter) 
at the flowering stage of maize in 2019. Five soil cores (0–20 cm) 
were collected along a zigzag line in each plot, and carefully mixed 
to obtain a composite sample. Soil samples were placed on dry ice 
and immediately transported to the laboratory. The soil samples 
were sieved at 2 mm to remove stones and roots. Each soil sample 
was divided into two halves, one kept at 4°C for chemical analysis 
and the other at −80°C for molecular analysis.

Soil pH was measured with a glass electrode in a 1:2.5 soil/
water solution. SOC was determined by the oxidation of organic 
C with potassium dichromate (Nelson and Sommers, 1996). TN 
was measured using the CN elemental analyzer (LECO, 
Stockport, United Kingdom). Ammonia nitrogen (NH4

+ − N) and 
nitrate nitrogen (NO3

−−N) were extracted with 2 M KCl, and 
determined using a flow injection auto analyzer (FLA star 5000 
analyzers, Foss, Denmark; Bremner, 1996). Dissolved organic 
nitrogen (DON) was extracted by 0.5 M K2SO4 and detected using 
a Multi N/C 2100 analyzer (Analytik Jena, Germany; Ghani et al., 
2003). Available phosphorus (AP) was determined by 
colorimetric methods and resin extraction with modification 
(Olsen et al., 1954). Soil water content was measured by drying 
at 105°C for 24 h (Lamptey et al., 2019).

Measurement of potential denitrification 
activity

Frozen soil samples were incubated at 25°C for 3 days. 
Potential denitrification activity (PDA) was determined using the 
acetylene inhibition method (Philippot et  al., 2011), and was 
expressed as the N rate of N2O production (ng N2O N g−1 dry soil 
h−1). Briefly, 25 g of soil was placed in 125 ml plasma flask, and 
25 ml of solution containing 10 mM KNO3, 10 mM glucose, and 
50 mM K2HPO4. Chloramphenicol (0.1 g l−1) was added to 
suppress new protein formation. The flasks were evacuated to 
produce anaerobic conditions and purged with a 90:10 He-C2H2 
gas combination to reduce N2O reductase activity. Gas samples 
were obtained after 0, 15, 30, 45, and 60 min after mixing. N2O 
concentrations was detected by a gas chromatograph (Agilent 
GC-7890A) with an electron capture detector.

Measurement of N2O fluxes

Static chamber and gas chromatography were used to measure 
N2O fluxes. Each closed container (38 cm × 35 cm × 36.5 cm) was 
designed with a completely opaque covered with a corrugated tin 
foil to limit the influence of radiant heat during gas sampling. N2O 

gas samples were collected using a plastic syringe during sampling 
periods (0, 10, and 20 min after chamber closure) and deposited 
in an airtight aluminum bag for each sampling period (Dalian 
Delin gas packing, China). N2O gas samples were collected at 
15-day intervals from May to September in 2019. Gas 
chromatography (Agilent 7890A, United  States) was used to 
analyze the collected gas samples with an electron capture detector.

N2O flux (f) was calculated using the protocol described by 
Jantalia et  al. (2008): f = ρ ×  (V/A)  ×  (C/t)  ×  [273/(273  + T)], 
where f is the N2O flux (μg m−2 h−1); ρ is the N2O gas density 
(kg m−3) at standard temperature and pressure; V is the chamber 
volume (m3); A is the soil area covered by the chamber (m2); T is 
the temperature in the chamber (°C); ΔC/Δt is the change in N2O 
concentration inside the chamber during a given time (μl l−1 h−1). 
The cumulative N2O emissions (kg ha−1) were calculated using the 
following equation (Yeboah et al., 2021): M = ∑ (FN + 1 + FN) × 0.5 ×  
(TN + 1 − TN) × 24 × 10−2, where M is the cumulative N2O emissions 
during the measurement period (kg ha−1); F is N2O (in mg 
m−2  h−1); N and N + 1 are the sampling emissions from the 
previous and current sampling; T is the number of days since the 
initial sampling.

DNA extraction and quantitative 
polymerase chain reaction

Total DNA was extracted and purified from 0.5 g of fresh soil 
using the HiPure Soil DNA Mini Kit (Magen, Guangzhou, China). 
The quantity and purity of DNA were determined using a 
spectrophotometer (Nanodrop, PeqLab, Germany). The 
quantitative polymerase chain reaction (qPCR) was performed to 
detect the copy numbers of nirK, nirS, and nosZ genes using an 
ABI7500 thermocycler equipment (Applied Biosystems, Foster 
City, CA, United States). The primers to amplify denitrification 
gene are listed in Supplementary Table S1. The 20-μl reaction 
mixture contained 10 μl of SYBR Premix Ex Taq (TaKaRa 
Biotechnology, Tokyo, Japan), 0.5 μl of each primer (10 mM), 1 μl 
of DNA template (1–10 ng), and 8 μl of double-distilled water. 
DNA template was replaced with RNase-free ultrapure water as a 
control. The standard curves were generated to calculate the 
absolute abundance of nirK, nirS, and nosZ genes. Plasmids 
extracted from clones containing any of the target genes (nirK, 
nirS, and nosZ) were diluted to produce a series of standard 
templates (102–108 copies). The amplification efficiencies and r2 
were >90% and 0.99%, respectively.

Sequencing and processing of functional 
gene amplicons

DNA sequencing was used to investigate the abundance, 
diversity, and community structure of nirS, nirK, and nosZ-
harboring denitrifiers. A unique 7-bp barcode sequence was 
added to the forward primers. The concentration of purified 
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products was determined using a TBS-380 fluorometer (Turner 
Biosystems, CA, United States). The diluted PCR were paired-end 
sequenced on an Illumina MiSeq sequencer (Shanghai Personal 
Biotechnology, Co., Ltd., Shanghai, China). Raw sequences were 
quality screened and low-quality sequences were identified using 
Quantitative Insights Into Microbial Ecology (QIIME; Caporaso 
et al., 2010). Usearch was used to screen the chimeric assembled 
sequences (Edgar et  al., 2011). The remaining high-quality 
sequences were then checked for frameshifts using the FrameBot 
tool of the Ribosomal Database Project (RDP) FunGene Pipeline 
(Edgar and Flyvbjerg, 2015). Next, the blastn algorithm compared 
the bacterial nirK, nirS, and nosZ sequences to the non-redundant 
nucleotide database GenBank (nt) in the National Center for 
Biotechnology Information (NCBI). Finally, the operational 
taxonomic units (OTUs) of each sample were determined by 
clustering the sequences using the cluster database at high identity 
with tolerance (CD-HIT-EST) algorithm, which requires a 
minimum sequence identity of 90% (Li and Godzik, 2006). Alpha 
diversity indices (Shannon index and Chao1 richness) of each 
functional gene were calculated using R software (version 3.5.3).

Statistical analysis

The analysis of variance (ANOVA) with Tukey’s HSD test at 
p < 0.05 and Pearson correlation were performed using SPSS 21.0 
(SPSS Inc., Chicago, IL, United States). Redundancy analysis (RDA) 
was used to evaluate the effects of soil physicochemical properties 
on the denitrifying communities using “vegan” package in R.

Co-occurrence networks were used to identify the significant 
taxa associations in the nirK-, nirS-, and nosZ-harboring denitrifiers. 
The OTUs that occurred in all replicates of each treatment were 
retained for network analysis. Pearson correlations between all 
nodes were performed, with the correlation coefficient (r) was >0.7 
or < −0.7 and p value was <0.05. We then computed permutation 
and bootstrap distributions to evaluate the valid of edges with 1,000 
iterations. The network was laid out using the Fruchterman–
Reingold algorithm via Gephi (version 0.9.2). We  calculated 
topological properties of networks, including the number of nodes 
and edges, average clustering coefficient, average degree, average 
path length, closeness centrality, network centrality, and modularity. 
The OTUs with the higher degree and closeness centrality were 
considered as potential keystone taxa (Berry and Widder, 2014).

Random forest modeling was used to identify the important 
predictors of N2O emissions, including soil variables and the 
denitrifying bacterial communities (Liaw and Wiener, 2002). The 
predictor importance of the model was quantified by the “A3R” 
package (Fortmannroe, 2015), and the significance of each 
predictor was determined by the “rfPermute” package (Archer, 
2020). Structural equation modeling (SEM) was used to examine 
the direct and indirect effect of soil properties and the denitrifying 
communities on PDA and N2O emission using AMOS 21.0. The 
data distribution was tested for normality before modeling. The 
chi-square test (χ2, p > 0.05), root mean square error of 

approximation (RMSEA), and goodness-of-fit index (GFI) were 
used to determine the model fitness (Sahoo, 2019).

Results

Soil properties, potential denitrification 
activity, and N2O emission

Our results showed that soil properties significantly (p < 0.05) 
changed among fertilization treatments (Table 1). Soil pH ranged 
from 8.32 to 8.66 across fertilization treatments, and was 
significantly (p < 0.05) lower under MF treatment than under CK 
and MSP treatments. The MSP and OFP treatments significantly 
(p < 0.05) increased SOC and DON compared to MF and CK 
treatments, and significantly increased TN and AP compared to CK 
treatment (Table 1). NO3

−−N concentration ranged from 17.84 to 
30.81 mg kg−1, and was significantly (p < 0.05) increased under MF 
treatment compared to OFP, MSP, and CK treatments. Soil water 
content (SWC) was significantly (p < 0.05) higher under MF, MOF, 
OFP, and MSP treatments than under CK treatment (Table 1).

Potential denitrification activity (PDA) was significantly 
(p < 0.05) increased by 34.6%, 46.4%, 94.1%, and 60.8% under 
MF, MOF, OFP, and MSP treatments compared to CK treatment, 
respectively (Figure 1). Overall, N2O emissions were the highest 
in July and the lowest in September across fertilization treatments 
(Figure  2A). Furthermore, N2O emissions were significantly 
(p < 0.05) higher under OFP, MSP, and MF treatments than under 
MOF treatment. The cumulative N2O emissions under OFP, MSP, 
MF, and MOF treatments were significantly (p < 0.05) improved 
by 39.9%, 33.4%, 76.1%, and 63.4% compared to CK treatment, 
respectively (Figure 2B).

Abundance, diversity, and composition 
of denitrifying communities

The abundance of nirK-harboring denitrifiers indicated by copy 
number of nirK gene was the highest under MF treatment and the 
lowest under CK treatment (Figure 3A). The abundance of nirS-
harboring denitrifiers were significantly (p < 0.05) higher under OFP 
and MSP treatments than under CK and MOF treatments 
(Figure 3B). The abundance of nosZ-harboring denitrifiers under 
MOF treatment was significantly (p < 0.05) higher than those under 
CK, MF, OFP, and MSP treatments (Figure 3C). Shannon index and 
Chao1 richness of the denitrifying bacterial communities were 
significantly (p < 0.05) altered across fertilization treatments (Table 2), 
except for Shannon index of nirK-harboring denitrifiers. Shannon 
index and Chao1 richness of nirS- and nosZ-harboring denitrifiers 
were significantly (p < 0.05) enhanced under MOF and OFP 
treatments compared to CK and MF treatments. Shannon index and 
Chao1 richness of nirK-harboring denitrifiers were significantly 
(p < 0.05) higher under OFP treatment than under CK treatment.

The nirK-harboring denitrifiers were dominated by Nitrosospira 
(36.6%), Rhodobacter (20.4%), Alcaligenes (19.4%), Mesorhizobium 
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(3.6%), and Rubellimicrobium (3.0%; Figure  4A). The relative 
abundance of Rhodobacter and Nitrosospira was significantly 
(p < 0.05) higher under MF treatment than under CK and 
MOF treatments. However, Alcaligenes was significantly (p < 0.05) 
higher under CK and MSP treatment than under MOF 
and OFP treatments. Redundancy analysis (RDA) showed 
that soil pH (14.4%), SOC (13.2%), NO3

−−N (13.0%), and TN 
(12.1%) significantly (p  < 0.05) affected the structure of nirK-
harboring denitrifier community (Supplementary Figure S2A;  
Supplementary Table S2). The nirS-harboring denitrifiers were 
dominated by Cupriavidus (22.5%), Bradyrhizobium (18.0%), 
Rhodanobacter (12.7%), Azospira (9.4%), Herbaspirillum (7.7%), 
and Zoogloea (7.1%; Figure  4B). The relative abundance of 
Bradyrhizobium and Rhodanobacter under MSP treatment was 
significantly (p < 0.05) higher than that under MOF and OFP 

treatments, while the relative abundance of Cupriavidus and 
Zoogloea followed the opposite trend. RDA indicated that NO3

−−N 
(19.1%), SOC (16.6%), and pH (15.7%) significantly (p  < 0.05) 
affected the structure of nirS-harboring denitrifier community 
(Supplementary Figure S2B; Supplementary Table S2). The nosZ-
harboring denitrifiers were mainly comprised of Azospirillum 
(23.2%), Mesorhizobium (17.2%), Burkholderia (16.0%), and 
Herbaspirillum (14.0%; Figure 4C). The genera Azospirillum and 
Mesorhizobium were significantly (p < 0.05) higher under MOF and 
MSP treatments than under OFP treatment, whereas Burkholderia 
exhibited the inverse pattern. RDA revealed that SOC (20.5%), TN 
(18.2%), NO3

−−N (15.6%), and pH (13.5%) significantly (p < 0.05) 
affected the structure of nosZ-harboring denitrifier community 
(Supplementary Figure S2C; Supplementary Table S2).

Co-occurrence network of the 
denitrifying communities

The co-occurrence networks were constructed to investigate the 
critical modules within the denitrifying communities. There were 
more positive edges than negative edges in the networks of nirK-, 
nirS-, and nosZ-harboring denitrifiers (Supplementary Figure S3; 
Supplementary Table S3). The denitrifying bacterial networks were 
divided into distinct modules that were closely associated functional 
groups of taxa. Modules I, II, III, and IV of nirK-harboring 
denitrifier network comprised of 46, 43, 25, and 37 nodes, and 225, 
178, 30, and 77 edges, respectively (Supplementary Table S3). 
Modules I, II, III, and IV of nirS-harboring denitrifier network 
consisted of 32, 26, 25, and 15 nodes, with 280, 76, 53, and 12 edges, 
respectively. There were 69, 41, 38, and 53 nodes, and 320, 181, 175, 
and 294 edges in the modules I, II, III, and IV of nosZ-harboring 
denitrifier network, respectively.

Within the nirK-harboring denitrifier network, the genera 
Alcaligenes, Nitrosospira, and Ochrobactrum were identified as the 
potential keystone taxa in the module I (Supplementary Figure S3A). 
The module I  of nirK-harboring denitrifier network showed 
significantly positive correlations with NO3

−−N (r = 0.77, p < 0.01), 
AP (r = 0.52, p < 0.05), and community composition (r = 0.80, 

TABLE 1 Soil physicochemical characteristics under different fertilization treatments.

CK MF MOF OFP MSP

pH 8.66 ± 0.03a 8.32 ± 0.07c 8.44 ± 0.08bc 8.45 ± 0.05bc 8.54 ± 0.06b

TN (g kg−1) 0.85 ± 0.01b 0.93 ± 0.03a 0.94 ± 0.02a 0.98 ± 0.03a 0.99 ± 0.02a

SOC (g kg−1) 7.48 ± 0.18c 7.93 ± 0.07c 8.81 ± 0.33b 8.84 ± 0.20b 9.81 ± 0.19a

NO3
−−N (mg kg−1) 17.84 ± 1.04c 30.81 ± 2.78a 28.40 ± 3.57ab 25.40 ± 1.41b 21.93 ± 1.81bc

NH4
+ − N (mg kg−1) 15.33 ± 1.63a 16.07 ± 1.48a 14.87 ± 2.22a 15.81 ± 1.36a 16.53 ± 2.80a

AP (mg kg−1) 9.73 ± 1.41c 16.70 ± 1.57ab 18.32 ± 1.69ab 19.81 ± 0.72a 15.14 ± 0.97b

DON (mg kg−1) 10.89 ± 0.62b 12.42 ± 0.78b 11.89 ± 1.04b 17.78 ± 1.25a 18.48 ± 1.57a

SWC (%) 23.11 ± 1.13b 28.21 ± 2.10b 32.42 ± 2.46a 31.93 ± 1.24a 28.63 ± 1.91b

Values are expressed as mean with standard error. Different lowercase letters indicate significant differences based on Tukey’s HSD test (p < 0.05). TN, total nitrogen; SOC, soil organic 
carbon; NO3

−−N, nitrate nitrogen; NH4
+ − N, ammonia nitrogen; AP, available phosphorus; DON, dissolved organic nitrogen; SWC, soil water content. CK, No fertilization; MF, mineral 

fertilizer; MOF, mineral fertilizer plus commercial organic fertilizer; OFP, commercial organic fertilizer; MSP, maize straw.

FIGURE 1

Potential denitrification activity (PDA) under different 
fertilization treatments. Bars (n = 3) with different lowercase 
letters indicate significant differences based on Tukey’s HSD test 
(p < 0.05). CK, No fertilization; MF, mineral fertilizer; MOF, mineral 
fertilizer plus commercial organic fertilizer; OFP, commercial 
organic fertilizer; MSP, maize straw.
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p < 0.01), but significantly negative correlations with pH (r = −0.74, 
p < 0.01) and diversity (r = −0.54, p < 0.05; Figure 5). The modules 
I  in the nirS-harboring denitrifier network consisted of three 
keystone taxa affiliated with Cupriavidus, Rhodanobacter, and 
Bradyrhizobium (Supplementary Figure S3B). The module I of nirS-
harboring denitrifier network exhibited positive relationships with 
NO3

−−N (r = 0.89, p < 0.01), community composition (r = 0.69, 
p < 0.01), PDA (r = 0.74, p < 0.01), and N2O emissions (r = 0.57, 
p < 0.05), but negative relationships with pH (r = −0.89, p < 0.01; 
Figure 5). The module II of nirS-harboring denitrifier network were 
negatively correlated with NO3

−−N (r = −0.64, p < 0.05), abundance 
(r = −0.77, p < 0.01), and community composition (r = −0.67, 
p < 0.01), but positively correlated with pH (r = 0.71, p < 0.01). The 

nosZ-harboring denitrifier network had six keystone taxa, belonging 
to Azospirillum, Mesorhizobium, Burkholderia, Shinella, Ensifer, and 
Pseudomonas (Supplementary Figure S3C). The modules III and IV 
of nosZ-harboring denitrifier network showed negative associations 
with NO3

−−N (r = −0.64, p < 0.05 and r = −0.63, p < 0.05; Figure 5).

Relationships between soil properties, 
the denitrifying bacterial communities, 
and N2O emissions

The abundance of nirK-harboring denitrifiers was positively 
associated with TN (r = 0.54, p < 0.05) and SOC (r = 0.74, p < 0.01), 

A B

FIGURE 2

The changes in N2O emission flux (A) and cumulative N2O emission (B) among different fertilization treatments. Bars (n = 3) with different lowercase 
letters indicate significant differences based on Tukey’s HSD test (p < 0.05). CK, No fertilization; MF, mineral fertilizer; MOF, mineral fertilizer plus 
commercial organic fertilizer; OFP, commercial organic fertilizer; MSP, maize straw.

A B C

FIGURE 3

The copy numbers of nirK (A), nirS (B), and nosZ (C) genes under different fertilization treatments. Bars (n = 3) with different lowercase letters 
indicate significant differences based on Tukey’s HSD test (p < 0.05). CK, No fertilization; MF, mineral fertilizer; MOF, mineral fertilizer plus 
commercial organic fertilizer; OFP, commercial organic fertilizer; MSP, maize straw.
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but negatively associated with N2O emissions (r = −0.62, p < 0.05). 
The abundance of nirS-harboring denitrifiers was positively 
correlated with pH (r = 0.53, p < 0.05), NO3

−−N (r = 0.67, p < 0.01), 
SOC (r = 0.65, p < 0.05), DON (r = 0.51, p < 0.05), PDA (r = 0.54, 
p < 0.05), and N2O emissions (r = 0.57, p < 0.05). The abundance of 
nosZ-harboring denitrifiers was positively correlated with 
NO3

−−N (r = 0.56, p < 0.05) and SWC (r = 0.68, p < 0.01), but 
negatively correlated with pH (r = −0.56, p < 0.05), SOC (r = −0.75, 
p < 0.01), and DON (r = −0.63, p < 0.05).

Random forest modeling indicated that soil pH (6.1%, 
p < 0.05), SOC (8.9%, p < 0.01), NO3

−−N (7.5%, p < 0.05), and DON 
(11.5%, p < 0.01) were the important abiotic variables predicting 
N2O emissions (Figure 6A). As for biotic variables, N2O emissions 
were significantly affected by the abundance (9.6%, p < 0.01), 
composition (6.9%, p < 0.05) and network module I (6.1%, p < 0.05) 
of nirS-harboring denitrifiers, and the abundance of nirK-
harboring denitrifiers (6.5%, p < 0.05; Figure 6A). However, the 
nosZ-harboring denitrifiers exhibited no significant impact on 
N2O emissions. Structural equation modeling further showed that 
soil properties had significantly positive effects on the nirS- and 
nirK-harboring denitrifier communities (r = 0.81, p < 0.01 and 
r = 0.61, p < 0.05), and PDA (r = 0.69, p < 0.05; Figure  6B). 
Importantly, the nirS-harboring denitrifiers were positively 
correlated with PDA (r = 0.73, p < 0.05) through the abundance, 
community composition, and network module I  (Figure  6B). 
However, the abundance of nirK-harboring denitrifiers was 
negatively associated with PDA (r = −0.49, p < 0.05).

Discussion

Soil properties and denitrifying 
communities in response to fertilization 
treatments

We found that OFP and MSP treatments considerably affected 
soil chemical properties compared to MF and CK treatments, 
including soil pH, SOC, DON, and NO3

−−N. Organic fertilization 
has been widely proposed as alternative approach to solve the 
problems of excessive mineral fertilizer in sustainable farming 
systems (Seufert et al., 2012). Organic fertilizers (animal manures 
or maize straw) generally contains specifically high levels of 
organic matter content and micronutrients (Lamptey et al., 2019). 
The replacement of mineral fertilizer with organic fertilizers 
improves soil quality and physicochemical properties, as well as 
soil carbon and nitrogen stocks (Qiu et al., 2016). Correspondingly, 
the increase in SOC can provide readily available C sources for the 
microbial metabolism to improve DON immobilization (Cusack 
et  al., 2011). However, OFP and MSP treatments significantly 
increased the potential denitrification activity, which was 
responsible for NO3

−−N reduction relative to MF treatment.
In our study, inorganic fertilizer had a significantly positive 

effect on the abundance of nirK-harboring denitrifiers, while three 
organic fertilization treatments enhanced the abundance and 
diversity of nirS- and nosZ-harboring denitrifiers. Recent studies 
have reported that the nirK-harboring denitrifiers are more 
abundant than the nirS- and nosZ-harboring denitrifiers in different 
soils (Cui et al., 2016; Shi et al., 2019). However, our results showed 
that the abundance of nirS-harboring denitrifiers was significantly 
higher than that of nosZ- and nirK-harboring denitrifiers. In 
general, the variations of nirS-harboring denitrifiers in response to 
organic fertilization treatments can be largely responsible for the 
differences in SOC and N availability (Tao et al., 2018). The high 
level of SOC is considered to support the increasing abundance of 
nirS- and nosZ-harboring denitrifiers in soils treated with organic 
materials (Chen et  al., 2019a). The nirS-harboring denitrifiers 
conduct the last step of denitrification, and are dependent on the 
changes in exogenous carbon and nutrient resource supply. 
Furthermore, soil pH can directly affect the cell growth and 
activities of nirS-harboring denitrifiers (Li et al., 2020b). The nosZ-
harboring denitrifiers encode nitrous oxide reductase and promote 
denitrification to be carried out thoroughly. NO3

−−N, an electron 
acceptor in denitrification, is strongly associated with the 
abundance and diversity of nosZ-harboring denitrifiers (Kastl et al., 
2015). The predominance of nosZ-harboring denitrifiers under 
organic fertilization treatments facilitates the conversion of N2O to 
N2, thereby reducing N2O emissions (Shi et al., 2019).

Fertilization treatments lead to the changes in the bacterial 
life-history strategies, and contribute primarily to the variations 
in community structure (Fierer et  al., 2012). Our results 
determined that the composition of microbial functional groups 
involved in denitrification responded significantly to 
fertilization treatments. The organic fertilization treatments 

TABLE 2 The diversity indices of nirK-, nirS-, and nosZ-harboring 
denitrifies under different fertilization treatments.

Denitrifiers Treatments Shannon 
index

Chao1 
richness

CK 4.69 ± 0.01b 1911 ± 60.8b

MF 4.89 ± 0.06ab 2,156 ± 26.8a

nirK-harboring MOF 4.94 ± 0.11ab 2,114 ± 10.3ab

denitrifiers OFP 5.19 ± 0.15a 2,207 ± 40.9a

MSP 4.92 ± 0.05ab 2095 ± 67.3ab

P value 0.093 0.036

CK 3.58 ± 0.08c 349 ± 18.6b

MF 3.79 ± 0.03bc 441 ± 37.8b

nirS-harboring MOF 4.10 ± 0.03a 853 ± 32.5a

denitrifiers OFP 4.14 ± 0.06a 866 ± 24.6a

MSP 3.83 ± 0.04b 770 ± 27.6a

P value 0.001 <0.001

CK 4.89 ± 0.11d 1,196 ± 52.9c

MF 5.22 ± 0.03c 1,522 ± 46.8b

nosZ-harboring MOF 5.59 ± 0.02a 2,139 ± 59.2a

denitrifiers OFP 5.53 ± 0.06ab 1941 ± 41.9a

MSP 5.37 ± 0.01bc 1,580 ± 54.3b

P value <0.001 <0.001

Values are expressed as mean with standard error. Different lowercase letters indicate 
significant differences based on Tukey’s HSD test (p < 0.05). Bold values denote 
significant effects. CK, No fertilization; MF, mineral fertilizer; MOF, mineral fertilizer 
plus commercial organic fertilizer; OFP, commercial organic fertilizer; MSP, maize straw.
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presented the high abundance of Cupriavidus and Zoogloea in 
the nirS-harboring denitrifiers and Mesorhizobium and 
Azospirillum in the nosZ-harboring denitrifiers. The members 
of genus Zoogloea plays a key role in endogenous denitrification 
via nitrogen metabolism, promoting N2O emissions (Shen et al., 
2020). In addition, the genera Mesorhizobium and Azospirillum 

promote diffusive transport of organic substrates, potentially 
enhancing the availability of organic N substrate for N-cycling 
microbial communities (Huang et  al., 2020). As such, these 
dominant genera were considered to affect denitrification 
potentials and mediate N2O emissions under organic 
fertilization treatments.

A B C

FIGURE 4

Taxonomic compositions of nirK- (A), nirS- (B), and nosZ-harboring (C) denitrifiers at the genus level under different fertilization treatments. CK, No 
fertilization; MF, mineral fertilizer; MOF, mineral fertilizer plus commercial organic fertilizer; OFP, commercial organic fertilizer; MSP, maize straw.

FIGURE 5

Correlation coefficients between module eigengenes, soil properties, the nirK-, nirS-, and nosZ-harboring denitrifiers, potential denitrification 
activity (PDA), N2O emission. The denitrifying communities are represented by abundance (the copy numbers of genes), diversity (Chao1 richness), 
and composition (first principal coordinates, PC1). Blue color indicates positive correlation, and red color indicates negative correlations. TN, total 
nitrogen; SOC, soil organic carbon; NO3

−−N, nitrate nitrogen; NH4
+ − N, ammonia nitrogen; AP, available phosphorus; DON, dissolved organic 

nitrogen; SWC, soil water content. *p < 0.05 and **p < 0.01.
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Microbial co-occurrence network and 
potential keystone taxa

Co-occurrence network analysis is often performed to 
investigate the species associations in the nirK, nirS, and nosZ-
harboring denitrifier networks (Zhang et al., 2018). Overall, our 
results clearly showed that the number of edges and nodes was 
higher in the nosZ-harboring denitrifying network than in the nirK- 
and nirS-harboring denitrifier networks. There were more positive 
associations than negative ones in the networks, implying the 
intensive species cooperation and exchange events in the nirK-, 

nirS-, and nosZ-harboring denitrifiers. The high network centrality 
in the nirS-harboring denitrifier network showed better modularly 
organized in information transfer between bacteria, indicating their 
efficient performance within modules. Topological characteristics 
of the denitrifying bacterial networks can be further applied to 
statistically identify the modules (strong connecting structures 
among taxa) and potential keystone taxa based on their connections 
and central positions in the networks. The modules with higher 
modularity is likely to be more stable owing to stronger associations 
within functional groups (Maslov and Sneppen, 2002). The modules 
in denitrifying bacterial networks exhibited significant correlations 

A

B

FIGURE 6

Random forest modeling was used to assess the main predictors of potential denitrification activity (PDA; A). Soil properties is represented by pH, 
soil organic carbon (SOC), soil water content (SWC), total nitrogen (TN), available phosphorus (AP), nitrate nitrogen (NO3

−−N), ammonia nitrogen 
(NH4

+ − N), and dissolved organic nitrogen (DON). The denitrifying communities are represented by abundance (the copy numbers of genes), 
diversity (Chao1 richness), composition (first principal coordinates, PC1) and network modules (module eigengenes). The significant predictors are 
further chosen to perform the structural equation modeling (SEM). SEM shows the direct and indirect effects of soil properties and the denitrifying 
communities on potential denitrification activity (PDA) and N2O emission across fertilization treatments (B). Blue arrows indicate positive 
correlations, and red arrows indicate negative correlations. The numbers associated with arrows indicate the correlation coefficient. Widths of 
arrows indicate strength of significant standardized path coefficients. *p < 0.05; **p < 0.01.
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with soil pH and NO3
−−N, suggesting environmental changes 

might influence bacterial networks via these specific modules. 
We found that the potential keystone taxa within the modules of the 
denitrifying bacterial networks belonged to the distinct genera. The 
keystone taxa within the denitrifying bacterial networks may 
directly shape soil microbiome community assemblages with a 
disproportionate effect due to strong taxa interactions (Faust and 
Raes, 2012; Chen et al., 2019b). These keystone taxa form a close 
clustering with other taxa within the microbiome community, and 
contribute largely to network robustness (Zheng et al., 2022a). The 
keystone taxa may explain a large part of the network structure, and 
their removal causes considerable alterations in the stability and 
functioning of denitrifying bacterial community (Berry and 
Widder, 2014). However, caution is warranted when inferring the 
significant effects of keystone taxa on the denitrifying bacterial 
community. Further targeted culturomic approaches and empirical 
evidence are urgently needed to verify our findings on the 
contribution of potential keystone taxa to the entire networks.

Denitrifying bacterial communities 
mediated N2O emissions

The denitrifying bacterial communities play crucial roles in 
the biogeochemical cycling of nitrogen through regulating 
potential denitrification activity (Domeignoz-Horta et al., 2018). 
We observed that the abundance, diversity and network module 
I of nirS-harboring denitrifiers were significantly correlated with 
PDA and N2O emission, rather than those of nirK and nosZ-
harboring denitrifiers across five fertilization treatments. This 
result indicated that the denitrifying communities are not 
functionally similar under distinct soil environmental conditions. 
It is broadly accepted that niche differentiation has remarkable 
influence on the different behaviors and functional activities of 
denitrifying bacteria (Sun et  al., 2017; Chen et al., 2020). 
Numerous literatures highlight their importance for N2O 
emissions, indicating by the positive relationship between the 
abundance of nirS-harboring denitrifiers and PDA (Ullah et al., 
2020; Li et al., 2020a). Organic fertilization treatments provided a 
more balanced and sustainable nutrient resources for the diverse 
denitrifying bacterial populations, and the higher abundance of 
nirS-harboring denitrifiers increased N2O emissions. The nirS-
harboring denitrifiers were proposed to be  the numerical and 
functional dominance for a high denitrification efficiency over 
other denitrifying bacterial communities. Additionally, the 
module I  with keystone taxa in the nirS-harboring denitrifier 
network was positively associated with PDA and N2O emissions. 
The keystone taxa have been commonly recognized as functional 
units that are of ecological importance in PDA and N dynamics 
irrespective of their abundance (Zhang et al., 2018; Zheng et al., 
2022b). The species interactions mediated by potential keystone 
taxa in the nirS-harboring denitrifier network may improve 
positive abundance-functioning relationships. The large 
community size induced by keystone taxa contributes to the 

eventual promotion of denitrification potential and N2O fluxes in 
the natural field systems (Čuhel et  al., 2010). Consequently, 
we suggested that the networks of the nirS-harboring denitrifiers 
could facilitate the community performance of denitrification at 
high levels of abundance.

Conclusion

We observed that organic fertilization treatments significantly 
enhanced the abundance and diversity of nirS- and nosZ-
harboring denitrifiers compared to CK treatment. Importantly, 
the abundance and the network module with keystone taxa of 
nirS-harboring denitrifiers exhibited exclusively positive 
relationships with denitrification potential and N2O emissions. 
Our study indicated the higher effect of nirS-harboring denitrifiers 
over nirK- and nosZ-harboring denitrifiers for denitrification and 
N2O fluxes. Taken together, this study provides insights into the 
response of the nirS-harboring denitrifiers to agricultural practices 
and the biotic mechanism behind positive affect on N2O emissions 
under organic fertilization treatments. As such, the deep 
understanding of mitigation measures for N2O emissions may 
pave the way for developing sustainable agroecosystems under a 
broad range of soil-climate scenarios.
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