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Expanded Porphyrins
Nitai Sylvetsky,† Ambar Banerjee,† Mercedes Alonso,* and Jan M. L. Martin*

Cite This: J. Chem. Theory Comput. 2020, 16, 3641−3653 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Localized orbital coupled cluster theory has recently
emerged as a nonempirical alternative to DFT for large systems.
Intuitively, one might expect such methods to perform less well for
highly delocalized systems. In the present work, we apply both
canonical CCSD(T) approximations and a variety of localized
approximations to a set of flexible expanded porphyrins
macrocycles that can switch between Hückel, figure-eight, and
Möbius topologies under external stimuli. Both minima and
isomerization transition states are considered. We find that
Möbius(-like) structures have much stronger static correlation
character than the remaining structures, and that this causes
significant errors in DLPNO-CCSD(T) and even DLPNO-
CCSD(T1) approaches, unless TightPNO cutoffs are employed. If sub-kcal mol−1 accuracy with respect to canonical relative
energies is required even for Möbius-type systems (or other systems plagued by strong static correlation), then Nagy and Kallay’s
LNO-CCSD(T) method with “tight” settings is the suitable localized approach. We propose the present POLYPYR21 data set as a
benchmark for localized orbital methods or, more broadly, for the ability of lower-level methods to handle energetics with strongly
varying degrees of static correlation.

■ INTRODUCTION

Expanded porphyrins have drawn much attention over the past
few decades due to their facile redox interconversions, novel
metal coordination behaviors, versatile electronic states, and
conformational flexibility.1 The latter is responsible for the rich
chemistry associated with such systems, which has led to
various applications such as near-infrared dyes,2 nonlinear
optical materials,3 magnetic resonance imaging contrast
agents,4 and molecular switches.5 Contrary to the parent
porphyrin, expanded porphyrins are flexible enough to easily
undergo conformational changes, which correspond to distinct
π-conjugation topologies (Hückel, Möbius, and twisted-
Hückel/figure-eight) encoding different chemical and physical
properties (Scheme 1).6,7

Such changes may involve a Hückel−Möbius aromaticity
switch within a single molecule, which can easily be induced
by, inter alia, an appropriate solvent, pH, temperature, and
metalation conditions.8,9 Thus, these Hückel−Möbius aroma-
ticity switches have already been recognized for their potential
applications in molecular optoelectronic devices.10 Additional
applications for expanded porphyrins, including conductance
switching devices11,12 and efficient nonlinear optical
switches,13 have recently been covered in the literature.
In a very recent collaboration6 with Alonso et al., relative

energies and isomerization pathways of a set of expanded

porphyrins were investigated using wave function ab initio
methods and DFT methods,6 motivated by the fact that DFT-
based energetics were shown to be highly dependent on the
density functional employed in the calculations.14,15 Further-
more, different DFT studies on expanded porphyrins have
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Scheme 1. Representation of Different π-Conjugation
Topologies of Expanded Porphyrins and Their Expected
Aromaticities as a Function of the Number of π-Electrons
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arrived at contradictory findings concerning the best-perform-
ing functionals to be used for these systems.14−18 Indeed, since
the stability of these isomers depends on the complex interplay
of different factors (hydrogen bonding, π···π stacking, steric
effects, ring strain, aromaticity, and so forth), it is no surprise
that the selection of an exchange-correlation functional
appropriate for describing the energy profiles of such
topological switches is no trivial task. Thus, in ref 6, we
opted to assess the performance of different exchange-
correlation functionals for describing the thermochemistry
and kinetics of topology interconversions in N-fused [24]-
penta-, [28]hexa-, and [32]heptaphyrinsby comparing them
to benchmark results obtained at the canonical CCSD(T)/
CBS level of theory. The structures included in this benchmark
are illustrated in Figure 1.

Unfortunately, canonical CCSD(T) calculations are noto-
rious for their heavy computational burden, having formal
CPU-time scaling of O(n3N4), n being the number of electrons
in the system and N corresponding to the number of basis
functions employed in the calculation. Hence, even for
heptaphyrins with the cc-pVDZ basis set, canonical CCSD(T)
hit the ceiling of our computational resources. As an
illustration, a canonical CCSD(T)/cc-pVDZ calculation on
structure 28M required no less than two node months total
CPU time. Thus, treating even larger polypyrroles by means of
robust, nonempirical ab initio methods is only feasible using
alternative, computationally more economical methodologies.
DLPNO-type approaches (domain localized pair natural

orbital), which have recently gained popularity due to their
near-linear scaling properties, embrace the notion of pair
natural orbitals (PNOs) in order to reduce the virtual space

Figure 1. (a) Hückel (H), Möbius (M), and figure-eight (F) conformations of selected expanded porphyrins. Aromatic and antiaromatic
macrocycles are colored in red and green, respectively. (b) Two 28H ⇌ 28M interconversion pathways investigated for the Hückel−Möbius
interconversion in [28]hexaphyrin.
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which has to be taken into account in a given calculation.19−22

Recent methodological developments have led to the situation
in which, using modern commodity servers, systems with over
44,000 basis functions and 2,300 atoms23 are within reach of
localized orbital-based ab initio methods. They may therefore
constitute an obvious solution for the larger expanded
porphyrins.24,25

That being said, the systems under consideration are known
to be strongly delocalized:26,27 thence, one may intuitively
expect that localized orbital-based correlation approaches, such
as the above-mentioned DLPNO-type ones, would prove to be
inadequate. For this reason, assessing the performance of
DLPNO-type approaches against canonical benchmark results
is essential for confirming their reliability for highly delocalized
π-systems.
We shall therefore assess the performance of several

localized orbital approaches for the problem at hand. Below
we show that some of the structures, specifically Möbius π-
systems and the transition states resembling them, suffer from
elevated degrees of static correlation, and that the errors for
such systems can reach several kcal mol−1 for the more cost-
effective localized methods, although such errors can be
mitigated through judicious choice of cutoffs.

■ THEORETICAL METHODS
In the present work, we shall consider four different localized
orbital approaches. The first and second, both used as
implemented in ORCA 4.1 and later, are two variants of the
MPI-Mühlheim DLPNO approach. The popular DLPNO-
CCSD(T) approach, in which off-diagonal Fock matrix
elements are neglected in the (T) contribution (such elements
vanish for closed-shell canonical orbital calculations, but not
for localized orbitals), actually corresponds to an approx-
imation to canonical CCSD(T0).

28 The latter approximation is
eliminated in the more rigorous DLPNO-CCSD(T1)

29

approach, at considerable additional CPU cost and I/O
overhead.
The third method is the PNO-LCCSD(T) approach of

Werner and co-workers30,31 as implemented in MOLPRO
2018.32 It likewise eschews the (T0) approximation but differs
substantially from DLPNO-CCSD(T) in terms of domain
construction strategyas explained in detail in refs 23 and 24
and summarized below.
Finally, we consider the LNO-CCSD(T) approach of Kaĺlay

and co-workers23 as implemented in the MRCC package.33

Here, the correlation energy is partitioned into occupied
orbital contributions, and domains are adjusted for each such
orbital individually to ensure that it is adequately represented.
For orbitals that are not strongly delocalized, domains will be
small, while strongly delocalized orbitals will entail large
domains. As we shall see, this mitigates errors in such cases.
For example, in the present work and for the systems at hand,
we found that Möbius structures of the hexaphyrin required
LNO-CCSD(T) wall times a factor of 4−5 longer than for
simpler Hückel structures, compared to only about a factor of
2−2.5 for DLPNO-CCSD(T).
Each of the above DLPNO, PNO, and LNO methods has an

array of cutoffs, screening thresholds, and other numerical
parameters too unwieldy for routine manipulation by the
nonspecialist user. Hence, typically several tuned combinations
of such settings are offered that aim to consistently yield a
given numerical precision for optimal computational cost. In
the case of DLPNO-CCSD(T) in ORCA,34 for example, three

ascending levels of accuracy are collected under the keywords
LoosePNO, NormalPNO (the default), and TightPNO: for
details see Table 1 of ref 34. NormalPNO aims to yield
energetics precise to 1 kcal mol−1, while TightPNO sets the bar
higher and is intended for applications like noncovalent
interactions or conformer/isomer equilibria, where 1 kcal
mol−1 would be an unacceptably large fraction of the
interaction and relative conformer/isomer energies, respec-
tively. Similarly, PNO-LCCSD(T) in MOLPRO offers
“Normal” and “Tight” domain settings (cf. Tables 1−4 of ref
31), while the corresponding MRCC settings are detailed in
Table 1 of Nagy and Kaĺlay.35

While the DLPNO-CCSD approach in ORCA and the
equivalent PNO-LCCSD method in MOLPRO are very similar
in their fundamentals and both achieve roughly linear CPU
time scaling with system size, they differ considerably in their
practical implementation details. Aside from the subtle
differences in screening and cutoff strategies between codes,
one more fundamental variance has chemical consequences for
highly delocalized systems. Both codes construct virtual orbital
domains for each correlation pair from the PAOs (projected
atomic orbitals, i.e., the original basis set after projecting out all
occupied MO components) and then constructs virtual orbital
“domains” from these for the diagonal pair correlation Eii of
each localized MO i [domains for off-diagonal pair Eij are taken
as the union of the domains for the diagonal pairs Eii and Ejj].
Pair natural orbitals are then calculated at the MP2 level, and
only those PNOs whose natural orbital occupation number
exceeds a set threshold are retained.
Where DLPNO-CCSD(T1) in ORCA, and PNO-LCCSD(T)

in MOLPRO, dif fer is how domains are constructed. MOLPRO
uses a spatial criterion based on a fixed number of atom shells
(or a given maximum distance) around the bonded atom pair,
viz., the atom that the lone pair sits on.31,36 In contrast, ORCA
uses an orbital population (older version) or orbital overlap
(newer version) based criterion. In the older version,20,22 all
atoms for which the orbital had a Mulliken population greater
in absolute value than the population cutoff parameter
TCutMKN were included in the domain; whereas in ORCA
4 and later,37 the orbital is included if the square root of the
differential overlap is greater than the differential overlap cutoff
parameter TCutDO. The MOLPRO approach typically yields
much more compact domains, while the ORCA approach
appears to be more resilient toward highly delocalized systems,
such as the considered polypyrroles. It should be noted that,
for nonconjugated molecules, the two approaches may be
expected to perform comparably well.
Ma and Werner31 have argued that, in view of the much

faster basis set convergence of F12 approaches, their ultimate
goal is PNO-LCCSD(T)-F12: the deficiencies of the smaller
PNO domains would then in practice be obviated by inclusion
of F12 corrections. While we acknowledge this argument, we
do not currently have a viable way of generating canonical
CCSD(T)-F12 data for such large systems. Canonical
CCSD(T) reference data for a DZP basis set, on the other
hand, proved computationally tractable albeit demanding. We
do believe that it is valuable to test the approximations in the
localized methods in isolation against the corresponding
canonical answers, our view “uncluttered” by any F12
correction.
How do specific domain size settings affect the CPU time

required for a given calculation? As an example, we consider
the 28M1B Möbius structure. For DLPNO-CCSD(T1)/cc-
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pVDZ, the CPU time ratio TightPNO:NormalPNO was
8.65:1; in other words, the more lenient settings save ∼88%
of the total CPU time required for such a calculation. A
somewhat smaller ratio (5.81:1) was observed for the
DLPNO-CCSD(T0) calculation. All else being equal, we find
that DLPNO-CCSD(T1) for these systems requires about
twice the CPU time for DLPNO-CCSD(T0): the fairly high I/
O bandwidth required for (T1) required running on nodes
with high-speed local SSD (solid state drive) scratch disk
volumes. For the problem at hand, it may be said that neither
approaches require outlandish computational resourcesand
that the difference between them is still small enough to justify
“going the extra mile” for superior accuracy.
The CPU requirements stand in stark contrast to those for

the corresponding canonical calculations, which are almost 2
orders of magnitude larger: as said aboverunning massively
parallel on eight 16-core machines with a fully nonblocking
InfiniBand interconnect and local SSD (solid state disk)
scratch on all machines, canonical CCSD(T) on 28M1B
required about 1 week total wall clock time. Moreover, adding
just one more pyrrole ring into the macrocycle already
quadruples the required time for the canonical calculation,
while the difference is barely noticeable in the DLPNO or
PNO calculations. Formally, canonical CCSD(T) asymptoti-
cally scales with system size n as O(n7), while DLPNO-
CCSD(T) and PNO-LCCSD(T) asymptotically scale linearly.
As part of the present work, we have also considered the

following diagnostics for type A static correlation38 (a.k.a. left−
right static correlation,39 absolute near-degeneracy correla-
tion): D1 [defined as40 λmax(T1·T1

†)1/2 where T1 is the single
excitations amplitude vector], 1 − C0

2 (i.e., one minus the

squared coefficient of the reference determinant in a CASSCF
calculation with an appropriate active space), the M diagnostic
proposed by Truhlar and co-workers41 (which for closed-shell
systems reduces to 1 − nHOMO/[2 + (nLUMO/2)]), and Matito’s
IND diagnostic42 based on natural orbital occupations. A fairly
recent review of static correlation diagnostics can be found in
ref 43. Additional diagnostics for the considered systems are
discussed in ref 6. As shown there, FOD analysis44 (as
expected) indicates that static correlation is smeared out over
the entire molecule. (As an aside, using the same (12,12)
active space in all CASSCF calculations for the purpose of
calculating 1 − C0

2 sidesteps the issue pointed out by a
reviewer that 1 − C0

2 is not size-extensive. A workaround to
bring 1 − C0

2 on the same scale for different numbers of
correlated electrons was pointed out in endnote 31 of the work
of Via-Nadal et al.:45 tt effectively amounts to replacing x ≡ 1
− C0

2 by 1 − (1 − x)1/a where a ≡ Nval/Nval,ref or the number
of valence electrons divided by the number for a reference
system. If x is not too large, MacLaurin expansion in x yields

− − = + − + ≈x x a a x a x a1 (1 ) / ( 1) /2 ... /a1/ 2 2 a n d

hence − − ≈ −x C N N1 (1 ) (1 ) /a1/
0

2
val,ref val.

Finally, in order to verify that SCF orbitals for all structures
in all codes correspond to global minima on the S = 0
Hartree−Fock energy hypersurface, relative energies at the
SCF level were compared to those obtained in the same basis
set using stable = (int,opt) in Gaussian 1646 and found to agree
to 0.01 kcal mol−1 or better. Some of the Möbius structures, in
particular, required care to ensure convergence to the correct
state with the other codes: in the most refractory case, 32M2b,
we resorted to HF/STO-3G on the quadruple cation, used as

Table 1. Post-CCSD(T) Corrections (kcal mol−1) for the Relative Energies of [24] N-Fused Pentaphyrin, [28]Hexaphyrin, and
[32]Heptaphyrin structuresa

system CCSD(T) ICE-CI CCSD(T) ICE-CI CCSD(T) ICE-CI CCSD(T) ICE-CI CCSD(T)

active space all orbitals (12,12) (12,12) (18,18) (18,18) (24,24) (24,24) (30,30) (30,30)
24Ha 9.12 6.79 6.82 −0.53 −0.49 4.84 4.84 4.49 4.36
24Hb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24M 6.06 8.12 8.24 4.89 4.96 7.90 7.92 8.40 8.31
24TS1 9.05 6.70 6.71 3.29 3.28 6.68 6.62 6.53 6.38
24TS2 4.87 6.00 6.04 3.08 3.09 5.86 5.83 6.39 6.27
28H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28M −0.73 10.88 11.12 8.91 9.09 9.28 9.43 7.62 7.56
28M1A 0.46 12.60 12.87 9.91 10.12 10.39 10.54 8.55 8.48
28M1B 1.82 13.57 13.82 11.67 11.86 10.98 11.09 11.38 11.34
28F −0.38 7.41 7.38 9.18 9.12 5.40 5.28 4.70 4.45
28TS1A 6.33 13.75 13.77 12.24 12.16 10.82 10.66 14.06 13.92
28TS1B 2.86 9.14 9.12 10.02 9.97 8.72 8.60 6.56 6.16
28TS2A 6.87 26.41 26.68 28.09 28.31 24.60 24.74 22.21 22.05
28TS2B 9.89 30.33 30.57 31.42 31.62 28.31 28.44 26.44 26.30
28TS3 5.17 15.03 15.02 14.55 14.44 13.31 13.15 12.17 11.84
32F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
32Ma 16.81 18.35 18.63 10.75 10.99 13.47 13.71 12.55 12.62
32Mb 16.74 18.46 18.72 13.85 14.15 15.71 16.03 17.48 17.98
32H 34.60 22.91 22.90 24.75 24.74 24.18 24.17 27.23 27.49
32TS1 17.49 16.64 16.64 10.69 10.67 11.23 11.22 14.13 14.39
32TS2 33.79 24.28 24.22 24.71 24.65 25.40 25.37 27.58 27.74
RMSDa - 0.15 0.14 0.13 0.21
MUEa - 0.10 0.10 0.09 0.16

aSee Figure 1 for the structural notation. RMSD and MUE (in kcal mol−1) for the relative energies computed with ICE-CI and CCSD(T) methods
for different orbital active spaces. Orbitals in the (n,n) active space are the n/2 highest occupied molecular orbitals and the n/2 lowest unoccupied
MOs, selected from HF level orbital energies.
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initial guess for HF/STO-3G on the neutral species, finally
used in turn as initial guess for HF/cc-pVDZ.

■ RESULTS AND DISCUSSION

Adequacy of the Canonical Reference Level. As
mentioned in the Introduction, the largest basis set for
which we were able to obtain fully canonical CCSD(T)
answers for comparison was the cc-pVDZ (no p on hydrogen)
basis set.47 The mind wonders whether, at least for the
problem at hand, this level of theory is sufficiently close to the
FCI/CBS (full configuration interaction/complete basis set)
limit to be adequate as a canonical reference point.
Concerning the first aspect, i.e., post-CCSD(T) correlation

effects, the size of the system clearly precludes carrying out
CCSDT(Q) let alone CCSDTQ calculations. However, for
limited orbital active spaces, we were able to carry out ICE-CI
(iterative configuration expansion−configuration interaction
ICE-CI is effectively ORCA’s implementation of Malrieu’s
CIPSI algorithm48) calculations using ORCA and compare
them to CCSD(T) in the same orbital space. The result, for
active spaces ranging from 12-electrons-in-12-orbitals, or
(12,12) for short, to (30,30) are given in Table 1. Clearly, at
least for the property of interest, post-CCSD(T) corrections
are surprisingly small. This may, of course, be the result of a
fortunate error compensation between neglect of higher-order
iterative triple substitution effects CCSDT-CCSD(T) and
neglect of connected quadruple excitations. Similar cancella-
tions are seen in the atomization energies of some small
molecules with multireference character, e.g., C2.

49−51

Concerning the second aspect, i.e., basis set incompleteness,
we were able to carry out canonical explicitly correlated52,53

RI-MP2-F12 calculations with the cc-pVDZ-F12 basis set54

and associated auxiliary basis sets55 for all species. For the
largest macrocycle (i.e., the [32]heptaphyrin), such calcu-
lations required about 10TB of scratch space each, which we
“jury-rigged” by cross-mounting SSD scratch directories from
other nodes through NFS-over-InfiniBand. Typically (see, e.g.,
reviews on F12 theory52,53), F12 calculations with appropriate
basis sets gain about 2−3 “zetas” in basis set convergence.
Hence, the MP2-F12/cc-pVDZ-F12 energetics ought to be
comparable or superior to MP2/cc-pVQZ in terms of
convergence.
We can easily verify this in the present context, of course, by

carrying out RI-MP2/cc-pVTZ and cc-pVQZ calculations and
extrapolating to the complete basis set limit using the Helgaker
formula.56 In this event, MP2/cc-pV{T,Q}Z relative energies
thus obtained deviate from their MP2-F12/cc-pVDZ-F12
counterparts by less than 0.1 kcal mol−1 RMSD. The basis
set extension effect itself, from MP2/cc-pVDZ, is just 0.9 kcal
mol−1 RMSD in both cases. We may thus safely assume that
the coupling term C in the equation below is negligible:

=

+ − +

CCSD(T)/LARGE CCSD(T)/SMALL

MP2/LARGE MP2/SMALL C (1)

= [ ‐ ]

− [ ‐ ]

C CCSD(T) MP2 /LARGE

CCSD(T) MP2 /SMALL (2)

and thus, that we can make the familiar “high-level correction”
(HLC) approximation:

≈ [ ‐ ] +

= +

CCSD(T)/LARGE

CCSD(T) MP2 /SMALL MP2/LARGE

HLC/SMALL MP2/LARGE (3)

(For a discussion of one-particle/“basis set” vs n-particle
space/“electron correlation method” coupling, see ref 57.) Our
best estimates for the relative energies of the topology
interconversions in our expanded porphyrin database are
collected in Table 2. For the purpose of assessing localized
methods against canonical results, however, the above gives us
confidence that CCSD(T)/cc-pVDZ is a reasonable starting
point.

Initial Assessment of the Localized vs Canonical
Methods. For heptaphyrin, each canonical CCSD(T)
required about a week on eight 16-core Intel Haswell nodes,
with MOLPRO running a 3-level parallelism of nodes,
processes, and [in (T) and LAPACK] OpenMP threads. In
contrast, the corresponding localized calculations took f rom a few
hours to 1 day on just a single node. A comparison of various
approximate PNO-CCSD(T) relative energies with the
canonical reference values is given in Table 3, and the box-
and-whisker plots for different localized approaches are shown
in Figure 2.
First of all, DLPNO-CCSD(T1) with tight PNO settings

appears to be the overall best performer among all PNO-type
approaches, having an RMSD of only 1.43 kcal mol−1 from the
reference. Resorting to default PNO settings raises the error by
only ∼0.4 kcal mol−1, while reducing wall time by about 75−
80%, and may therefore be a desirable option in cases where
tight PNO settings become too computationally demanding.

Table 2. Our Best Estimates for the Relative Isomer
Energies Considered in This Worka

system
CCSD(T)/
cc-pVDZ

MP2/cc-pV{T,Q}Z +
[CCSD(T)-MP2]/cc-

pVDZ

MP2-F12/cc-pVDZ-F12
+ [CCSD(T)-MP2]/cc-

pVDZ

24Ha 9.12 7.92 8.06
24Hb 0.00 0.00 0.00
24M 6.06 6.38 6.48
24TS1 9.05 8.93 9.01
24TS2 4.87 5.12 5.18
28H 0.00 0.00 0.00
28M −0.73 −1.77 −1.75
28M1A 0.46 0.28 0.28
28M1B 1.82 1.39 1.39
28F −0.38 0.16 −0.08
28TS1A 6.33 4.65 4.58
28TS1B 2.86 2.00 1.92
28TS2A 6.87 6.10 6.02
28TS2B 9.89 8.88 8.79
28TS3 5.17 4.50 4.36
32F 0.00 0.00 0.00
32Ma 16.81 15.45 15.65
32Mb 16.74 16.59 16.52
32H 34.60 32.59 32.72
32TS1 17.49 16.08 16.16
32TS2 33.79 32.33 32.36

aThe latter were obtained at the MP2/cc-pV{T,Q}Z + [CCSD(T)-
MP2]/cc-pVDZ and MP2-F12/cc-pVDZ-F12 + [CCSD(T)-MP2]/
cc-pVDZ levels of theory, with p functions on H omitted. All entries
are in kcal mol−1.
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Table 3. Canonical CCSD(T) Relative Energies (kcal mol−1) and Errors with Various Localized Orbital CCSD(T)
Approximations for the Relative Energies of [24] N-Fused Pentaphyrin, [28]Hexaphyrin, and [32]Heptaphyrin Structures (F =
figure-eight, M = Möbius, H = Hückel; TS = transition states)a

aRMSDs from canonical results in the same basis set (kcal mol−1). Energy differences are heat-mapped on a continuous gradient from blue (most
negative value) via white (zero) to red (most positive value); diagnostics are heat-mapped green (low) via orange to red (high) on a continuous
percentile gradient for each column. bNormalPNO. ctightPNO. ddefaultDomain. etightDomain. flcorthr = normal. glcorthr = tight. hlcorthr = tight,
wpairtol = 1 × 10−6. iTaken from Table 2 in ref 6. (1 − C0

2) was obtained at the CASSCF(12,12) level for all species, M and IND at the ICE-
FCI(30/30) level, and D1 at the CCSD/cc-pVDZ(no p functions on H) level.

Figure 2. Box-and-whisker plots for various localized orbital CCSD(T) approximations, showing the error spread for the expanded porphyrin
database with respect to canonical CCSD(T) energies. The RMSDs (in kcal mol−1) are also displayed below each method.
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DLPNO-CCSD(T0) does not measure up to the former
schemeexhibiting 2.14 and 2.27 kcal mol−1 RMSDs from the
canonical energies using tight and default PNO settings,
respectively. Indeed, the difference associated with the latter
settings is not as large as in the (T1) case−the domain
improvement “drowns in the noise” of the T0 approximation,
so to speak.
PNO-LCCSD(T1) seemingly offers the least-satisfactory

performance among this class of localized methods, deviating
from the reference values by 3.66 and 2.73 kcal mol−1 using
default and tight PNO settings, respectively. The latter PNO
settings are clearly superior in this case.
LNO-CCSD(T) performs exceptionally well compared to

the above PNO-type approacheshaving an RMSD of 1.47
kcal mol−1 with default settings (lcorthr = Normal) and just
0.74 kcal mol−1 with (lcorthr = Tight). Further tightening
thresholds to lcorthr = vtight approximately quadruples the
total CPU time; fortunately, we found that just tightening
wpairtol from 3 × 10−6 to 1 × 10−6, while leaving the
remaining parameters at their lcorthr = Tight values, recovered
most of the improvement at minimal additional cost. This
setting is denoted as “Tight+” in Tables 3−7. RMSD from
canonical CCSD(T) for Tight+ was found to be just 0.42 kcal
mol−1.
As can be seen in Table 3 and Figure 3 for the expanded

porphyrin database, deviations of DLPNO and PNO from

canonical relative energies are found to be statistically
correlated with several diagnostics for the type A static
correlation (i.e., absolute near-degeneracy). Indeed, the largest
values for all four diagnostics, on the one hand, and the largest
deviations from canonical energetics, on the other hand, are
specifically observed for the Möbius structures and for two
Möbius-like transition states (28TS2A and 28TS2B). The M
diagnostic, in particular, turns out to be a fair predictor for the
energy difference between the localized orbital approaches and
canonical CCSD(T) method, with R2 = 0.89 for DLPNO-
CCSD(T1) (Figure 3a) and R2 = 0.96 for PNO-LCCSD(T1)
(Figure 3b), both of them with Tight settings.
We found it informative, then, to break down error statistics

between Möbius(-like) structures vs the Hückel and twisted-
Hückel structures. At the bottom of Table 3, we then see that,
for the non-Möbius structures, all three PNO methods can
reach about 0.5 kcal mol−1 RMSD on Tight settings and about
1 kcal mol−1 on regular settings. However, for the Möbius
structures, much more pronounced errors are seen.
A similar discrepancy can be observed for the DLPNO

methods. Indeed, for the non-Möbius structures, RMSD is just
0.7 kcal mol−1 for NormalPNO and 0.4 kcal mol−1 for
TightPNO, while these figures jump up to 2 kcal mol−1 for
DLPNO-CCSD(T1) with TightPNO and to 3 kcal mol−1 for
the other options, when considering only the Möbius-type
structures. Also, while T0 and T1 are essentially indistinguish-

Table 4. Canonical MP2 Relative Energies (kcal mol−1) and Errors with Various Localized Orbital MP2 Approximations for
the Relative Energies of the Expanded Porphyrins under Considerationa

aRMSDs from canonical results in the same basis set likewise in kcal mol−1. Energy differences are heat-mapped on a continuous gradient from blue
(most negative value) via white (zero) to red (most positive value). bNormalPNO (ORCA). ctightPNO (ORCA). ddefaultDomain (MOLPRO).
etightDomain (MOLPRO). flcorthr = normal (MRCC). glcorthr = tight. hlcorthr = tight, wpairtol = 1 × 10−6.
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able in quality for the non-Möbius systems, T1 is markedly
superior for the Möbius ones.
The deficiencies of the T0 approximation for systems with

some static correlation are of course not unique to the
macrocycles at hand. In the original DLPNO-CCSD(T1)
paper,29 it was shown that, for small-gap systems, the (T0)
approximation breaks down and relative energies show
substantial deviations from the parent canonical CCSD(T)
results. Relatedly, we point to the work of Iron and Janes on
metal−organic barrier heights (MOBH35),58,59 where a
comparatively small, yet significant, difference of almost 1
kcal mol−1 RMSD was found between DLPNO-CCSD(T0)
and DLPNO-CCSD(T1) barrier heights.59 Efremenko and
Martin60 found more significant differences for the mecha-
nisms of Ru(II) and Ru(III) catalyzed hydroarylation and
oxidative coupling.61

While the Möbius RMSD does get worse from (T1) to (T0),
it is a difference of degree and not of kind. Switching from
“Normal” to “Tight” criteria actually has the largest impact for
LNO-CCSD(T), where it cuts the remaining error for the
Möbius structures by over half; a significant improvement is
also seen for DLPNO-CCSD(T1). In stark contrast, while the
LNO-CCSD(T) approach with Normal criteria does exhibit
nearly twice the RMSD (1.9 kcal mol−1) for Möbius as for
non-Möbius (1.0 kcal mol−1), for Tight and especially Tight+
criteria, this difference essentially vanishes. Indeed, for Tight+
all errors are below 1 kcal mol−1.
Component Breakdown of Localized vs Canonical

Methods. Let us now decompose the relative canonical
CCSD(T) energies into their MP2 and CCSD building blocks,

in order to get deeper insights regarding the relationship
between the canonical and PNO-based methods considered
above.
As can be seen in Table 4, PNO-LMP2 with default PNO

settings performs rather poorly, having a RMSD of no less than
2.6 kcal mol−1 from the canonical reference values. Resorting
to tight PNO domains does lead to an improvement, reducing
the error by more than half (1.2 kcal mol−1 RMSD). Like for
the complete CCSD(T) energetics, it can be seen that the
Möbius structures are responsible for most of the observed
errorsRMSD = 3.7 (Normal) and 1.8 (Tight) kcal mol−1

versus, for the non-Möbius structures, 1.0 and 0.3 kcal mol−1,
respectively.
ORCA’s DLPNO-MP2, on the other hand, has no such large

discrepancy between Möbius and non-Möbius systems. Overall
RMSD = 0.33 kcal mol−1 (NormalPNO) and 0.14 kcal mol−1

(TightPNO), the latter functionally equivalent in quality to the
reference values.
For LNO-MP2, we do see a substantial difference between

Möbius and non-Möbius structures at default settings, but this
is much reduced for Tight and especially Tight+ settings.
Overall, RMSD for Tight settings (0.57 kcal mol−1) is still
almost double that for NormalPNO DLPNO-MP2 (0.33 kcal
mol−1), while Tight+ slightly reduces the statistical errors to
RMSD = 0.26 kcal mol−1.
We shall now move on to the CCSD contributions (Table

5). For LNO-CCSD(T), we have followed the recommenda-
tion from Nagy et al.35 to split the weak-pair MP2 corrections
evenly between CCSD and (T). It can be seen that DLPNO-
CCSD gets closer to canonical CCSD in the same basis set
compared to PNO-LCCSD; even DLPNO-CCSD with
DefaultPNO settings, at RMSD = 1.1 kcal mol−1, outperforms
PNO-LCCSD with TightDomain settings (1.3 kcal mol−1),
and with default domain settings, RMSD for PNO-LCCSD
even increases to 1.9 kcal mol−1. For the non-Möbius systems,
DLPNO-CCSD and PNO-LCCSD are virtually indistinguish-
able in performance; for the Möbius structures, PNO-LCCSD
exhibits more significant errors (2.7 and 1.9 kcal mol−1 RMSD
for default and tight settings, respectively), whereas DLPNO-
CCSD seems to offer a more satisfying performance (1.3 and
0.8 kcal mol−1).
LNO-CCSD with Tight+ settings, at RMSD = 0.27 kcal

mol−1, is the best performer; RMSD climbs to 0.46 kcal mol−1

for tight settings, still superior to DLPNO-CCSD TightPNO.
Here too, we observe a performance difference between
Möbius and non-Möbius structures.
What about the (T) contribution when considered in

isolation? As we have seen for the full CCSD(T) relative
energies, there is little difference between DLPNO-(T0) and
DLPNO-(T1) for the non-Möbius structures, and this applies
for both NormalPNO and TightPNO. Nevertheless, for the
Möbius structures, the difference is quite pronounced with
DLPNO-(T1) TightPNO having only about one-half the error
(0.9 kcal mol−1) of DLPNO-(T0) TightPNO and about one-
third the error of DLPNO-(T0) NormalPNO. LNO-CCSD(T)
can, however, match the best result even with normal settings,
while on TightPNO RMSD drops to just 0.3 kcal mol−1, with
no noticeable difference between Möbius and non-Möbius.
Our attempts to carry out PNO-LCCSD(T)-F12/cc-pVDZ-

F12 calculations30,62 on these extended π-systems met with
failure for technical reasons. Presumably, if we were able to run
them to completion, they would be much closer to the

Table 5. Canonical CCSD Relative Energies (kcal mol−1)
and Errors with Various Localized Orbital CCSD
Approximations for the Relative Energies of the Expanded
Porphyrins under Considerationa

aRMSDs from canonical results in the same basis set likewise in kcal
mol−1. Energy differences are heat-mapped on a continuous gradient
from blue (most negative value) via white (zero) to red (most positive
value). bNormalPNO (ORCA). ctightPNO (ORCA). ddefaultDo-
main (MOLPRO). etightDomain (MOLPRO). flcorthr = normal
(MRCC). glcorthr = tight. hlcorthr = tight, wpairtol = 1 × 10−6.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00297
J. Chem. Theory Comput. 2020, 16, 3641−3653

3648

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00297?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00297?fig=tbl5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00297?ref=pdf


canonical basis set limit than PNO-LCCSD(T) is to its
canonical counterpart.
This comparatively weak basis set sensitivity beyond cc-

pVDZ (Table 2) indicates that thermodynamic equilibria in
the present systems are primarily driven by nondynamical
correlation effectswhich are well-known (e.g., ref 49) to
converge fairly rapidly with the basis setrather than the
slowly converging dynamical correlation contributions. In such
a scenario, especially for still larger systems like octaphyrins or
decaphyrins, it may be attractive not just to combine MP2 in a
large basis set with a “high-level correction”, i.e., the aggregate
post-MP2 correction [CCSD(T)-MP2] from a small basis set,
but to obtain the latter using a DLPNO, PNO-L, or LNO
approach to reduce the scaling with system size.
For the HLCs of non-Möbius structures, all methods can

comfortably meet the 1 kcal mol−1 threshold (see Table 7);
DLPNO with tight settings can even reach down to 0.4 kcal
mol−1, and PNO-LCCSD(T) and LNO-CCSD(T) on their
respective tight settings can go as low as 0.2 kcal mol−1 RMSD.
It is again the Möbius structures that are the most problematic
for DLPNO-CCSD(Tx) (x = 0,1) and PNO-LCCSD(T),
while LNO-CCSD(T) is much more resilient to them. Even on
default settings, LNO-CCSD(T) achieves RMSD = 0.7 kcal
mol−1 overall, which drops to 0.3 kcal mol−1 on tight settings.
PNO-LCCSD(T) on default settings and DLPNO-CCSD(T1)
on TightPNO settings both come close to the 1 kcal mol−1

mark overall. Particularly, the Möbius heptaphyrins throw a
spanner in the works for DLPNO and PNO, which is much
less the case for LNO on default settings, while no error
exceeds 0.6 kcal mol−1 for LNO on tight settings.

For the entire database of expanded porphyrins, we find an
RMSD of 1.2−1.3 kcal mol−1 both for PNO-LCCSD(T) on
Normal settings and for DLPNO-CCSD(T1) on Tight settings.
The above results do make a good case for combining a

localized HLCfor which either PNO-CCSD(T) Normal or
DLPNO-CCSD(T1) Tight, but especially LNO-CCSD(T),
would fit the billwith a separate canonical MP2 calculation
in a larger basis setbe it canonical RI-MP2 or DLPNO-MP2.
For larger systems, eventually the O(N5) scaling of RI-MP2
would dominate the CPU time, but we have seen in Table 4
that especially DLPNO-MP2 with TightPNO can closely
emulate canonical MP2 energetics. Another approach toward
converging the MP2 part would be to carry out PNO-LMP2-
F12 calculations.63

■ CONCLUSIONS

Localized natural orbital approaches are a very promising new
alternative to both wave function methods and density
functional theory. They, in principle, offer the gentle system
size scaling of DFT without the empiricism (of accuracy)
involved in the exchange-correlation functionalat the
expense of introducing a measure of “empiricism of precision”
through the various cutoffs introduced.
For systems with predominantly dynamical correlation,

approaches like DLPNO-CCSD(T1) and PNO-LCCSD(T)
seem to track canonical CCSD(T) results quite closely (see
also the very recent paper64 by Liakos, Guo, and Neese on the
GMTKN55 benchmark suite65), while for truly severe static
correlation, both canonical CCSD(T) and its localized
approximations may be beyond help. Our results concern the

Table 6. Canonical (T) Relative Energies (kcal mol−1) and Errors with Various Localized Orbital (T) Approximations for the
Relative Energies of the Expanded Porphyrins under Considerationa

aRMSDs from canonical results in the same basis set likewise in kcal mol−1. Energy differences are heat-mapped on a continuous gradient from blue
(most negative value) via white (zero) to red (most positive value. bNormalPNO (ORCA). ctightPNO (ORCA). ddefaultDomain (MOLPRO).
etightDomain (MOLPRO). fNormal settings (MRCC). gTight settings (MRCC).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00297
J. Chem. Theory Comput. 2020, 16, 3641−3653

3649

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00297?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00297?fig=tbl6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00297?ref=pdf


intermediate regime, i.e., moderate static correlation: we found
not only that discrepancies between canonical CCSD(T) and
DLPNO-CCSD(T1) or PNO-LCCSD(T) can reach several
kcal mol−1 for isomerization energies of chemical interest but
that their magnitude is roughly proportional to several
diagnostics for Type A static correlation. These problems
can be somewhat mitigated by combining HLCs (i.e.,
CCSD(T)-MP2 differences), from the localized methods

with more rigorous MP2 energetics, which are comparatively
inexpensive to obtain. The LNO-CCSD(T) approach of Nagy
and Kallay offers an alternative that, at least for the considered
macrocycles, is more resilient to static correlation, especially
with tight cutoffs, and can consistently approach the canonical
values to better than 1 kcal mol−1. It achieves this feat at the
expense of CPU times being more dependent on the degree of
static correlation. For the present problem, Möbius structures

Table 7. [CCSD(T)-MP2] Relative Energies (kcal mol−1) and Errors with Various Localized Orbital HLC Approximations for
the Relative Energies of the Expanded Porphyrins under Considerationa

aRMSDs from canonical results in the same basis set likewise in kcal mol−1. Energy differences are heat-mapped on a continuous gradient from blue
(most negative value) via white (zero) to red (most positive value). bNormalPNO (ORCA). ctightPNO (ORCA). ddefaultDomain (MOLPRO).
etightDomain (MOLPRO). flcorthr = normal (MRCC). glcorthr = tight. hlcorthr = tight, wpairtol = 1 × 10−6.

Figure 3. Relationship between the energy differences computed for various localized orbital CCSD(T) approximations and the canonical
CCSD(T) method and the M diagnostic for static correlation: a) For DLPNO-CCSD(T1) with Tight settings and b) For PNO-LCCSD(T1) with
Tight settings. The Möbius structures are highlighted in red.
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required about four times as much CPU time as their Hückel
and figure-eight isomers, while the Möbius:Hückel ratio is only
about 2:1 for the DLPNO and PNO approaches. As in so
many scientific and nonscientific contexts, the TANSTAAFL
principle66 applies (“there ain’t no such thing as a free lunch”).
Finally, since the expanded porphyrins considered here and

in ref 6 appear to be a useful test for resilience of quantum
chemical approaches to static correlation, we propose the
present POLYPYR21 data set as a benchmark for this purpose.
The reference geometries, obtained at the B3LYP/6-311G-
(d,p) level67−69 in ref 6, are available for download as
Supporting Information to the present paper.
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Aromaticity. Angew. Chem., Int. Ed. 2008, 47, 681−684.
(10) Step̧ien,́ M.; Szyszko, B.; Latos-Grazẏnśki, L. Three-Level
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■ NOTE ADDED IN PROOF
According to LNO-CCSD(T) vtight calculations on 32F,
32Ma, and 32Mb (P. Nagy, personal communication), both

32Ma and 32Mb are 17.6 kcal/mol above 32H, i.e., at 0.8 and
0.9 kcal/mol, respectively, above the canonical values, nearly
identical to the more economical Tight+ results of 0.8 and 0.7
kcal/mol, respectively.
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