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Abstract

Genome wide association studies show there is a genetic component to severe COVID-19.

We find evidence that the genome-wide genetic association signal with severe COVID-19 is

correlated with that of systemic lupus erythematosus (SLE), having formally tested this

using genetic correlation analysis by LD score regression. To identify the shared associated

loci and gain insight into the shared genetic effects, using summary level data we performed

meta-analyses, a local genetic correlation analysis and fine-mapping using stepwise regres-

sion and functional annotation. This identified multiple loci shared between the two traits,

some of which exert opposing effects. The locus with most evidence of shared association

is TYK2, a gene critical to the type I interferon pathway, where the local genetic correlation

is negative. Another shared locus is CLEC1A, where the direction of effects is aligned, that

encodes a lectin involved in cell signaling, and the anti-fungal immune response. Our analy-

ses suggest that several loci with reciprocal effects between the two traits have a role in the

defense response pathway, adding to the evidence that SLE risk alleles are protective

against infection.

Author summary

We observed a correlation between the genetic associations with severe COVID-19 and

those with systemic lupus erythematosus (SLE, Lupus), and aimed to discover which

genetic loci were shared by these diseases and what biological processes were involved.

This resulted in the discovery of several genetic loci, some of which had alleles that were

risk for both diseases and some of which were risk for severe COVID-19 yet protective for

SLE. The locus with most evidence of shared association (TYK2) is involved in interferon

production, a process that is important in response to viral infection and known to be dys-

regulated in SLE patients. Other shared associated loci contained genes also involved in
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the defense response and the immune system signaling. These results add to the growing

evidence that there are alleles in the human genome that provide protection against viral

infection yet are risk for autoimmune disease.

Introduction

The outbreak of COVID-19 together with modern genotyping technologies has given us the

unprecedented opportunity to investigate the genetics of response to viral infection. Recent

GWAS of severe COVID-19 have shown that there is a genetic component to the variability of

the clinical outcome [1]. Some of the genetic loci identified unsurprisingly point to pathways

involved in the host immune response. Therefore, a comparison between the genetics of severe

COVID-19 and autoimmune disease (AID) may be enlightening. In this study we compare the

genetics of severe COVID-19 with those of systemic lupus erythematosus (SLE). The rationale

for selecting SLE is twofold: some SLE risk alleles act to augment the interferon response (e.g.

IRF5, IRF7, CXORF21-TASL); other lupus susceptibility genes act in the intracellular viral

sensing (e.g. IFIH1, TLR7, RNASEH2C) pathway.

Results

Genetic correlation

To investigate the shared genetics between SLE and severe COVID-19, we ran a genome-wide

genetic correlation analysis between ancestry matched SLE and severe COVID-19 association

data. The SLE data comprised a meta-analysis of three European GWASs [2–4] (Ncases = 5,734,

Ncontrols = 11,609, Table A in S1 Text) and for the COVID-19 we used the GenOMICC release

1 European data [1] (critically ill patients with COVID-19 vs. ancestry-matched control indi-

viduals from UK Biobank, Ncases = 1,676, Ncontrols = 8,380, Table A in S1 Text). We found the

two traits to be genetically correlated (rg = 0.56, s.e. = 0.16, p = 3 x 10−04). To identify which

regions were driving this correlation we ran a local genetic correlation analysis that included

Immunochip European data [5] in the SLE meta-analysis (additional Ncases = 3,568, Ncontrols =

11,245, Table A in S1 Text). This identified multiple loci with both positive and negative cor-

relation of which the TYK2 locus was the most significantly correlated (p-value = 1 x 10−04,

Table B in S1 Text). This gene encodes a kinase that regulates transduction of IFN-I signaling.

An overview of GWAS data used in the study is illustrated in Fig 1 and Table A in S1 Text.

Shared genetic associations: Severe COVID-19—SLE meta-analyses

To search for shared associations between SLE and severe COVID-19, we used summary asso-

ciation data from the large SLE meta-analysis (three SLE European GWASs plus immuno-

chip), and for severe COVID-19 we used summary association data from the COVID-19 Host

Genetics initiative (COVID-19 hg) [6] release 6 data (GenOMICC study is a subset of these

data) association results of very severe respiratory confirmed COVID-19 vs. population

(A2_ALL_leave_23andme, Ncases = 8,779, Ncontrols = 1,001,875, Table A in S1 Text).

We checked published associations in each trait to our summary association data for the

other trait, and validated by coloclisation analysis (coloc [7]), to identify potential shared risk

loci (see Material and Methods). This found evidence of shared association at TYK2. Our colo-

calization analysis of all loci that had at least one SNP with p< 1 x 10−05 in both diseases (see

Material and Methods) identified TYK2 and CLEC1A, a C-type lectin that is a negative regula-

tor of dendritic cells.
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We performed a cross-trait meta-analysis that included an analysis to highlight opposing

effects (see Material and Methods, overlapped NSNPs = 1,559,546). Manhattan plots from the

meta-analyses can be seen in Fig 2. There were 15 loci that had genome-wide significant evi-

dence of (p-values < 5 x 10−08, Table 1), the very significant p-values at the TYK2 locus in the

lower plot (Fig 2) highlights the negative correlation at this locus. There were six association

signals in five of these loci with colocalization probabilities (PPH4) greater than 0.8 and three

of these, implicating CLEC1A, TYK2 and PDE4A, had PPH4 > 0.95 (Table 1). The TYK2-

PDE4A locus had opposing direction of effect across the two diseases and the other 4 loci

(CLEC1A, IL12B, PLCL1-RFTN2, and MIR146A) had agreement in direction of effect. Though

genome-wide significant evidence were found in the other 10 loci, there was relatively weak

evidence for colocalization. Two well-known SLE associated loci, IRF8 and TNFSF4, showed

evidence of significant association in the opposing effect meta-analysis with some evidence for

colocalisation of shared signals at both loci (IRF8 PPH4 = 0.36, TNFSF4 PPH4 = 0.37; Tables C

and D and Fig A in S1 Text). LocusZoom plots for all other loci can be seen in Figs B-L in S1

Text. A pathway analysis showed that there was an enrichment of genes in defense response,

cytokine-mediated signaling and type I interferon signaling pathway with over half the genes

being included in one or more pathways (Table E and Fig M in S1 Text).

Tyrosine kinase 2 (TYK2)

The TYK2 locus has previously been found to be associated with SLE [4,8–12] and severe

COVID-19 [1]. There was significant negative local genetic correlation (p-value = 1 x 10−04, ρ-

HESS, overlapped NSNP = 2,544) at TYK2 between the two diseases. In a stepwise regression

approach using summary meta-analysis data for both traits, we found a highly significant over-

lap between genetic association signals (overlapped NSNP = 4,720); importantly, the SLE risk

alleles were protective against severe COVID-19. The locus-wide association signals in

COVID-19 and SLE are compared in Fig 3A. There were two independent signals that coloca-

lized across traits (posterior probabilities of coloc = 0.991 and 0.993), referred to arbitrarily as

signal-A and signal-B in Table 2. The top two SNPs independently associated with SLE

Fig 1. Overview of GWAS data used in the study.

https://doi.org/10.1371/journal.pgen.1010253.g001
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(rs34536443 and rs34725611) are in high LD (r2 = 0.88 and 0.97 respectively), with the two

SNPs we found to be independently associated with severe COVID-19 (rs74956615 and

rs11085727) being reported previously in a COVID-19 GWAS [1]. For a full set of association

results for these SNPs across traits see Table F in S1 Text, where it is shown that for all SNPs

the effects have reciprocal directions of effect in SLE and COVID-19 outcome. In both traits,

the relatively rare variants rs34536443/rs74956615 were associated independently from the

more common variants rs34725611/rs11085727 (see conditional results bJ and pJ in Table 2A

and 2B; r2 = 0.06 and 0.09 between rs34536443 and rs34725611 and between rs74956615 and

rs11085727 respectively in the EUR SLE data, r2 = 0.08 and 0.07 in the 1000 genomes EUR

data).

The lead SLE SNP rs34536443 for signal-A is a missense variant (Table 2C) and homozy-

gosity at the SLE protective allele (C) drives a near complete loss of TYK2 function and conse-

quently impairs type I IFN, IL-12 and IL-23 signaling [13]. The genetic association in signal-A,

which was tagged by rs34536443/rs74956615, also colocalizes with the cis eQTL signal for

PDE4A in artery tibial in GTEx v8 data (Fig 4A, PPH4 > 0.99 for colocalisation between the

two traits and with the eQTL signal) where the severe COVID-19 risk allele, that is protective

for SLE, is associated with reduced expression (Table G in S1 Text).

Fig 2. Cross-trait meta-analysis log10 p-values. Upper plot has results from a standard inverse variance meta-analysis. The lower plot has results

form a meta-analysis when reversing the severe COVID-19 direction of effect. The MHC extended region (chr6: 24–36 Mb) was removed. Signals

that the lead SNP has p-values< 1 x 10−05 were annotated by the closest gene names according to base pair position.

https://doi.org/10.1371/journal.pgen.1010253.g002
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Table 1. Association results for lead SNPs in the cross-trait meta-analysis/inverse meta-analysis of severe COVID-19 and SLE data. Posterior possibilities (PPH4) of

colocalisation between signals were estimated with region ± 1 Mb of lead SNPs, if there are multiple independent signals the highest PPH4 of colocalisation was shown. Pre-

dicted functional genes were inferred by lead SNP in the region and its LD with coding variants, eQTL data (GTEx v8 and eQTLGen), ENCODE ChIP-seq marker data,

GeneHancer interactions data, and published functional studies.

Signals showing aligned effect in a cross-trait meta-analysis

SNP Position A1 meta SLE severe COVID-19 PPH4 predicted functional

genes in SLE

predicted functional genes in

COVID-19OR (95%

CI)

P OR (95%

CI)

P OR (95%

CI)

P

rs7960611 12:10230416 G 1.14

(1.09–

1.19)

8.02 x

10−09
1.11

(1.05–

1.17)

2.76 x

10−04
1.17

(1.10–

1.25)

3.31 x

10−07
95.4% CLEC1A(1) CLEC1A(1)

rs6869688 5:158883027 G 0.92

(0.90–

0.95)

4.57 x

10−08
0.90

(0.87–

0.94)

1.79 x

10−08
0.94

(0.91–

0.98)

1.96 x

10−03
81.5% IL12B(2) IL12B(2)

rs10460393 2:198548306 T 1.09

(1.06–

1.13)

1.07 x

10−09
1.11

(1.07–

1.14)

2.11 x

10−08
1.08

(1.04–

1.13)

6.48 x

10−05
80.7% PLCL1(3), RFTN2(4) PLCL1(3), RFTN2(4)

rs2431697 5:159879978 C 0.90

(0.87–

0.92)

8.51 x

10−14
0.84

(0.81–

0.87)

2.12 x

10−20
0.94

(0.91–

0.98)

2.42 x

10−03
80.5% MIR146A(5) MIR146A(5)

rs4792891 17:43973498 G 0.90

(0.88–

0.93)

6.82 x

10−10
0.92

(0.89–

0.96)

1.40 x

10−05
0.90

(0.86–

0.93)

3.37 x

10−08
56.3% MAPT(6) MAPT(6)

rs5022165 1:67788352 A 1.12

(1.08–

1.16)

9.10 x

10−09
1.17

(1.12–

1.23)

1.82 x

10−12
1.07

(1.02–

1.13)

8.52 x

10−03
23.0% IL12RB2(7) IL12RB2(7)

rs3024897 2:191896564 C 0.87

(0.83–

0.91)

1.06 x

10−08
0.82

(0.77–

0.87)

1.17 x

10−10
0.91

(0.86–

0.97)

5.41 x

10−03
14.6% STAT1(8), STAT4(9) STAT1(8), STAT4(9)

rs35605052 3:45916547 T 1.16

(1.12–

1.21)

2.14 x

10−13
1.08

(1.03–

1.13)

6.95 x

10−04
1.25

(1.18–

1.32)

1.02 x

10−14
6.03% CXCR6(10) CXCR6(10), SLC6A20, FLT1P1,

FYCO1, CCR1, CCR3

rs7970893 12:113390679 T 0.92

(0.90–

0.95)

2.10 x

10−08
0.94

(0.91–

0.98)

2.26 x

10−03
0.90

(0.87–

0.94)

1.28 x

10−07
0.00% ALDH2, SH2B3 OAS1, OAS2, OAS3

Signals showing opposing effect in a cross-trait inverse meta-analysis

SNP Position A1 meta SLE severe COVID-19 PPH4 predicted functional

genes in SLE

predicted functional genes in

COVID-19OR (95%

CI)

P OR (95%

CI)

P OR (95%

CI)

P

rs11085727 19:10466123 T 1.21

(1.17–

1.25)

2.09 x

10−31
0.80

(0.77–

0.84)

6.92 x

10−27
1.19

(1.14–

1.23)

2.33 x

10−18
99.3% TYK2(11) TYK2(11)

rs74956615 19:10427721 A 1.51

(1.39–

1.63)

2.19 x

10−25
0.58

(0.53–

0.65)

2.75 x

10−24
1.40

(1.29–

1.53)

3.04 x

10−14
99.1% PDE4A(12) PDE4A(12)

rs1174683 1:183650428 G 1.16

(1.11–

1.22)

2.37 x

10−09
0.82

(0.77–

0.87)

3.98 x

10−10
1.12

(1.05–

1.18)

1.50 x

10−04
60.1% NCF2(13) NCF2(13)

rs5778759 1:173328868 C 1.13

(1.09–

1.16)

3.32 x

10−13
0.83

(0.80–

0.86)

1.98 x

10−22
1.06

(1.01–

1.11)

9.66 x

10−03
36.8% TNFSF4(14) TNFSF4(14)

rs17445836 16:86017663 A 1.14

(1.09–

1.19)

5.14 x

10−10
0.83

(0.79–

0.87)

3.68 x

10−16
1.07

(1.02–

1.13)

7.11 x

10−03
35.7% IRF8(15) IRF8(15)

rs61811916 1:155045004 C 1.14

(1.09–

1.19)

4.11 x

10−08
1.11

(1.05–

1.17)

4.59 x

10−04
0.85

(0.80–

0.91)

4.86 x

10−07
8.01% ADAM15(16) ADAM15(16), GBA, MUC1,

THBS3, GBAP1

(Continued)
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We found that the genetic associations in signal-B tagged by rs34725611 and rs11085727

colocalize with a TYK2 eQTL signal in whole blood in eQTLGen [14] (Fig 4B) and GTEx v8

data, and adrenal gland in GTEx v8 data: PPH4 > 0.98 for colocalisation between the two traits

and with all eQTL signals (Fig N in S1 Text). eQTL summary statistics can be seen in Table G

in S1 Text, where the associated allele effects can be compared across traits and eQTL. In all

Table 1. (Continued)

rs76073397 16:11386452 C 1.14

(1.09–

1.19)

3.21 x

10−08
0.90

(0.84–

0.95)

5.14 x

10−04
1.15

(1.09–

1.22)

9.67 x

10−07
1.18% RMI2(17), CLEC16A,

DEXI
RMI2(17)

Genes associated with autoimmune or infectious diseases includes: (1)experimental autoimmune encephalomyelitis (EAE). (2)psoriasis, crohn’s disease (CD),

inflammatory bowel disease (IBD), ankylosing spondylitis (AS), sclerosing cholangitis (SC), ulcerative colitis (UC), psoriatic arthritis (PsA), multiple sclerosis (MS),

ulcerative colitis (UC), primary biliary cirrhosis (PBC), autoimmune thyroid disease (AITD), celiac disease (CeD), type 1 diabetes (T1D), juvenile idiopathic arthritis

(JIA), rheumatoid arthritis (RA). (3)UC, SLE, CD, allergic rhinitis, asthma, RA, IBD, AS, psoriasis, SC. (4)atopic asthma. (5)SLE, Sjogren’s syndrome (SS), RA, MS, AITD.
(6)PBC, SS. (7)SLE, PBC, systemic scleroderma (SSc), RA, CD, MS, AS, IBD, behcet’s disease (BD). (8)JIA, RA. (9)SLE, RA, SSc, PBC, SS, CeD, BD, IBD, autoimmune

hepatitis type-1 (AIH), T1D, MS, AITD, CD, JIA, UC, non-typhoidal Salmonella bacteremia. (10)PBC, T1D, AIH, EAE. (11)SLE, COVID-19, psoriasis, SSc, MS, RA, T1D,

PBC, AS, CD, SC, UC, IBD, AITD. (12)SLE, psoriasis, MS, JIA, T1D, AS, CeD, CD, UC, AITD. (13)SLE, RA, SSc, CeD. (14)SLE, asthma, atopic asthma, SSc, allergic

rhinitis, AITD. (15)SLE, PBC, SSc. (16)SLE. (17)PBC, IBD, MS, CD, T1D, psoriasis, CeD, AS, UC, SC, JIA, asthma.

https://doi.org/10.1371/journal.pgen.1010253.t001

Fig 3. Locus zoom plots across a) TYK2, b) CLEC1A for single marker associations with SLE, severe COVID-19. The LD (r2 in 1000 Genome project Phase

3 EUR) is identified by color.

https://doi.org/10.1371/journal.pgen.1010253.g003
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cases the protective allele for SLE, which is the risk allele for severe COVID-19, increases

expression. However, signal-B is also associated with altered TYK2 function as a missense vari-

ant rs2304256 (V362F, exon 8), that is in strong LD (r2 = 0.98 in SLE data) with rs11085727,

acts as a splicing eQTL. The SLE protective allele promotes inclusion of exon 8 [15], which

increases TYK2 function. Thus, signal-B provides conflicting results with respect to signal-A

regarding the functional impact on TYK2. To understand the role of signals A and B on gene

regulation, we studied the epigenetic landscape around these two association signals (Fig O in

S1 Text). For signal A, there was evidence for localization to enhancer chromatin marks

(H3K27Ac and H3K4Me1, Fig P in S1 Text). However, there was much less evidence for such

alignment with signal-B (Fig Q in S1 Text). Signal-A is also observed to loop in 3D space to

the promotor of PDE4A (Fig R in S1 Text). While we did observe other significant cis eQTLs

with signal-B SNPs (see Fig S in S1 Text), none of them colocalized with COVID-19 or SLE

signals (PPH4 < 0.20 in all cases).

Table 2. TYK2 association results for a) SLE and b) severe COVID-19 data, and c) summary of functional effects of associated alleles. Independently associated

SNPs in SLE and severe COVID-19 are displayed.

Table 2a. TYK2 associations with SLE

Signal number SNP position A2 A1 freq(A1) OR 95% CI P bJ bJ_se pJ

Signal-A rs34536443 19:10463118 G C 0.034 0.53 0.47–0.59 9.80 x

10−26

-0.57 0.06 9.47 x 10−20

Signal-B rs34725611 19:10477067 A G 0.275 0.80 0.77–0.83 3.84 x

10−27

-0.16 0.02 2.86 x 10−13

Table 2b. TYK2 associations with severe COVID-19

Signal number SNP position A2 A1 freq(A1) OR 95% CI P bJ bJ_se pJ

Signal-A rs74956615 19:10427721 T A 0.047 1.40 1.27–1.55 3.04 x

10−14

0.26 0.05 4.06 x 10−08

Signal-B rs11085727 19:10466123 C T 0.280 1.19 1.14–1.23 2.33 x

10−18

0.14 0.02 2.83 x 10−12

Table 2c. Functional effects of associated alleles in TYK2 –PDE4A locus.

Signal number Ref SNP Minor/ancestral Allele Ancestral Allele

SLE effect

Ancestral

Allele COVID

Effect

Function Gene Ancestral Allele

Functional Effect

A rs34536443 C/G; Ala1104Pro Risk Protective Coding Tyrosine Kinase 2

(TYK2)

Increased Gene

function through

increased

phosphorylation [13]

A rs34536443 C/G Risk Protective Regulation Phosphodiesterase 4A

(PDE4A)

Increased Gene

Expression: eQTL data

(Table G in S1 Text)

B rs2304256 A/C Phe362Val Risk Protective Coding Tyrosine Kinase 2

(TYK2)

Decreased Gene

function though loss of

exon 8 [15]

B rs11085727 T/C Risk Protective Regulation Tyrosine Kinase 2

(TYK2)

Decreased Gene

Expression: eQTL data

(Table G in S1 Text)

B rs11085727 T/C Risk Protective Regulation Serpin Family G

Member 1 (SERPING1)

Increased Protein

Expression: pQTL data

[17]

B rs11085727 T/C Risk Protective Regulation C-X-C Motif

Chemokine Ligand 10

(CXCL10) (IP-10)

Increased Protein

Expression: pQTL data

[17]

� bJ, bJ_se, pJ: effect size, standard error and p-value from a joint analysis (multiple regression) of all the selected SNPs (results conditional on all other SNPs if selected

from stepwise regression). † rs34536443 is in high LD with rs74956615 (r2 = 0.88), rs34725611 is in high LD with rs11085727 (r2 = 0.97). In table c) we refer to the

common ancestral allele for effects where this is protective for severe COVID-19 and risk for SLE. Functional effects cover coding variation, cis acting gene transcript

expression and trans acting protein product expression.

https://doi.org/10.1371/journal.pgen.1010253.t002
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To explore the functional effects further, we looked for downstream effects of the shared

TYK2 associated SNPs on the expression levels of a set of 21 IFN-induced genes (dysregulated

in SLE [16]) in human plasma proteome data [17]. Significant trans pQTLs (FDR< 0.01,

Table H in S1 Text) for signal-B (rs11085727) were found for two targets: SERPING1 and

CXCL10 (IP-10). Both proteins are induced by interferon and would be expected to require

TYK2 activity for induction. The COVID-19 risk allele (T), that correlates with increased

TYK2 transcript expression, correlated with reduced amounts of SERPING1 and CXCL10 pro-

teins in plasma (p = 0.0003).

C-Type lectin domain family 1 member A (CLEC1A)

The meta-analysis identified a narrow peak of association between 10.2–10.3Mb on chromo-

some 12 that colocalized between the two traits (See Fig 3B; PPH4 = 0.95 and Table 3, over-

lapped NSNP = 3,363). Both traits’ association signals colocalized with eQTLs for CLEC1A in

multiple tissues (PPH4� 0.97/0.87 for eQTL colocalisation with COVID-19/SLE) in GTEx v8

data. Fig 4C displays the association in both diseases and eQTL data for heart (atrial append-

age), see Fig T in S1 Text for the other eQTL colocalization. eQTL summary statistics can be

seen in Table G in S1 Text. The risk allele for severe COVID-19 is also risk for SLE and is asso-

ciated with reduced expression of CLEC1A. The lead variant rs7960611 is in LD with a mis-

sense variant rs2306894 (r2 = 0.84).

Fig 4. Locus zoom plots across loci for marginal associations with SLE, severe COVID-19 and eQTL. a) PDE4A locus, both diseases’ signal-B colocalized

with eQTL for PDE4A. b) TYK2 locus, both diseases’ signal-A colocalized with eQTL for TYK2. c) CLEC1A locus, both diseases colocalized with eQTL for

CLEC1A. The LD (r2 in 1000 Genome project Phase 3 EUR) is identified by color.

https://doi.org/10.1371/journal.pgen.1010253.g004
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Discussion

Our results indicate that there are shared genetic effects between the autoimmune disease SLE

and the clinical consequences of COVID-19. The locus with the most evidence of shared

effects was the Janus kinase (JAK), TYK2, that promotes IL-12 and IFN-I signaling. Here there

are two separate genetic association signals (designated A and B) shared between severe

COVID-19 and SLE. Importantly for both, the genetic factors for SLE risk mitigate the out-

come following SARS-Cov2 infection. In seeking to uncover the mechanisms underlying these

relationships it was apparent that the functional effects of the risk alleles are complex. Signal-A

at TYK2 is likely driven by a coding P1104A variant (rs34536443) whose COVID-19 risk allele

has been shown to impair TYK2 target phosphorylation [13]. This is further supported by the

therapeutic effect of a TYK2 inhibitor in psoriasis [18], and by observed risk in other infectious

disease such as tuberculosis where it has been found that homozygosity for the minor allele

(C) of rs34536443 is risk, in line with severe COVID-19, and strongly impairs IL-23 signaling

in T cells and IFN-γ production in PBMC [19,20]. Signal-A, led by rs34536443, was also found

to colocalize with an eQTL for nearby PDE4A, which encodes a phosphodiesterase that regu-

lates cAMP. This enzyme has multiple potential roles, however PDE4A inhibitors have been

shown to have anti-inflammatory activity and are being studied in AID and inflammatory

lung diseases [21]. The severe COVID-19 risk alleles are associated with decreased expression

of PDE4A, while they are protective for SLE. The PDE4A eQTL cell type is heterogeneous how-

ever and the relevance to SLE is unclear. Signal-B includes another missense variant in TYK2,

namely rs2304256 (V362F) in exon 8, but this also acts as a splicing mutation and the missense

variant is missing from the spliced transcript. The severe COVID-19 risk allele promotes inclu-

sion of exon 8 in TYK2 that is essential for TYK2 binding to cognate receptors [15]. Therefore

Table 3. CLEC1A association results for a) SLE and b) severe COVID-19 data, and c) summary of functional effects of associated alleles. Independently associated

SNPs in SLE and severe COVID-19 are displayed.

Table 3a. CLEC1A associations with SLE

Signal number SNP position A2 A1 freq(A1) OR 95% CI P bJ bJ_se pJ

Signal-A rs7960611 12:10230416 A G 0.115 1.11 1.04–1.17 2.76 x

10−04

0.10 0.03 2.77 x 10−04

Table 3b. CLEC1A associations with severe COVID-19

Signal number SNP position A2 A1 freq(A1) OR 95% CI P bJ bJ_se pJ

Signal-A rs7960611 12:10230416 A G 0.124 1.17 1.11–1.24 3.31 x

10−07

0.16 0.03 3.31 x 10−07

Table 3c. Functional effects of associated alleles in TYK2 –PDE4A locus.

Signal number Ref SNP Minor/ancestral Allele Ancestral Allele SLE

effect

Ancestral Allele

COVID Effect

Function Gene Ancestral Allele Functional Effect

Signal-A rs2306894 C/G; Gly26Ala Protective Protective Coding C-type

lectin

domain

family 1

member A

(CLEC1A)

Gly26Ala No publication found

Signal-A rs7960611 G/A Protective Protective Regulation C-type

lectin

domain

family 1

member A

(CLEC1A)

Increased Gene Expression: eQTL

data (Table G in S1 Text)

� bJ, bJ_se, pJ: effect size, standard error and p-value from a joint analysis (multiple regression) of all the selected SNPs (results conditional on all other SNPs if selected

from stepwise regression). In table c) we refer to the common ancestral allele for effects where this is protective for severe COVID-19 and SLE. Functional effects cover

coding variation and cis acting gene transcript. † rs2306894 is in high LD with rs7960611 (r2 = 0.84).

https://doi.org/10.1371/journal.pgen.1010253.t003
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signal-B comprises evidence for two functional effects with respect to COVID-19 risk alleles,

one of which increases function of TYK2 through altered splicing (rs2304256 (V362F)) and

one that is correlated with increased expression of TYK2 (rs11085727). It may be that the over-

all reduction of TYK2 activity caused by the COVID-19 risk alleles in signal-A evokes a com-

pensatory effect on overall gene expression, which is designed to mitigate the deleterious effect

of the missense variants–an example of regulatory variants modifying the penetrance of coding

variants [15,22]. This conjecture is supported by the lack of epigenetic marks in the signal-B

region of TYK2.

The severe COVID-19 risk allele for signal-B at TYK2 is associated with reduced SERPING1

and CXCL10 protein expression, implying that the minor allele at signal-B in the TYK2 locus

reduces some aspect of TYK2 function. CXCL10 (IP-10) is a chemokine that acts on Th1 cells

and is key regulator of the cytokine storm immune response to COVID-19 infection [23].

SERPING1, an inhibitor of complement 1 (C1-inh), is known to be reduced by infection and

this reduction correlates with more severe COVID-19 [24]. Therefore genetic predisposition

to low SERPING1 expression may increase risk for COVID-19 through the same dynamics as

reduced levels due to infection. This and the effect of reduced levels of CXCL10 are likely just

two examples of altered IFN induced activity that affects risk for disease.

We found agreement in direction of effect of association in CLEC1A. CLEC1A is interesting

as C-type Lectin receptors are involved in fungal recognition and fungal immunity. Genetic

variation in CLEC1A is a risk factor for the development of Aspergillosis in immunosuppres-

sion [25]. CLEC1A is a negative regulator of dendritic cells [26]. Therefore the SLE and severe

COVID-19 risk allele, being associated with reduced expression of CLEC1A, would be

expected to exert a pro-inflammatory effect. We also found agreement in direction of effect of

associations in 3 other loci (IL12B, PLCL1-RFTN2, MIR146A) that showed relatively strong

evidence of colocalization. The modest p-values and relatively high colocalisation possibilities

support them as good candidates to follow up in larger studies. At both IRF8 and TNFSF4 the

evidence for association in severe COVID is moderate yet the signals do show some evidence

of colocalizing with opposing effects in SLE. With prominent roles in the pro-inflammatory

IFN response these two loci should be a focus when larger data in severe COVID-19 are avail-

able. IRF8 provides more evidence that the IFN pathway is important in the balance between

SLE risk and infection as mutations that impair IRF8 transcriptional activity have been found

to cause immunodeficiency [27]. Interferons constitute one of the main means of host defense

against viruses and hence have been well studied in the context of COVID-19 [28–30]. In SLE,

evidence for interferon activity is present in about half of the patients and is often present in

those with more severe disease [31–33]. Although elevated interferon has been implicated in

other AID, the role is prominent in SLE. This has been exploited with therapeutic agents

designed to antagonize type I interferon activity showing benefit in SLE [34]. Parallels between

SLE and viral infection extend beyond interferon activation though. As stated above there are

SLE risk genes that act in the intracellular viral sensing pathways. SLE is characterized by an

immune response against host nucleic acids. The means by which the immune system loses

tolerance to these structures appears to involve aberrant exposure of self through the pathways

that are designed to sense foreign nucleic acids, as happens during viral infection [35]. Further

investigation into the genetic correlation between SLE and severe COVID-19 will help explain

the genetic basis of both diseases, which may be in part due to variation in response to viral

infection. Risk alleles for SLE, that are also risk for severe COVID-19, may persist in the popu-

lation due to protective effects against other exposures such as fungal infection. The opposing

effects we find at the TYK2 locus is compatible with the hypothesis that there are alleles in the

general population that, while represent a risk for SLE, persist possibly due to an innate

immune protection against pathogens [36–41] including viruses.

PLOS GENETICS COVID-19 and systemic lupus erythematosus genetics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010253 November 3, 2022 10 / 19

https://doi.org/10.1371/journal.pgen.1010253


Material and methods

Data for genome-wide and local genetic correlation

Full summary-level GenOMICC release 1 data were downloaded from https://genomicc.org/data.

These data resulted from a GWAS of 1,676 critically ill patients with COVID-19 (severe COVID-

19) of European ancestry from 208 UK intensive care units (GenOMICC GWAS data release 1),

and ancestry-matched control individuals (8,380 of European ancestry) selected from the large

population-based cohort of UK Biobank [1]. Controls with a known positive COVID-19 test were

excluded [1]. An SLE meta-analysis of three previously published European GWASs was used (the

SLE main cohort [42], 4,036 cases and 6,959 controls; the Genentech cohort [2], 1,165 cases and

2,107 controls; the SLEGEN cohort [43], 533 cases and 2,543 controls), each of these data have

been pre-phased (SHAPEIT [44]) and imputed (IMPUTE [45,46], 1000 Genomes phase 3 [47])

using the same pipeline as in the previous studies of these data where they were imputed to the

1000 genomes phase 1 density [4,48]. SNPTEST was run in each dataset using principal compo-

nents as covariates to control for population structure as in the original studies. A standard fixed

effects inverse variance approach was used for meta-analysis using our own scripts written in R,

that also checked for allele matching and strand issues, and METAL [49]. The genomic inflation

factor (λ1000) [50] was 1.02. To evaluate genetic correlation between SLE and severe COVID-19,

we used conventional cross-trait LD score regression (LDSC) [51,52] to calculate genome-wide

genetic correlation (rg). All the overlapping SNPs between the SLE meta-analysis and the COVID-

19 GenOMICC European data were retained for use. The number of SNPs were reduced to com-

mon SNPs (MAF> 0.01) from the European 1000 Genomes populations [47] (NSNP = 413,464

genome-wide) as these data were used as the LD reference panel in the genetic correlation

analyses.

To increase power for local genetic correlation detection, while maintaining the same

ancestry as required by the methodology [53], we added SLE Immunochip data [5] from a pre-

vious study (3,568 cases and 11,245 controls independent of the three European GWAS) to the

SLE meta-analysis. These data were also imputed to the density of the 1000 Genomes Phase 3

data. The new meta-analysis also used a standard fixed effects inverse variance approach

(MAF > 0.01 and INFO > 0.9). The genomic inflation factor (λ1000) was 1.03. Local genetic

correlation was performed using a recent approach that uses summary statistics (ρ-HESS) [53]

to estimate local SNP-level heritability and genetic covariance (correlation).

Data for the SLE–severe-COVID-19 meta-analyses, cross disease

colocalisation analyses and fine-mapping

To maximize power for genetic association [54] we obtained multi-ancestry severe COVID-19

vs. population genetic association data from round 6 of the COVID-19 Host Genetics Initiative

(COVID-19 hg, https://www.covid19hg.org/) where the GenOMICC study was a subset of

these data [55]. The severe COVID-19 phenotype is defined as individuals critically ill with

COVID-19 based on either requiring respiratory support in hospital or who died as a conse-

quence of the disease [55]. These data comprised 8,779 cases vs. 1,001,875 controls (A2_ALL_-

leave_23andme) [55] and were obtained from a google storage bucket provided by COVID-19

hg. The association summary data was the result of a meta-analysis of 60 studies from 25 coun-

tries and was performed by the provider with fixed effects inverse variance weighting after filter-

ing for allele frequency > 0.001 and imputation INFO> 0.6 applied to each study. The SLE

meta-analysis that included Immunochip data [5] was used for the meta-analysis with severe-

COVID-19 and for fine-mapping (genome-wide overlapped NSNPs = 1,559,546). We also used
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the African American (2,970 cases and 2,452 controls) and Hispanic (1,872 cases and 2,016 con-

trols) samples from the Immunochip study [5] for replication (see Supplementary information).

SLE–severe-COVID-19 meta-analyses

We performed two cross-trait meta-analyses between the SLE meta-analysis (Three EUR

GWAS + EUR Immunochip) summary statistics and the severe COVID-19 HGI release 6

GWAS summary statistics using R, that also checked for allele matching and strand issues, and

METAL [49]. Firstly, both diseases’ summary statistics were analyzed using the inverse vari-

ance approach (upper plot in Fig 2). A second analysis was undertaken in which the severe

COVID-19 direction of effect was reversed followed by a standard inverse variance meta-anal-

ysis (lower plot in Fig 2). This second approach is more powerful to detect areas of the genome

that have genetic association with both diseases but the direct of effect is opposing between

SLE and severe COVID-19. In both meta-analyses we only retained and plotted p-values for

SNPs that had p< 0.01 in both diseases and had shared direction of effects with respect to

each of the two types of meta-analysis. Any SNPs that passed a significance threshold of

P< 5 × 10−08 in meta-analysis in both traits were considered as candidates for shared associa-

tion. These were followed up by fine mapping in both traits and colocalisation analysis. The

MHC region was not included.

Checking published and candidate associated loci across traits for shared

association loci

Loci published as associated in each trait were checked for locus-wide association with the other

trait (p< 1 x 10−05) in our summary association data. Loci were defined as the lead published

SNP +/-1mb. Candidate shared loci were visible inspected using locus-wide LocusZoom plots

[56] and loci were checked for colocalisation of association between the two diseases. We also

investigated any locus that had a SNP with p< 1 x 10−05 in both traits in our summary data for

colocalization, where the loci were defined as the shared associated SNP +/-1mb. On both these

analyses we only declared a locus as shared if the colocalisation probability was greater than 0.9.

eQTL data

The cis-eQTL summary statistics data was obtained from eQTLGen Consortium (https://

www.eqtlgen.org/) [14], which includes eQTL data from 31,684 whole blood samples across 37

cohorts cohorts mainly of European origin, and from European specific eQTL data from

GTEx v8 across 54 tissues [57].

pQTL data

Two studies’ combined summary pQTL data [58,59] were downloaded from https://gwas.

mrcieu.ac.uk. These two studies data were combined and analyzed previously [17]. We focused

our pQTL analysis on 21 IFN induced genes previously defined [16]. Associations between the

SNPs in our study and the 21 gene’s expression were retrieved if included in the study, other-

wise tagging SNPs were used. A Bonferroni adjustment was made for multiple testing across

all SNP/gene combinations.

Fine-mapping

Our main fine-mapping analysis consisted of comparing summary association data between

SLE and severe COVID-19. This consisted of an approximate stepwise regression using COJO

[60] in both diseases’ data to identify independent signals and colocalization analyses to
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investigate whether shared association were coincidental. For supplementary information we

also ran stepwise regression on the SLE individual level data, which we were unable to do on

the COVID-19 data and so no comparison could be made.

COJO. To find independently associated variants using summary data, we performed an

approximation of stepwise regression using GTCA 1.93 [61] (COJO [60], ‘cojo-slct’). Lead SNPs

from stepwise regression were taken as index SNPs and marginal signals were obtained by condi-

tional analysis (-cojo-cond) on the set of index SNPs that were not in the signal of interest. The

parameters for stepwise selection were p-value< 1× 10−5, a collinearity cutoff of 0.9 and a distance

of 10Mb. The SLE main cohort controls were used as the reference panel of SNPs to estimate LD.

Colocalisation. For each of the loci we found to have shared association between SLE and

severe COVID-19, we used coloc [7] to perform locus-wide genetic colocalisation analysis.

This returns the posterior probability that the two diseases share the same causal variant(s) in

the region. We used standard coloc that assumes one casual variant and applied this to the

marginal signals obtained using COJO. The SLE main cohort controls were used as the refer-

ence panel of SNPs to estimate the LD. GTEx v8 summary statistics across all tissues and

eQTLGen whole blood summary statistics were used for the analysis.

For both the SLE/COVID-19 and the disease/eQTL colocalisation, signals were deemed to

colocalize if: (1) when setting the prior probability of a SNP as associated with both

traits = 5 × 10−05 (p12, default = 1 × 10−05), the posterior probability of colocalisation (PPH4)>

0.5 and (2) when setting p12 = 1 × 10−5, the posterior probability of different causal variants

(PPH3)< 0.5 [62].

Haplotype analysis

Conditional haplotype-based association testing was performed on cases and controls in the

European main SLE GWAS data and those with European/Hispanic/African American ances-

try from the SLE Immunochip study using Plink [63]. An Independent effect for rs11085727

and rs2304256 was tested on the background of all the potential lead SNPs including

rs34536443, rs74956615, rs11085727, rs2304256, rs12720356, rs280497, rs12720358 by using

the PLINK ‘—hap-snps’ command on the full set of SNPs with the ‘—independent-effect’

option on [rs11085727, rs2304256] with ‘—chap’. Block estimations were performed within

200 kb. All variants with MAF < 0.001 were removed. The range of the 90% D-prime confi-

dence interval was 0.70–0.98. The upper level for the confidence interval for historical recom-

bination was 0.90 and strong LD pairs fraction was equal to 0.95.

Stepwise regression on individual level SLE data

In supplementary data analysis only, we analyzed the SLE GWAS individual level data for asso-

ciation using SNPTEST [45] fitting an additive model. This analysis was performed with three

European SLE GWAS and the Immunochip data using SNPs with an imputation info score

of> 0.7 and MAF > 0.01. Each dataset was included as a separate cohort in SNPTEST with

covariates including principal components (PC1-3) for population structure and a discrete

covariate for study. The same effect was assumed for all studies, as with a fixed effect meta-

analysis. The results from the single-marker analysis using this approach were similar to those

from the standard meta-analysis on the summary data (compare results for rs34536443 in

Tables F and I in S1 Text for example) and the top associated SNPs was the same. We then

ran forward stepwise selection by adding the top SNPs at each stage as a covariate to identify

independently associated variants. This can be referred to as a one-stage approach to a meta-

analysis using individual level data [64]. An alternative approach would be to use the top SNP

at each step as a covariate in a regression analysis of each study separately and then meta-
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analyze the results at each step (a two-stage approach). This would then rely on the meta-anal-

ysis approximation and not allow for an easy derivation of marginal signals when multiple

independent associations are obtained.

Epigenetic modification and chromatin looping

Epigenetic modification and chromatin looping information were taken from resources avail-

able at the UCSC genome browser (http://genome.ucsc.edu). Enrichment of modifications to

histone proteins (layered H3K27Ac, H3K4Me1, and H3K4Me3 track sets) determined by a

ChIP-seq assay were from the ENCODE Consortium. Common dbSNP153 data (1000

Genomes phase 3, MAF > 0.01) was used, associated variants were highlighted. A highly fil-

tered "double elite" subset of regulatory elements (including enhancers and promoters) and

their inferred target genes in the plotting region were added as track sets, data was provided by

the GeneHancer database [65].

Network and pathway enrichment analysis

Molecular interactions were obtained from the STRING 11.5 database [66]. All the potentially

shared SLE and severe COVID-19 associated genes from the cross-trait meta-analysis

(Table 1) were mapped to the whole network, connected nodes are shown in Fig M in S1 Text

with indication of the type of interaction evidence. Gene Ontology (GO) process [67], local

STRING network clusters [66], WikiPathways [68], KEGG pathway classification [69], Reac-

tome Knowledgebase [70], and DISEASES database [71] were used for pathway enrichment of

all the potentially shared genes.
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