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Desmoplasia, a hallmark of a head and neck cancer, has both biologic and physiologic

effects on cancer progression and chemotherapeutic response. Mesenchymal

stem/stromal cells (MSCs), also known as mesenchymal stromal progenitor cells, have

been shown to play a role in cancer progression, alter apoptotic responses, and confer

resistance to chemotherapy in various carcinomas. The pathophysiology of MSCs with

respect to tumorigenesis is widely reported in other cancers and is sparsely reported

in oral squamous cell carcinomas (OSCCs). We previously reported paracrine mediated

PDGF-AA/PDGFR-α signaling to underlie MSCs chemotaxis in OSCC. Given the poor

clinical response to primary chemotherapy, we hypothesized that MSCs may alter cancer

cell sensitivity to cisplatin through activation of PDGFR-α mediated signaling pathways.

Co-culture of MSCs with human derived OSCC cell lines, JHU-012 and−019, resulted in

a significant increase in the production of PDGF-AA andMCP-1 compared to cancer cells

grown alone (p < 0.005) and was accompanied by an increase in the phosphorylation

state of PDGFR-α (p < 0.02) and downstream target AKT at S473 (p < 0.025) and

T308 (p < 0.02). JHU-012 and −019 cancer cells grown in co-culture were significantly

less apoptotic (p < 0.001), expressed significantly higher levels of Bcl-2 (p < 0.04) with

a concomitant significant decrease in bid expression (p < 0.001) compared to cancer

cells grown alone. There was a significant increase in the cisplatin dose response curve in

cancer cell clones derived from JHU-012 and 019 cancer cells grown in co-culture with

MSCs compared to clones derived from cancer cells grown alone (p < 0.001). Moreover

clones derived from JHU-012 cells grown in co-culture with MSCs were significantly

more susceptible to cisplatin following pretreatment with, crenolanib, a PDGFR inhibitor,

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00552
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00552&domain=pdf&date_stamp=2020-04-28
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tammara.watts@duke.edu
https://doi.org/10.3389/fonc.2020.00552
https://www.frontiersin.org/articles/10.3389/fonc.2020.00552/full
http://loop.frontiersin.org/people/857394/overview
http://loop.frontiersin.org/people/916100/overview
http://loop.frontiersin.org/people/128824/overview
http://loop.frontiersin.org/people/823503/overview


Wang et al. PDGFR-α/AKT Signaling in Oral Cancer

compared to cancer cells grown alone or in co-culture with MSCs (p < 0.0001). These

findings suggest that crosstalk between cancer cells and MSCs is mediated, at least in

part, by activation of autocrine PDGF-AA/PDGFR-α loop driving AKT-mediated signaling

pathways, resulting in reduced cancer cell sensitivity to cisplatin through alterations

in apoptosis.
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INTRODUCTION

Mesenchymal stem/stromal cells (MSCs) have been recognized
to play important roles in the pathogenesis and progression of
several solid cancers, including breast, prostate, non-small cell
lung cancer, and others (1–5). The robust desmoplastic reaction
characteristic of pancreatic cancer, and recent reports that
MSCs in the pancreatic cancer stroma have tumor promoting
properties, highlights the importance of MSCs in this context
(6). Akin to pancreatic cancer, head and neck squamous cell
carcinomas (HNSCC), of which the majority arise from the oral
cavity and oropharyngx, are characterized as having an extensive
desmoplastic response, suggesting that the tumor stroma may
play an important role in the pathophysiology of this cancer
as well (7). Although the source of mesenchymal cells in the
tumor stroma are numerous, several lines of evidence support
MSCs as an important source of desmoplastic fibrocytes in the
TME (8, 9).

In one of the first reports to identify and detail a mechanism
for MSC homing to the TME of HNSCC, we reported that
MSCs home to the TME of oral cavity and oropharyngeal
squamous cell carcinoma through the chemotactic action
of PDGF-AA mediated through PDGFR-α (10). Our work
expanded on initial reports by Liotta et al. who isolated CD90+

tumor associated MSCs and showed that they promote tumor
suppression by modulating T-cell responsiveness (11). Moreover,
Liu et al. reported bone marrow derived MSCs promote oral
cavity cancer progression via periostin-mediated activation of
PI3K/AKT signaling pathways resulting in reduced cancer cell
apoptosis (12).

Activation of AKT-mediated signaling pathways has been
shown to play a pivotal role in cancer progression by promoting
cancer cell survival by several mechanisms including altering
apoptotic response (13). Activation of AKT allows Bcl-2 to
outcompete Bax, resulting in an anti-apoptotic response and
upregulation of Bcl-2 has been shown to be an important
mechanism of chemo-resistance in cancer cells (14, 15).
Bcl-2 expression is routinely reported in HNSCC surgical
pathology specimens, has been shown to be overexpressed
in patients with HNSCC (16), and overexpression in early
HNSCC correlates with a significant decrease in 5-year
disease free recurrence and overall survival for patients
treated with primary radiation (17). Expression of Bcl-
2 and activation of AKT are known pathways affecting
cisplatin mediated cytotoxicity (18). Park et al. reported
overcoming cisplatin resistance by downregulating Bcl-2 in
HNSCC by modulating tristetraprolin (TTP) expression (19),

the mechanisms underlying linking Bcl-2 overexpression and
therefore reduced sensitivity to cisplatin in HNSCC have not
been reported.

Resistance to chemotherapy is a multifactorial process.
Growing evidence suggests that cancer stem cells (CSCs), cancer
associated fibroblasts (CAFs), andMSCs (which differentiate into
CAFs in the TME) play an important role in the development
of de novo chemo-resistance (4, 20–24). CAFs have been shown
to promote decreased sensitivity to gemcitabine in pancreatic
cancer (25). Moreover, in non-small cell lung cancer, activation
of AKT/Sox2 pathway by CAFs induced cancer cell resistance to
chemotherapy (26). Given our recent findings that MSCs home
to the TME in oral cavity and oropharyngeal cancer, collectively
here referred to as oral squamous cell carcinoma (OSCC) and the
recent reports of the role ofMSCs in the context of chemotherapy
resistance to platinum based agents, we sought to understand if
crosstalk between MSCs and oral squamous cell carcinoma cells
is mediated by PDGFRα/AKT signaling may be implicated in
cisplatin resistance through changes in cancer cell apoptosis.

METHODS

Cell Culture
Head and neck cancer cell lines JHU-012, JHU-019 (derived
from human oropharyngeal tumors) and OKF-TERT1 human
immortalized non-neoplastic oral keratinocyte cells (OKT) were
generously provided by Dr. Vicente Resto (Galveston, TX). Cells
were maintained in RPMI 1640 medium containing glutamine
supplemented with 10% fetal bovine serum at 37◦C in 5%
CO2. Primary bone marrow-derived human mesenchymal stem
cells (MSCs) were obtained from ATCC (Manassas, VA) and
maintained according to the manufacturer’s recommendations.
MSCs were used between passages 2–5 and defined as early
passage. The human OPSCC cell lines used in these studies have
been extensively characterized both in vitro and in vivo (27, 28).
For co-culture conditions, MSCs and HNSCC cell lines JHU-012,
JHU-019, and negative OKT controls were grown in a 1:1 and
supplemented in 1:1 ratio of appropriate culture media for 6 days.

Cell Viability, Apoptosis and Cell
Proliferation
Cell viability was measured using the XTT cell viability kit (Cell
Signaling Tech., 9095) in 96 well plates at 2 x 103 cells per well
following manufacturer’s protocol. Apoptosis was measured by
flow cytometry analysis with the ANXA5/PE/7-AAD Apoptosis
Detection Kit (BD Biosciences) at 1 x 106 cells per falcon tube.
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Prior to apoptosis detection, cells were stained with APC-anti-
human CD326 (EpCAM) Clone:CO17-1A (Biolegend) to detect
epithelial cells and PE/Cy7 anti-human CD90 (Thy1) Clone:5E10
to detect human MSCs. Cell acquisition was performed on BD
LSRFortessaTM cell analyzer (BD Biosciences) at UTMB Flow
Cytometry Core Facility in the Department of Microbiology and
Immunology. Cellular proliferation was measured by BrdU -
ELISA (colorimetric) assay (Abcam) in a 96 well plate at 2 x 103

cells per well with 4 h BrdU incubation period.

Transwell Studies
To determine if MSCs mediated alterations in cancer cell
apoptosis required direct contact transwell co-culture assays were
conducted as previously described (2). Briefly, 2.5 x 105 MSCs
were seeded on the filter in the upper chamber of the transwell
filter with a pore size of 8.0µm in a final volume of 250µl and 2.5
x 105 JHU-012 or OKT cells were seeded on the bottom chamber.
Following 6 days of co-culture, apoptosis of the epithelial cells
was measured as described above.

Clonogenic Assay
Clonogenic assay conditions were established as previously
described (29). HNSCC cell line JHU-012 and −019 alone or
in co-culture with MSCs, as described above, were seeded in
6-well plates at predetermined densities. Cells were allowed to
settle and adhere for 24-h, prior to treatment with cisplatin. Cells
were treated with varying doses of cisplatin ranging from 0 to
4µM for 24 h. After 24-h treatment with cisplatin, the media was
exchanged and with basal media and cultured 5 additional days.
Cells were fixed with 3% crystal violet/10% formalin, imaged and
counted using ImageJ.

Western Immunoblotting
OSCC cells lines JHU-012 and JHU-019 were cultured alone or
co-cultured with MSCs at 1:1 ratio in media containing 50% of
RPMI 1640 complete medium (Thermo Fisher Scientific, MA)
and 50% ofMSCCompleteMedium (ATCC, VA) for 6 days. Cells
were lysed in 1 x RIPA buffer (Cell Signaling Technology, MA)
with protease inhibitor cocktail (Sigma-Aldrich, MA). Protein
concentrations were measured using BCA protein assay (Thermo
Fisher Scientific). Cell lysates (10 µg protein) were separated by
NuPAGE 4–12% Bis-Tris protein gels (Thermo Fisher Scientific)
and transferred onto PVDF membranes (Bio-Rad, CA). After
blocking with 5% (w/v) nonfat drymilk in TBS-T, themembranes
were incubated with primary antibodies for anti-PDGFR-α
(phosphoY754; abcam #ab5460) p-AKT (Thr308) (#13038, Cell
Signaling Technology), p-AKT (Ser473) (#4060, Cell Signaling
Technology), total AKT (#4691, Cell Signaling Technology),
and β-actin (#A1978, Sigma-Aldrich). Antibody dilution ranged
from 1:500 to 1:1000. After three washes with TBS-T, the
membranes were incubated with the appropriate secondary
antibodies. Reactive protein bands were visualized using Alpha
Innotech Fluorchem FC2 imaging system (Cell Bioscience, CA).
The intensity of each protein band was quantified by Image J
software (NIH).

Quantification of Chemokines
Cytokine production was measured in the supernatants of
the conditioned media from OSCC cell lines JHU-012, and
−019 Human XL cytokine discovery premixed kit (R and
D Systems, FCSTM18, Minneapolis, MN) according to the
manufacturer’s instructions.

Statistical Analysis
Each experiment was with n ≥ 3 in triplicate, unless otherwise
noted. All data were expressed as mean ± standard error of
mean (SEM). Statistical analyses were generated using GraphPad
Prism (GraphPad Software 7.0) or Excel 2013 (Microsoft Excel
Spreadsheet Software 2013). For the comparison between two or
more experimental groups, statistical significance was assessed
via Student’s t-test or two-way ANOVA with p-value < 0.05
being considered statistically significant. Dose response curves
were generated using GraphPad Prism set with the following
parameters: [drug] vs response variable slope (four parameters).
Extra sum of squares F test was used to reject the null hypothesis
with p < 0.05 being considered statistically significant. Each dose
response curve was done in triplicate with n= 3.

RESULTS

MSCs Activate a PDGF-AA/PDGFR-α
Autocrine Loop in Oral Squamous Cell
Carcinoma (OSCC)
To investigate whether MSCs induce changes in PDGF-
AA/PDFGR-α expression with activation of downstream
signaling targets in OSCC cells, JHU-012 and −019 were grown
in 1:1 co-culture with early passage human MSCs for 6 days.
The conditioned media from OSCC cells grown alone or in
co-culture with MSCs was screened using a multiplex approach
for cytokines previously shown to be upregulated in human
cancers. Of the 45 cytokines assayed, only PDGF-AA (Figure 1A)
and MCP-1 (Figure 1B) were found to be significantly increased
the conditioned media from OSCC cells grown in co-culture
compared to OSCC cells grown alone (p < 0.005). There was no
appreciable secretion of PDGF-AA,MCP-1 inMSCs grown alone
nor appreciable secretion of PDGF-AB/BB in eitherMSCs, OSCC
cells grown alone, or in co-culture with MSCs (data not shown).
To investigate whether increased production of PDGF-AA
resulted in activation of PDGFR-α, the expression of phosphor-
PDGFR-α was determined by Western immunoblotting. There
was a significant increase in phosphorylation of PDGFR-α in
JHU-012 (p < 0.02) and −019 (p < 0.006) co-cultured with
MSCs compared to cancer cells grown alone (Figure 1C). We did
not detect appreciable expression of total PDGFR-α by Western
immunoblotting (Supplemental Figure 1).

Activation of PDGFRs have previously been shown to be an
important regulator of Akt activation. Therefore to determine
if activation of MSCs induced activation of PDGFR-α in OSCC
cells affects AKT expression, p-AKT was assessed by Western
immunoblotting. Downstream p-AKT expression was found to
be significantly increased in OSCC co-cultures of these same
cancer cells lines at S473 (Figure 2A; p < 0.025) and T308
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FIGURE 1 | MSCs induce increased production of PDGF-AA and MCP-1 and Autocrine Activation of PDGFR-α in OSCC. JHU-012, and −019 were grown alone or in

1:1 co-culture with MSCs for 6 days and production of PDGF-AA and MCP-1 measured using a multiplex assay approach and activation of PDGFR-α determined by

Western immunoblotting. There was a significant increase in the production of PDGFAA (A) and MCP-1 (B) in the conditioned media from cancer cells grown in

co-cultured compared to cancer cells grown alone (n = 3, p < 0.005). (C) Following co-culture with MSCs, there was a significant increase in expression of

p-PDGFR-α (Y754) in JHU-012 and −019 co-cultures (n = 3; *p < 0.02; **p < 0.006).

FIGURE 2 | MSCs induce activation (phosphorylation) of PDGFR-α with downstream activation of AKT in OSCC. (A) Downstream activation of p-AKT levels were

observed at serine 473 (S473) in co-cultures from JHU-012, and −019 compared to cancer cells grown alone. (n = 3; p < 0.025). (B) A more robust increase in

p-AKT levels were also observed at threonine 308 (T308), corresponding to the catalytic site for AKT in JHU-012 and −019 grown in co-culture with MSCs (n = 3; *p

< 0.02; **p < 0.007). (C) Inhibition of PDGFR-α results in decreased expression of activated AKT. JHU-012 were grown alone or in 1:1 co-culture with MSCs for 6

days in the presence of PDGFR- α neutralizing antibodies or isotype control and expression of p-PDGFR-α (Y754), pAKT (S473) and p-AKT (T308) measured by

Western immunoblotting. There was a significant decrease in p-PDGFR-α, p-AKT (S473), and pAKT (T308) expression following inhibition of PDGFR-α neutralizing

antibodies compared to isotype control (n = 3; p < 0.03).

(Figure 2B; p < 0.02); suggesting the presence of MSCs in co-
culture with JHU-012 and −019 results in activation of PDGFR-
α/AKT mediated signaling pathways. To further confirm the
specificity of activation of PDGFR-α in mediating changes in

AKT expression, JHU-012 cells were grown alone and in co-
culture with MSCs in the presence of PDGFR-α neutralizing
antibody and isotype control (Figure 2C). Following treatment
with PDGFR-α neutralizing antibodies, there was a significant

Frontiers in Oncology | www.frontiersin.org 4 April 2020 | Volume 10 | Article 552

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. PDGFR-α/AKT Signaling in Oral Cancer

FIGURE 3 | MSCs mediate increased expression of Bcl-2, decreased expression of Bid, and decreased apoptosis in OSCC. JHU-012, and −019 were grown in a 1:1

co-culture with MSCs for 6 days. Bcl-2, Bid and apoptosis expression measured. EpCAM was used to identify cells of epithelial lineage and CD90 used to identify

mesenchymal cells. (A) There was a significant increase in the expression of bcl-2/EpCAM+ cells in co-cultures derived from JHU-012 and −019 compared to cancer

cells grown alone (n = 3; p < 0.04). (B) There was a significant reduction in bid expression across in JHU-012 and −019 co-cultured with MSCs compared to cancer

cells grown alone (n = 3; p < 0.001). (C) There was a significant reduction in the number EpCAM+/annexin V+ cancer cells undergoing apoptosis in the co-cultures

derived from JHU-012 and JHU-019 compared to cancer cells grown alone (*p < 0.001, n ≥ 3).

decrease in p-PDGFR-α expression in JHU-012/MSC co-cultures
(p < 0.03) with a concomitant significant decrease in p-AKT at
S473 (p < 0.03) and at T308 (p < 0.03) compared to isotype
control (Figure 2C). Further, we have preliminary evidence for
high expression of levels of PDGFR-α on both tumor epithelial
cells and tumor stromal cells in patients with advanced OSCC,
further suggesting activation of autocrine PDGF-AA/PDGFR-α
loop between MSCs and OSCC (30).

MSCs Mediate Increased Expression of
Bcl-2, Decreased Expression Bid and
Reduced Apoptosis in OSCC
To determine if activation of AKT by MSCs results in alterations
in apoptotic responses in OSCC cells, bcl-2 expression was
measured by flow cytometry. Co-cultures were sorted based on
expression of the epithelial lineage marker EpCAM and the
MSC lineage marker CD90. Following 6-days of co-culture,
there was a significant increase in the expression of bcl-2 in
EpCAM+ JHU-012 and −019 cells grown in co-culture with
MSCs (Figure 3A; p < 0.04). In addition, expression of the pro-
apoptotic protein Bid was significantly reduced in JHU-012 and
−019 cells co-cultured with MSCs compared to cancer cells
grown alone (Figures 3B,C; p < 0.001). Further, there was a
significant reduction in apoptosis in EpCAM+/annexin V+ JHU-
012 and −019 co-cultures (Figure 3C; p < 0.001). These data
suggest that MSCs reduce apoptotic response in OSCC cells in

vitro bymodulating expression of the Akt target bcl-2 in JHU-012
and -019.

MSCs Mediate Decreased Cytotoxicity to
Cisplatin in OSCC
Cisplatin-mediated cytotoxicity occurs through crosslinking of
DNA, resulting in loss of DNA repair and the initiation of
apoptosis (31). Therefore, we hypothesized that MSC-mediated
OSCC cell response to apoptosis may alter cancer cell cytotoxicity
to cisplatin. Using a clonogenic assay approach, single clones
were isolated from JHU-012 and −019 grown alone or derived
from cancer cells grown in 1:1 co-culture with MSCs. Cells were
treated with varying doses of cisplatin for 24-h, as previously
described (32). There was a significant increase in the dose
response curves and IC50 from clones derived from JHU-012
(Figure 4A; p < 0.001) and −019 (Figure 4B; p < 0.001) grown
in co-culture with MSCs, signifying MSCs confer decreased
cancer cells sensitivity to cisplatin. The IC50, a log-based value,
for cisplatin in clones derived from JHU-012 grown in co-culture
with MSCs was >2 times higher (0.9 vs. 0.4) than the IC50 in
clones derived from JHU-012 grown alone (Figure 4A). While
slightly lower at 1.6 times higher (0.5 vs 0.3), a similar significant
trend in the IC50 for cisplatin was observed in clones derived
from JHU-019 grown in co-culture with MSCs compared to
JHU-019 grown alone (Figure 4B). Representative crystal violet
staining patterns for cisplatin colongenic assays are depicted for
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FIGURE 4 | MSCs mediate decreased cytotoxicity to cisplatin in OSCC. Using a clonogenic assay approach, cisplatin dose response curves were generated for

clones derived from JHU-012 and −019 cells grown alone and in 1:1 co-culture with MSCs. There was a significant increase in the cisplatin dose response curve and

IC50 in clones derived from co-culture with MSCs for JHU-012 (A) and −019 (B; n > 3; p < 0.001).

FIGURE 5 | MSCs mediate decreased apoptosis with a concomitant increase cell viability and proliferation following 0.5µM treatment with cisplatin in OSCC.

JHU-012 cells grown alone or in 1:1 co-culture with MSCs were treated with 0.5µM cisplatin and apoptosis, viability, and proliferation measured. (A) 1:1 co-culture of

MSCs with JHU-012 resulted in a significant decrease in EpCAM+/annexin V+ cancer cells undergoing apoptosis compared to JHU-012 cells grown alone (*p <

0.0001, n = 3). (B) JHU-012/MSC co-cultures displayed enhanced viability compared to cancer cells alone (**p < 0.001, n = 3) and (C) cancer cell proliferation was

significantly increased following cisplatin treatment in co-culture conditions compared to cancer cells grown alone and OKT negative controls grown alone or in

co-culture with MSCs (***p < 0.026, n = 3).

JHU-012 and−019 are provided in Supplemental Figures 2A,B,
respectively. In addition, following treatment with 0.5µM
cisplatin, JHU-012 cells grown in co-culture with MSCs were

significantly less apoptotic with increased cell viability and
proliferation compared to cancer cells grown alone (Figure 5, p<

0.0001). These data support that crosstalk between MSCs OSCC
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FIGURE 6 | Inhibition of PDGFR-α with crenolanib decreases expression of activated PDGFR-α and improves responsiveness to cisplatin in OSCC. (A,B) JHU-012

were grown in 1:1 co-culture with MSCs in the presence and absence of the receptor tyrosine kinase inhibitor, crenolanib, for 6 days and PDGFR-α expression

measured by Western immunoblotting. PDGFR-α expression was decreased following 20 nM treatment and 200 nM treatment with crenolanib. Expression levels were

quantified by densitometry which revealed a significant decrease in PDGFR-α expression following treatment with 200 nM crenolanib (n = 3; *p < 0.04). Using a

clonogenic assay, cisplatin dose response curves were generated from clones grown from JHU-012 (C) grown in 1:1 co-culture with MSCs with and without 20 nM

crenolanib. There was a significant shift in the cisplatin dose response curve and the IC50 was reduced by half in JHU-012 (p < 0.0001) cancer cell clones treated with

20 nM crenolanib compared to untreated cancer cell clones (n ≤ 3).

cells as a mechanism mediating altered cisplatin response in oral
cancer as seen in other desmoplastic rich cancers (33).

Inhibition of PDGFR-α With Crenolanib
Decreases Expression of Activated
PDGFR-α and Improves Responsiveness to
Cisplatin in OSCC
PDGFR-α expression was attenuated following treatment
with 20 nM crenolanib reaching statistical significance at
200 nM crenolanib (Figures 6A,B; p < 0.04). We did not
detect appreciable expression of total PDGFR-α by Western
immunoblotting (Supplemental Figure 3). In clinical trials the
dosing of crenolanib ranges between ∼100 and 600 nM. Prior
studies suggest 20 nM crenolanib is sufficient to inhibit FLT3
(type-III tyrosine kinase inhibitor) in acute myeloid leukemia
(34). Therefore, we selected 20 nM crenolanib as a more
physiologic relevant concentration to determine if pretreated
with this monoclonal antibody would attenuate the increase in
IC50 in JHU-012 cells grown in co-culture with MSCs. Cancer
cell clones derived from JHU-012 co-cultures were treated with
and without 20 nM crenolanib for 6 days and the dose response
to cisplatin measured, as previously reported. There was a
significant downward shift in the cisplatin dose response curve
and a reduction in the IC50 by half (0.4 vs. 0.2) in JHU-012 (p
< 0.0001) clones derived from co-cultures treated with 20 nM
crenolanib compared controls (Figure 6C). Representative
crystal violet staining patterns for cisplatin colongenic assays are
depicted for JHU-012 are provided in Supplemental Figure 4.

DISCUSSION

We demonstrate in this study a novel mechanism in OSCC
cells induced by MSCs resulting in activation of PDGFR-α/AKT
mediated signaling pathways resulting in decreased cancer cell
apoptosis and reduced cytotoxicity to cisplatin. Moreover, we

further show the activation of PDGFR-α mediated signaling
pathways and alterations in cisplatin response induced by MSCs
in OSCC cells can be overcome by the PDGFR inhibitor,
crenolanib. Autocrine PDGFR-α expression has been shown to be
upregulated in ovarian cancer and mammary cancer metastasis
and expression levels correlated with tumor progression (35, 36).
Matei et al. report 39% of ovarian tumors to be PDGFR-α
positive and inhibition of the PDGF-PDGFFR axis with imatinab
restricted ovarian cancer cell growth in vitro (35, 37). In addition,
ovarian cancer cells transfected to constitutively express AKT
were significantly more resistant to imatinab which could only
be partially reversed with high concentrations of imatinab (37).

We recently reported that MSC-mediated chemotaxis in oral
cancer cells is dependent upon cancer cell secretion of PDGF-
AA acting on PDGFR-α+ MSCs (10). In that study, JHU-012
and −019 we did not detect PDFGR-α expression by Western
immunoblotting, leading us to conclude paracrine signaling
between OSCC cells and MSCs promotes MSC chemotaxis in
vitro (10). The physiologic consequence of MSC chemotaxis in
this setting was not known. However, in this study using co-
culture of MSC with cancer epithelial cells, we conclude that
MSCs induce activation of PDGFR-α on OSCC cells resulting
in activation of AKT, reduced apoptotic response and decreased
sensitivity to cisplatin. Our in vitro data is supported by ex
vivo immunohistochemistry studies which show high expression
of PDGFR-α on both tumor cells and TME stromal cells in
patients with oral cancers (30), which has not been previously
reported in this context. Ongkeko et al. describe high expression
of PDGFR in head and neck specimens, however in review of
their methods, antibodies staining was noted to be for PDGFR-
β and the surrounding stromal cells appear to be PDGFR-β
negative (38). This distinction is important as we previously
reported inhibition of PDGF-β did not affect MSC chemotaxis
by OSCC cells (10). Moreover, TME expression of PDGFR-α
has been shown to correlate with a worse prognosis in patients
with prostate, breast, ovarian, non-small cell lung cancer and
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osteosarcoma and we have preliminary data that suggests the
TME PDGFR-α may bear prognostic significance in OSCC (4,
35, 39, 40), cancers previous described to have reactive stromal
microenvironments implicated in disease progression (41, 42).
Activation of PDGFR signaling pathways have been shown to
play a significant role in desmoplastic response, which is a
hallmark feature of OSCC. Studies are beginning to emerge
suggesting bone marrow derived mesenchymal cells may be an
important source of circulating stromal cells in TME (3, 9, 41)
and autocrine activation of PDGFR-α has been shown to promote
epithelial ovarian cancer cell proliferation and thought to play
a role in metaplastic transformation of mullerian epithelium
(35). Our observations are further supported by Ong et al.
who recently reported overexpression of PDGFR-α mRNA was
associated with advanced disease in patients with oral cavity
squamous cell carcinoma (43, 44).

The clinicopathologic response for patients with advanced
OSCC to conventional protocols including surgical excision,
chemotherapy, and radiation is poor, suggesting that treatment
strategies directed at tumor cells alone are inadequate. Single
use biologic agents such as cetuximab have shown poor clinical
efficacy, and recently, Braig et al. reported that cetuximab
resistance is linked to a single polymorphism in the EGFR (k-
allele), which is harbored by >40% of patients with HNSCC (45).
Immunotherapy based targeted treatment for oral cancers is in its
infancy, with pembrolizumab and nivolumab gaining approval
in late 2017 for platinum refractory patients with advanced
HNSCC (46).

Immunotherapy and treatments that target non-cancerous
cells in the TME, such as MSCs and desmoplastic fibrocytes
(i.e., CAFs), may improve clinical outcomes. Crenolanib is a
small molecule tyrosine kinase inhibitor with that is effective
against PDGFR-α and presently in clinical trials for patients
with gastrointestinal stromal tumors (GIST) in which PDGFRA
activation mutations confer resistance to imatinab (47). Use of
receptor tyrosine kinase inhibitors like imatinib have been shown
to improve responsiveness to doxorubicin through modulation
of AKT signaling in head and neck cancer cells (48), suggesting
small molecules like crenolanib may offer therapeutic value in
patients with PDGFR-α+ oral cancers.

Activation of PDGR’s leads to activation of several
downstream events including the PI3K/AKT signaling pathway
(49). The AKT pathway is frequently dysregulated in the setting
of cancer, and activation of AKT results in an anti-apoptotic
phenotype with increased expression of bcl-2 (50). We provide
strong evidence that co-culture with MSCs results in increased
expression of bcl-2 in oral cancer cells (Figure 2A), and these
events appear to be mediated via activation of AKT at T308
and S473 (Figures 1B,C). Vincent et al. report that increased
p-AKT at T308 bears prognostic significance in non-small cell
lung cancer (51). Phosphorylation of T308 has been found
to be essential for catalytic activity and S473 site required for
maximal activation (52). In our model, we have found increase
p-PDGFR-α and p-AKT at both sites for JHU-012 and -019.

Therefore, we hypothesized that disruption of the PDGF-
AA/PDGFR-α signaling between OSCC cells and MSCs with
the receptor tyrosine kinase inhibitor crenolanib, may restore

cancer cell sensitivity to cisplatin. Crenolanib is presently in
active clinical trials for both hematologic and solid tumors and
has been shown to be 100-times more selective for PDGFR-
α compared to other agents (34, 47, 53, 54). We show here
that treatment with crenolanib blocks activation of PDGFR-α
(Figure 6A) and pretreated with 20 nM crenolanib significantly
reduces the cisplatin dose response OSCCC cells grown in co-
culture with MSCs compared to untreated MSC oral cancer
cell co-cultures (Figure 6C; p < 0.0001). Pretreatment with of
MSC oral cancer co-cultures with crenolanib restored cisplatin
sensitivity to that of cancer cells grown alone.

Given the widespread use of cisplatin in the management of
advanced OSCC, understanding how MSCs mediate resistance
to this agent has translational relevance. In addition to these
novel findings with respect to MSCs contribution to cisplatin
resistance through anti-apoptosis in oral cancers, we also
demonstrate this resistance can be overcome by a small molecule
PDGFR-α inhibitor crenolanib. The emerging role of MSCs in
pathophysiology of cancer, metastasis, and drug resistance has
translational relevance andmay affect patient outcomes.We have
demonstrated here that MSCs contribute to anti-apoptosis and
resistance to cisplatin in OSCC in vitro. Our findings suggest
selective targeting of TME MSCs may provide a viable treatment
strategy to combat cisplatin resistance and warrants further
mechanistic and translational study in OSCC.
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Supplemental Figure 1 | Total PDFGR-α expression. JHU-012, and −019 were

grown alone or in 1:1 co-culture with MSCs for 6 days activation of PDGFR-α

determined by Western immunoblotting. Total PDGFR-α was not detected by

Western immunoblotting (n = 2).

Supplemental Figure 2 | MSCs confer decreased cytotoxicity to cisplatin in

OSCC. Representative photographs demonstrate crystal violet staining for

JHU-012 (A) and JHU-019 (B) clonogenic assays as previously described and

reported in Figure 4. Note the number of blue stained colonies within the wells.

The black/violet staining clumps outside the wells are artifacts: crystallized

crystal violet.

Supplemental Figure 3 | MSC-induced cisplatin resistance is overcome by the

PDGFR inhibitor, crenolanib in OSCC. Representative photographs demonstrate

crystal violet staining for JHU-012 clonogenic assays following pretreatment with

and without crenolanib as previously described and reported in Figure 5C.

Supplemental Figure 4 | Total PDFGR-α expression. JHU-012 were grown alone

or in 1:1 co-culture with MSCs were treated with either 0, 20, or 200 nM

crenolanib for 6 days and activation of p-PDGFR-α determined by Western

immunoblotting. Total PDGFR-α expression was not detected by Western

immunoblotting at 0 and 20 nM crenolanib treatment (n = 2).
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