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Background: F-box and WD40 repeat domain-containing 7 (FBXW7) is an E3 ubiquitin ligase involved in the ubiquitination and
degradation of multiple oncogenic substrates. The tumour suppressor function is frequently lost in multiple cancers through
genetic deletion and mutations in a broad range of tumours. Loss of FBXW7 functionality results in the stabilisation of multiple
major oncoproteins, culminating in increased cellular proliferation and pro-survival pathways, cell cycle deregulation,
chromosomal instability and altered metabolism. Currently, there is no therapy to specifically target FBXW7-deficient tumours.

Methods: We performed a siRNA kinome screen to identify synthetically lethal hits to FBXW7 deficiency.

Results: We identified and validated cyclin G-associated kinase (GAK) as a potential new therapeutic target. Combined loss of
FBXW7 and GAK caused cell cycle defects, formation of multipolar mitoses and the induction of apoptosis. The synthetic lethal
mechanism appears to be independent of clathrin-mediated receptor endocytosis function of GAK.

Conclusions: These data suggest a putative therapeutic strategy for a large number of different types of human cancers with
FBXW7 loss, many of which have a paucity of molecular abnormalities and treatment options.

F-box and WD repeat domain-containing 7 (FBXW7) is one of the
most frequently perturbed proteins in the ubiquitin–proteasome
system in cancer. The FBXW7 is an E3 ubiquitin ligase that
degrades an extensive list of oncogenes (Welcker and Clurman,
2008; Inuzuka et al, 2011; Wertz et al, 2011). It acts as a bridging
molecule by binding substrates, through its WD40 domain, and
scaffold proteins through its F-box domain. This produces the
SCFFBXW7 complex that interacts with the ubiquitin-conjugating
complex facilitating the transfer of ubiquitin onto the substrate
signalling its degradation by the 26S proteasome.

The SCFFBXW7 complex is responsible for the degradation of
multiple oncogenic substrates including: cyclin E, c-MYC, c-JUN,
NOTCH and MCL-1, as well as a plethora of other proteins (Davis
et al, 2014). The FBXW7 controls the cellular levels of multiple
proteins involved in cell cycle regulation, cell proliferation,

differentiation, signal transduction, lipid metabolism and
anti-apoptosis. Loss of FBXW7 function results in reduced
substrate degradation and their overexpression, culminating in
cell proliferation, cell cycle deregulation, chromosomal instability
and activation of pro-survival pathways, as well as being associated
with poor clinical outcomes and drug resistance (Welcker and
Clurman, 2008; Wertz et al, 2011; Davis et al, 2014).

The FBXW7 gene locus 4q32 is deleted in a third of cancers
(Knuutila et al, 1999) and copy loss occurs in 15% (Kan et al,
2010). Multiple studies have detected FBXW7 somatic mutations
in a wide range of tumours, including B40% of cholangiocarci-
nomas and T-cell acute lymphoblastic leukaemias, as well as in
4–10% of carcinomas of the endometrium, colon, breast and
stomach (Spruck et al, 2002; Akhoondi et al, 2007). Targeting
tumour cells with loss of the FBXW7 presents an important
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treatment strategy given its widespread involvement in carcino-
genesis. Due to the inherent complexities of attempting to
restore protein function, synthetic lethality provides a feasible
strategy to identify vital proteins that cells have become dependent
on, in the absence of the FBXW7 tumour suppressor, that can be
inhibited to cause selective cancer cell death. This approach has
been clinically validated through the identification of PARP
inhibitors for BRCA-deficient tumours (Farmer et al, 2005;
Ashworth, 2008).

Herein, we describe a high-throughput RNA interference
(RNAi) kinome screen using HCT116 FBXW7-deficient cells that
contain the targeted deletion of the F-box domain and their wild-
type comparators (Jallepalli et al, 2001; Rajagopalan et al, 2004).
We identify cyclin G-associated kinase (GAK) as a potential
synthetic lethal partner with FBXW7 deficiency. The identification
of the druggable target GAK capable of selective toxicity in
FBXW7-deficient cancers has broad therapeutic applications across
numerous tumour types.

MATERIALS AND METHODS

Cell lines and compounds. Cell lines obtained from ATCC
(Teddington, UK) were maintained according to the supplier’s
instructions. Authenticated isogenic FBXW7 HCT116 human
colon cancer cells were a gift from Professor B Vogelstein (Johns
Hopkins Medical Institution, Baltimore, MD, USA). Compound
Pitstop 2 (Abcam, Cambridge, MA, USA), Annexin V (BD
Biosciences, Franklin Lakes, NJ, USA), propidiuim iodide (Sigma,
St Louis, MO, USA) and DAPI (Invitrogen, Waltham, MA, USA).

siRNA. All siRNAs were used at 50 nmol final concentration
(Dharmacon, Lafayette, CO, USA). Primary screen used the
siGENOME SMARTpool human protein kinase library arrayed
into 96-well plates. All deconvolution and subsequent RNAi were
undertaken using the Dharmacon catalogue. The individual GAK
siRNAs numbered 1–4 refer to siGENOME (SIG) and 5–8 ON-
TARGET plus (OTP). Control siRNAs included ON-TARGET
plus nontargeting (NT) and death (siTOX) control.

Antibodies. The following antibodies were used: a-tubulin
(Sigma), aurora A (Cell Signaling, Danvers, MA, USA), cleaved
PARP (Cell Signaling), clathrin heavy chain (Abcam), FITC-
conjugated mouse (Sigma) secondary antibody, GAPDH (VWR
International, Radnor, PA, USA), GAK mouse monoclonal (R&D
Systems, Minneapolis, MN, USA), HRP-conjugated secondary
antibodies (Sigma) and MPM-2 (Millipore, Billerica, MA, USA).

RNAi for kinome screen and deconvolution. Cells at low passage
were split the day before reverse transfection. Conditions were
optimised for each cell line so the NT controls were B90%
confluent by inspection under the microscope and the siTOX was
o10% relative to the NT controls on the day of measurement.
Screen conditions were as follows: siRNA was mixed with
transfection mixture of 0.19% Dharmafect 2 (Dharmacon) in
OptiMEM (Invitrogen), aliquoted into 96-well plates in duplicate
for two comparator cell lines. After 25 min of incubation at room
temperature, 3000 FBXW7þ /þ and � /� HCT116 cells in
antibiotic-free medium were added respectively and supplemented
with double the volume of medium with antibiotics at 7 h. On day
5, medium was removed and 100 ml of CellTiter Glo (Promega,
Madison, WI, USA) added, incubated at room temperature before
quantifying luminescence using a Victor X5 Plate Reader
(PerkinElmer, Waltham, MA, USA). Conditions were scaled up
for 6-well plates using 50 nmol of siRNA, 0.25% Dharmafect 2 for
400 000 HCT116 cells.

Immunoblot analysis. Whole-cells extracts were prepared in
Triton lysis buffer (120 mmol NaCl, 50 mmol Tris pH 7.4, 1%

Triton, 50 mmol NaF, 1 mmol EDTA, protease inhibitors). Protein
concentration of supernatent was quantified using the Bio-Rad
protein assay (Hercules, CA, USA). Equal amounts of protein
(30 mg) were loaded onto precast 4–12% Bis-Tris gels (Invitrogen)
with a rainbow molecular weight marker (GE Healthcare, Little
Chalfont, UK) as a size reference and separated by SDS–
polyacrylamide gel electrophoresis. Proteins were transferred to
nitrocellulose membranes (Sigma), blocked and probed with
primary antibody diluted 1 in 1000 in TBS-Tween with 4%
skimmed milk overnight at 4 1C. Secondary antibiodies were
diluted 1 in 5000 in TBS-T with 4% skimmed milk and incubated
for 1 h at room temperature. Protein bands were visualised using
ECL chemi-luminescence reagents followed by exposure on Kodak
BioMAX film (Rochester, NY, USA).

Validation of RNAi gene silencing and viability assays. Valida-
tion of RNAi gene silencing was determined by immunoblot
analysis and viability assays using individual oligonucleotides using
6- and 96-well plate siRNA conditions, respectively. Long-term cell
survival assay was as follows: following forward siRNA transfec-
tion, 1000 cells were seeded in 6-well plates, complete media were
replaced the next day and thrice weekly until day 14 when
surviving cells were washed with PBS, fixed with 10% trichlor-
oacetic acid (TCA) for 2 h, washed with water and stained with
sulforhodamine B (SRB) for a minimum of 30 min. Wells were
washed with 1% acetic acid and dried overnight before taking
images. The SRB was eluted using 1 ml of 10 mmol Tris pH 10.5
per well, plates shaken for 5 min before transferring 100 ml of dye to
a 96-well plate and absorbance read at 490 nm by the Victor X5
Plate Reader (PerkinElmer).

Cell cycle profiling by flow cytometry. All cells were harvested
from 10 cm dishes using PBS and then trypsin, centrifuged at
1000 r.p.m. for 5 min, supernatant removed and the cell pellet
resuspended in 150 ml of PBS to form a single-cell suspension. Cells
were fixed using ethanol (� 20 1C) to a final concentration of 75%
while gently vortexing and stored at � 20 1C for 16 h minimum
before analysis. Thereafter, cells were washed with PBS, centrifuged
at 1000 r.p.m. for 5 min and the supernatant removed. Cell pellets
were resuspended in MPM-2 antibody solution and incubated at
4 1C for 1 h, washed with PBS, centrifuged as before and
resuspended in FITC-conjugated secondary antibody (1 : 1000 in
PBS) and incubated in the dark at 4 1C for 1 h. Cells were washed
in PBS, centrifuged and resuspended in 500 ml propidium iodide
(PI) solution: 40 mg ml� 1 PI, 50mg ml� 1 RNase A in PBS (Sigma).
After 30 min of incubation at room temperature, cells were
analysed using the FACS analyser (BD Biosciences).

Annexin V FITC assay. Reverse transfection using NT control
and GAK siGENOME SMARTpool siRNA was undertaken in
6-well plates using FBXW7þ /þ and � /� HCT116 cells. Collected
cells were ethanol fixed as per cell cycle protocol. Cell pellets were
resuspended in 500 ml medium containing 0.2% PI, 0.5% Annexin
V and 0.25% calcium chloride. After 15 min of incubation in the
dark at room temperature, cells were transferred for FACS analysis
(BD Biosciences).

Immunofluorescence microscopy. Cells were seeded onto 19 mm
poly-L-lysine-coated coverslips and cultured for 24 h before being
washed with PBS and fixed in either 4% formaldehyde in PEM
buffer for 10 min at room temperature or 100% methanol for
10 min at � 20 1C. Coverslips were washed in PBS containing 0.1%
Triton X-100 (PBS-T) and incubated with glycine blocking
solution for 5 min at room temperature. Primary antibodies,
diluted in blocking solution, were placed onto each coverslip and
incubated at room temperature for 1 h. Followed by washing in
PBS-T and incubation with secondary antibodies for 30 min in the
dark, repeat PBS-T wash and incubation in DAPI for 3 min, both at
room temperature. Following final PBS-T wash, cells were
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mounted onto a glass slide, edges sealed and viewed using a
fluorescence microscope (Zeiss LSM 710, Oberkochen, Germany).
Where needed, z-stacks were performed comprising 10–30 images
at 0.1–0.5 mm intervals, image were captured and deconvoluted
image stacks were projected on a single plane using Volocity
software (PerkinElmer).

Live-cell time-lapse imaging. For generation of stable histone
H2b-mCherry HCT116 cells, 6� 105 HCT116 cells were seeded in
a 6-well plate day before forward transfection. The medium was
aspirated and replaced with 500 ml optiMEM and transfection
mixture was added (2mg of mCherry plasmid with 5 ml of L2000
transfection reagent in 500 ml of optiMEM) and incubated at room
temperature for 30 min. At 5 h, the medium was replaced with full
medium containing antibiotics. The cells were expanded and then
harvested and the mCherry-positive cells were selected using flow
cytometric sorting and repeated twice to ensure a high percentage
of expressing cells were isolated. For time-lapse imaging, cells were
cultured in 96-well Ibidi plates (Martinsried, Germany). Images
were taken with a Nikon (Tokyo, Japan) Eclipse TE2000-5
microscope, during which cells were maintained at 37 1C in a
humidified stream of 5% CO2. Images were taken every 3 min for
24 h with a 40� objective. The FITC fluorescence was used for
histone H2b-mCherry cells, with anaphase onset judged as the first
frame in which the sister chromatids moved to the opposite spindle
poles. Time-lapse images were analysed using ImageJ software
(Bethesda, MD, USA) counting the number of frames from nuclear
envelope break down to anaphase onset and data analysed by
GraphPad Prism (La Jolla, CA, USA).

Cell viability assays for Pitstop 2 treatment. A total of 2000 cells
were seeded in 100 ml of medium in 96-well plates and incubated
overnight at 37 1C. Two-fold serial dilutions of Pitstop 2 (Abcam)
in medium were prepared with a DMSO control. An aliquot (50 ml)
of drug or DMSO preparation was added to the cells and incubated
at 37 1C for 4 days when cell viability was quantified using the
CellTiter-Glo assay, as described. Survival fractions were calculated
by dividing the raw luminescence values for the drug treated well
by the DMSO controls. Data were analysed using GraphPad Prism
and survival curves determined.

Statistical analysis

siRNA high-throughput screen statistical analysis. Raw lumines-
cence readings for each well were log transformed and normalised
to the NT controls on that plate. The effect of the SMARTpool
targeting each gene on cell viability was expressed as a DZ-score.
First the Z-score was calculated, estimating the s.d. of the normal
distribution of the screen from the median absolute deviation of all
720 SMARTpools, adjusted by a factor of 1.4826 (Abdi, 2007). The
DZ-score was calculated by subtracting the Z-score for the FBXW7
wild-type from the deficient HCT116 cells. The mean DZ-score for
the two runs was calculated for each SMARTpool. The Z0 factors
were obtained using the NT and siTOX control wells, as a marker
of the discriminatory power of the screen.

RESULTS

RNAi kinome screen identifies GAK as a putative synthetic
lethal partner with FBXW7. In this study, we used a FBXW7-
deficient HCT116 cell line in order to identify potential genes that
cause selective killing in FBXW7-deficient cells compared with the
wild-type cells (Jallepalli et al, 2001; Rajagopalan et al, 2004). The
FBXW7� /� cells contain biallelic deletion of the FBXW7 F-box
domain resulting in a nonfunctional protein (if expressed) unable
to bind or degrade its substrates. High-throughput screening was
undertaken by reverse transfection of 720 SMARTpool siRNAs

targeting the human protein kinase library (Dharmacon) in 96-well
format (Figure 1A), alongside NT and a positive death (siTOX)
controls, with the screen readout being cell viability on day 5
(Drosopoulos et al, 2014). The screen, conducted in duplicate, was
highly reproducible (r2¼ 0.89 and 0.85) and robust (mean Z0

factors of 0.74 and 0.73) for FBXW7 wild-type and FBXW7� /�

HCT116 cells, respectively (Supplementary Figure 1). The ranked
mean DZ-scores of the two runs are shown in Figure 1B, and a
statistically significant threshold of DZ-score p� 2 was used to
select hits for further validation. A secondary RNAi screen was
undertaken to validate hits through the concept of redundancy and
to exclude target effects of the siRNAs used for the screen; genes
would only be considered hits when at least two out of the four
oligonucleotides causes selective cell death in FBXW7� /� cells as
compared with the wild-type cells. The top 22 primary screen hit
SMARTpools were deconvoluted into their 4 individual siRNAs
and tested in triplicate under the primary screen conditions, with 7
potential hits validating (Supplementary Table 1). The candidate
gene, GAK, was validated as the lead hit, with all 8 individual
siRNAs (deconvoluted from two SMARTpools) producing a
statistically significant increase in cell death in the FBXW7� /�

compared with parental HCT116 cells (Figure 1C: mean
44.88%±3.15 s.e.m. vs 77.50%±3.52, respectively). Furthermore,
cell death correlated with GAK gene silencing, with robust GAK
protein knockdown with all 8 siRNAs (Figure 1D). GAK, or
Auxilin 2, is a ubiquitously expressed cytosolic kinase involved in
mitosis and receptor-mediated endocytosis (Kimura et al, 1997).
The role of GAK in mitosis has been presented mainly in mitotic
spindle assembly and chromosomal alignment (Shimizu et al, 2009;
Tanenbaum et al, 2010). The GAK functions in receptor-mediated
endocytosis, through the formation of clathrin-coated vesicles,
involving the epidermal and insulin growth factor receptors
(Zhang et al, 2004; Susa et al, 2010).

To further test whether GAK RNAi caused a reduction in
proliferation of FBXW7-deficient cells, GAK RNAi was used in 22
cell lines (9 FBXW7-deficient and 13 proficient wild-type cell
lines): 4 breast, 10 gynaecological and 8 colorectal (Supplementary
Table 2). Given the small number of FBXW7-mutant cell lines
known and available, it was not possible to select cells of similar
histological or biological subtypes. Rigorous optimisation
was undertaken to identify the optimal conditions to ensure the
least toxicity and most efficient transfections for each cell line
(Figures 2 and 3).

The breast FBXW7-deficient (HCC1143, SUM149PT) and
FBXW7-proficient (T47D, MCF7) cells demonstrated a clear
relationship between FBXW7 loss of function and sensitivity to
GAK knockdown, using two separate GAK SMARTpools,
siGENOME and OTP (Figure 2A). Combined analysis of the two
FBXW7-deficient cell lines showed a significantly reduced median
cell viability of 45.3 and 45.1%, compared with 63.8 and 98.6% for
the two wild-type comparators, for the respective SMARTpools
(Figure 2B). This accorded with robust GAK protein knockdown
(Figure 2C). To identify statistical significance the combined
analysis of all the aforementioned breast cancer cell lines using
both SMARTpools was undertaken. Each data point represents cell
survival of the FBXW7-deficient HCC1143 and SUM149PT cells
compared with the proficient T47D and MCF7 cells with the
siGENOME and OTP SMARTpools from triplicate experiments.
This confirmed a highly statistically significant difference for the
FBXW7-deficient cells with median survival of 43.8 vs 94.2%,
Po0.0001 by paired T-test (Figure 2D).

FBXW7-deficient gynaecological cell lines were not more
sensitive to GAK RNAi compared with the FBXW7 wild-type
cells (Figure 3A and B). Median cell survival was 46% vs 53% in
FBXW7-deficient and -proficient cells prospectively (Figure 3B)
despite adequate protein knockdown (Figure 3C). Furthermore, the
entire colon cancer cell panel was relatively insensitive to GAK
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inhibition (Figure 3D) despite good protein knockdown
(Figure 3E). The cells showed similar low sensitivity to GAK
RNAi whether they were FBXW7 proficient or deficient, with
median cell viabilities of 84% and 81%, respectively (Figure 3F).
Hence, GAK depletion is not synthetically lethal to FBXW7 loss in
colorectal or gynaecological cell lines. The small number of
FBXW7-mutant cell lines available hindered investigation in a
larger cell line panel.

Dual GAK-FBXW7 inhibition induces apoptosis after 48 h. To
analyse the mode of death in the FBXW7� /� HCT116 cells, a
long-term cell proliferation assay was performed for 14 days using
two SMARTpools targeting GAK (Figure 4A and B). This
confirmed that GAK RNAi was significantly more toxic to
FBXW7� /� compared with the wild-type cells (Figure 4A),
reducing cell viability to B10% with the siGENOME and 16% with
the OTP pools, compared with 87 and 97% viability for FBXW7þ /

þ cells, respectively (Figure 4B). This is likely to indicate

incremental FBXW7� /� killing over a prolonged time period,
as the percentage cell death is higher at 14 as compared with
5 days despite the fact the RNAi-mediated gene silencing would
have ended.

The PARP cleavage was used to determine whether the cells
were undergoing apoptosis at 72 and 96 h following GAK RNAi
(Figure 4C). In association with robust GAK protein knockdown
following RNAi, there was a clear increase in cleaved PARP levels
at both 72 and 96 h in the F-box deficient but not wild-type cells,
suggesting apoptosis had already commenced at these times. This
confirmed GAK-mediated cell death by apoptosis preferentially in
the FBXW7� /� HCT116 cells after 72 h as compared with the
wild-type cells. Interestingly, it was noticed that GAK levels are
lower in the FBXW7� /� cells, although the reason for this is
unclear. An Annexin V assay was undertaken to quantify the
degree of apoptosis in the FBXW7 isogenic cells at 24–96 h
following siRNA transfection with GAK siGENOME SMARTpool
compared with the NT control (Figure 4D). Similar results were
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obtained for the FBXW7-proficient and -deficient cells with the
control and GAK siRNA at 24 h; mean viable cells were 93–97% vs
apoptotic cells of 2–8%. From 48 h onwards, the GAK RNAi
consistently induced double the number of apoptotic cells in
FBXW7� /� compared with the wild-type cells; 21% vs 8% at 48 h
and 29% vs 12% at 96 h, respectively, thus, confirming a
preferential increase in apoptosis in the FBXW7� /� cell line in
response to GAK RNAi compared with the wild-type controls from
48 h incrementing to involve a fifth of cells by 72 h (Figure 4D).

Dual GAK-FBXW7 inhibition causes cell cycle disruption and
perturbs mitosis. The GAK RNAi has previously been reported to
cause a mitotic arrest in HeLa cells (Shimizu et al, 2009), and we
assessed the global cell cycle effect of GAK RNAi on the FBXW7

isogenic cells using flow cytometry. The HCT116 cells were treated
with mock, NT and GAK siGENOME SMARTpool siRNA, and
then the DNA content analysed by PI staining 48–120 h later
(Figure 5A). At 48 h, the cell cycle profiles for both cell lines under
all conditions were similar, with a clear large 2n DNA peak (G1
cells) and smaller 4n DNA peak (G2/M). However, from 72 h
onwards, a clear difference became evident between the FBXW7-
deficient and -proficient cells when treated with the GAK siRNA.
For the wild-type cells, at 72 h there is a small decrease in the 2n
population; however, in the FBXW7-null cells, this phenotype is
much more dramatic, with the 2n peak being only as large as the
4n peak, with a concomitant increase in the sub-2n population
(apoptotic cells). However, as the 4n peak remains the same size,
this argues against a significant cell cycle arrest in G2 or mitosis.
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Furthermore, this phenotype gets progressively more intense over
time, with a complete loss of the cell cycle by 120 h, although the
wild-type cells appear to be less severely affected by the GAK
RNAi.

Multipolar spindle formation in HeLa cells has also been
reported following GAK RNAi (Shimizu et al, 2009). To ascertain
whether this holds true in HCT116 cells and to determine whether
this phenotype is exacerbated in FBXW7� /� cells, immunofluor-
escence microscopy was performed at 48 and 72 h following RNAi
with NT and GAK SMARTpool RNAi in the HCT116 isogenic pair

(Figure 5B and C). Cells were fixed and stained with antibodies
against a-tubulin and Aurora A to visualise the mitotic spindles
and centrosomes (Figure 5B), respectively, and the number of
multipolar cells quantified (Figure 5C). In both cells transfected
with the NT control, the majority of mitotic cells contained bipolar
spindles, with only a very small number of multipolar mitoses
being evident. However, following GAK RNAi, there was a clear
induction in multipolar mitoses in both cell lines. The FBXW7� /�

cells demonstrated a two-fold increase in combined tri- and
multipolar spindles compared with wild-type cells with 11% vs 2%,
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and 19% vs 11%, at 48 and 72 h, respectively (Figure 5C).
Importantly, not only was this phenotype more prominent in the
FBXW7 null cells, but it was more severe, with up to 6 spindle
poles being identified in some cells, whereas generally only tripolar
formations were seen in the wild-type cells (Figure 5B). This
suggests that the loss of GAK and FBXW7 may synergise in
producing multipolar spindles.

The GAK RNAi-induced mitotic arrest has been documented in
HeLa and U2OS cell lines (Shimizu et al, 2009). In addition to the
cell cycle disruption identified predominantly in F-box-deficient
cells, we determined the effect of GAK silencing on mitotic
duration using time-lapse microscopy. The FBXW7þ /þ and � /�

HCT116 cells were made to stably express histone H2B-mCherry,
allowing the visualisation of the DNA. Time-lapse microscopy was
performed 48 h following transfection with NT or GAK SMART-
pool siRNA (Figure 5D). Mitotic duration was calculated for 100
cells for each siRNA. Although small, we observed a statistically

significant difference in the median mitotic duration for the NT
controls between the FBXW7-proficient and -deficient cells: 21 vs
27 min, respectively (n¼ 100, Po0.0001), perhaps suggesting a
tendency for the FBXW7-null cells to have more problems aligning
their chromosomes, as previously reported (Rajagopalan et al,
2004; Bailey et al, 2015). For the cells treated with GAK RNAi, the
median mitotic interval was increased to 30 min (95% CI 33.67–
46.73) vs 33 min (43.03–57.59), respectively. Although this was not
significantly different between the isogenic cells (n¼ 100,
P¼ 0.23), it was constantly longer than the NT controls. This
indicates that GAK does appear to play a role in the timing of
mitosis in HCT116 cells; however, it appears to be relatively minor
and independent of FBXW7 function. Such a small increase may
also explain why a difference was not apparent by flow cytometry.

Synthetic lethal mechanism between FBXW7 and GAK is
clathrin independent. Pitstop 2, a cell-permeable clathrin
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inhibitor (Dutta et al, 2012), and siRNA targeting the clathrin
heavy chain (CHC) were utilised to evaluate whether the synthetic
lethal mechanism with FBXW7 was related to the clathrin function
of GAK (Figure 6). In viability assays similar killing curves were
apparent in the FBXW7 isogenic HCT116 cells following 5-day
exposure to Pitstop 2 (Figure 6A). Actually, the FBXW7� /� cells
seemed to be slightly more insensitive to clathrin inhibition. Cell
cycle profiling was undertaken at 24–48 h following Pitstop 2
treatment at 40 and 80 mM (Figure 6B). A similar profile was seen
for the controls at both concentrations and time points, with
Pitstop 2 appearing to have no effect on the cell cycle profiles, with
the exception of 80 mM at 48 h in the wild-type cells. These cell cycle
profiles are markedly different to the same cell lines in response to

GAK RNAi (Figure 5A). This hypothesis was tested further using
RNAi against clathrin (Figure 6C–E). Once again the FBXW7-
deficient HCT116 cells were less sensitive to clathrin siRNA than
the wild-type cells when using a proliferation assay, with
statistically significantly different mean cell survival of 77%
compared with 54% in the proficient comparators (Figure 6C);
this correlates with the Pitstop 2 drug response. Secondly, there
was no obvious alteration in the cell cycle profiles of either the
FBXW7þ /þ or � /� cells at 48–96 h post clathrin siRNA
transfection (Figure 6D) despite adequate clathrin knockdown
(Figure 6E). All these data together suggest that the toxicity
associated with GAK knockdown is not mediated through clathrin
binding in these FBXW7 isogenic cells.
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DISCUSSION

A robust siRNA kinome screen identified GAK as a synthetic lethal
target with FBXW7 loss. The use of SMARTpools maximised
knockdown efficiency while minimising the individual siRNA dose.
The GAK validated strongly with 8 out of 8 different siRNAs
inducing statistically significant preferential death in HCT116
FBXW7� /� with associated efficient gene silencing of the GAK
protein. This markedly reduces the risk of these findings being due
to off-target effects or activation of the interferon response
(Sharma and Rao, 2009; Kaelin, 2012).

Silencing of GAK, by two different SMARTpools, in breast basal
FBXW7-deficient cells caused statistically significant increased cell
death of 19% and 54% relative to the wild-type comparators. The
FBXW7-GAK synthetic lethal relationship was not confirmed in
the colorectal or gynaecological cell lines. This may be due to the
fact that different molecular backgrounds (Supplementary Table 2)

define sensitivity, such as is apparent clinically with the contrasting
responses seen with single agent BRAF inhibitors in melanoma and
colorectal cancers (Herr and Brummer, 2015). Wider exploration
in larger cell line panels is not possible given the small numbers of
FBXW7-mutant cells available.

We have demonstrated that GAK inhibition in FBXW7� /�

HCT116 causes cell death that increases over time, detected by a
variety of assays. From 48 h, the cell cycle is disrupted, followed by
the induction of apoptosis at 72 h. By day 5, cell death was at 60–
80%, which increased to 85–90% by day 14. The prolonged nature
of these effects suggests accumulation of cellular defects is
necessary before death ensues.

The work conducted focussed on the role of GAK in mitotic
spindle assembly and chromosomal alignment (Shimizu et al, 2009;
Tanenbaum et al, 2010). We have demonstrated that siRNA-
mediated GAK silencing causes marked cell cycle disruption
resulting in a raised sub-G1 alongside decreased G1 and G2/M cell
cycle phases. Published work in HeLa cells has shown GAK RNAi
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induces mitotic arrest and increased G2/M peak (Shimizu et al,
2009). This discrepancy may simply reflect the different cell lines
used. In addition, the true phenotype of cellular GAK depletion has
not reached a consensus, with conflicting data reported from
different cell lines and groups (Lee et al, 2008). Contrary to GAK
RNAi inducing mitotic arrest in HeLa cells (Shimizu et al, 2009),
there was only a minor mitotic delay of 3 min in both the
FBXW7þ /þ and � /� HCT116 cells, but this was neither
significant nor specific to loss of F-box functionality, suggesting
that GAK is involved, but not essential for, mitotic progression
concurring with previous reports (Shimizu et al, 2009). The
differences between our and published data may purely represent
different cell line responses to GAK knockdown.

The most marked phenotype of GAK RNAi-induced multipolar
mitoses that appeared to be augmented in the context of FBXW7
loss represents a notable outcome and mirrored data in the HeLa
cell lines (Shimizu et al, 2009). Dual FBXW7-GAK inhibition
increases multipolar mitoses to B20% at 72 h. This doubling,
compared with the wild-type controls, could account for the
increased cell death potentially through chromosomal missegrega-
tion resulting in aneuploidy (Duensing and Munger, 2001). This
mechanism may account for the selective toxicity of GAK siRNA
in FBXW7-deficient cells known to possess chromosomal instabil-
ity, mainly documented by cyclin E overexpression (Spruck et al,
1999; Rajagopalan et al, 2004; Loeb et al, 2005). The accumulation
of mitotic defects through GAK inhibition could present a
therapeutic strategy by inducing replicative stress, in a selective
manner, targeting the inherent mitotically unstable FBXW7� /�

cells (Dobbelstein and Sorensen, 2015).
We have identified a potential novel drug candidate for

FBXW7-deficient tumours. The phenotype of mutual GAK-
FBXW7 loss is unlikely to have resulted from clathrin or
receptor-mediated endocytosis. The severe cell cycle disruption
with multipolar defects means that it is more likely to be a mitotic
defect, although elucidating the exact mechanism of cell death has
proven difficult. The GAK-FBXW7-deficient phenotype appears
different to GAK inhibition in other cells (Shimizu et al, 2009;
Tanenbaum et al, 2010) and not related to loss of the spindle
assembly checkpoint in HCT116 cells (Bailey et al, 2015).
Currently, there are no commercially available selective GAK
inhibitors to allow the use of kinase inhibitors to simulate siRNA
effects. Data have recently been published on the development of a
GAK-specific inhibitor, although the potency is relatively low with
the half-maximal concentration (EC50) values in the 2–3 mM range
(Kovackova et al, 2015); we were unable to access this for
confirmation experiments at this juncture. Further studies are
needed warranted including expansion of cell line work by
blocking FBXW7 activity in wild-type cells as well as to
ascertaining whether GAK inhibition is kinase dependent.

A multitude of cancers would be good clinical candidates for
specific GAK inhibitors including cholangiocarcinoma, as epithe-
lial bile duct cancers are one of the highest mutated FBXW7
tumours, have poor prognosis and a paucity of therapeutic agents
(Meza-Junco et al, 2010). Our data also support the potential use of
GAK inhibitors in triple-negative FBXW7-deficient tumours.
During the development of any novel inhibitor, it is imperative
to establish a robust predictive biomarker that would be key to
selecting preferential candidate compounds.
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