
Emergence of scaling in human-interest
dynamics
Zhi-Dan Zhao1,2, Zimo Yang1, Zike Zhang1,3, Tao Zhou1, Zi-Gang Huang2,4 & Ying-Cheng Lai2

1Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China, 2School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA, 3Institute for Information Economy,
Hangzhou Normal University, Hangzhou 310036, China, 4Institute of Computational Physics and Complex Systems, Lanzhou
University, Lanzhou, Gansu 730000, China.

Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the
dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme
difficulty in accessing the human mind from observations. However, the availability of large-scale data, such
as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify
the dynamics of human interest. Using three prototypical ‘‘Big Data’’ sets, we investigate the scaling
behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed
(possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous
interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that
there are three basic ingredients underlying human-interest dynamics: preferential return to previously
visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model,
incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study
represents the first attempt to understand the dynamical processes underlying human interest, which has
significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks
such as recommendation and human-behavior prediction.

A
fundamental feature of a human society is that its individuals possess all kinds of interests, the driving

force of many human behaviors. Some interests may last for a lifetime while others can fade away in short
time. From time to time our interests also change. In the modern society that we live in, all kinds of

attractions and temptations emerge and disappear on a daily basis. Does this mean that the evolution of our
interest is mostly random? Or are there intrinsic dynamical rules that govern how human interests evolve with
time? To answer these questions was deemed to be extremely difficult, due to the lack of appropriate means to
characterize human mind and to measure quantitatively how it changes with time. Yet the questions are fun-
damental in science, and any revelation of the dynamics of human interest may have significant applications in
commerce, medical sciences, and even defense. In particular, in commerce, adequate knowledge of customer
interests and how they change with time are key to the success of many businesses as such knowledge can be of
tremendous value to advertisement design and product promotion. In psychiatry, a good understanding of
patients’ interests may help generate accurate diagnosis and devise effective therapeutic approaches. In defense,
timely and reliable assessment of certain group or individuals’ interests and their time evolution can help predict
the group or individuals’ possible future behaviors and actions. Apparently, all these rely on human-interest
dynamics’ being not completely random.

There have been efforts in modeling and understanding human behaviors that are essential to many social and
economical phenomena, with significant applications in areas ranging from resource allocation and transporta-
tion control to epidemic prediction and personal recommendation1–4. The pursuit has been facilitated greatly by
the advances in information technology, especially by the availability of massive Internet data and resources5.
However, to probe into human-interest dynamics is more challenging, due to the difficulty in characterizing
human interests and traditional lack of data sets from which the underlying dynamical processes may be deduced.
In recent years ‘‘Big Data’’ sets, such as those from e-commerce or mobile-phone communications, become
commonly available, making it possible to quantify human interests and to infer their intrinsic dynamics. As a
branch of the science of ‘‘Big Data’’, the field of human-interest dynamics is at its infancy.

A viable approach to probing into human-interest dynamics is to use data analysis as a getaway to uncover
various phenomena and possible scaling laws. Guided by this principle, in this paper we explore two e-commerce
data sets (Douban, Taobao) and one communication data set [Mobile-Phone Reading (MPR)], and focus on three
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issues: statistical distribution of the time that an interest lasts, distri-
bution of the return time to revisiting a particular interest, and inter-
est ranking and transition. Considering the large number of factors
that can affect human interest, such as the specific activity contents
and distractions of the individual’s attention, it seems plausible that
the underlying dynamics be completely random6–8. Indeed, a widely
used assumption is that of the Markovian type of dynamics for indi-
viduals’ online behaviors, in which an online user’s next action
depends not on his/her history of interests but on the current interest
only9–11. However, there is recent evidence12,13 of deviations from the
Markovian dynamics. Our systematic analysis of the three data sets
reveals an unequivocal signature of the fat-tailed scaling behavior
characteristic of non-equilibrium complex systems and, conse-
quently, indicates the existence of intrinsic dynamical rules govern-
ing the human-interest dynamics. Based on the empirical analysis,
we identify three basic ingredients underlying the dynamics: pref-
erential return, inertial effect and exploration. A mathematical model
incorporating these ingredients is then developed to account for the
observed fat-tailed scaling behaviors. Our study represents the first
systematic attempt to probe into the dynamics of human interest,
and we expect our finding and model to have broad applications.

We note that, in the study of human behaviors, heavy-tailed type
of statistical features, e.g., those in the inter-event time distribu-
tions14–19, have been uncovered recently. Such a non-Poisson type
of distribution implies, e.g., that the bursts of rapidly occurring
events are typically separated by long periods of inactivity. Various
mechanisms have been proposed to explain the heavy-tailed inter-
event statistics, such as the highest-priority-first queue model14,20,
Poisson probability model21,22, varying interest23, memory effects24,
and human interactions19,25,26. Non-Poisson, heavy-tailed type of
statistics also arise in human mobility trajectories27–29, and math-
ematical models have been proposed to account for the non-
Markovian type of dynamics underlying the human mobility, such
as those based on exploration and preferential return30, hierarchy of
traffic systems31, and regular mobility32. Variances in the statistical

behaviors of human mobility were also reported33–35. The distinct
feature of our work is its focus on human-interest dynamics.

Results
We analyze three massive data sets: two from e-commerce, namely,
Douban and Taobao, and one from mobile-communication, i.e.,
MPR. We focus on the scaling of three quantities: (1) the time interval
l that an individual stays within the same interest, defined as the
length of a sequence of clicks within the same interest category
(defined in Methods), (2) the time interval t that an individual
returns to visiting the same interest category, defined as the sequence
of clicks between two visits to the same interest, representing a kind
of memory effect in the dynamics of interest, and (3) the frequencies
of visit of an individual to different interests, which can be used to
rank this individual’s particular interests.

Fat-tailed distribution of interest interval l. A number of
approaches have been proposed to characterize an individual’s
interests, such as the interest profile36, contextual information37,
distinct visited subpages38, and service items39. Taking advantage of
the nature of our large data sets, we use categories to characterize an
individual’s interests, which can be, for example, music, books and
movies on Douban, clothing, footwear, and toys in Taobao, love
stories and science fictions on MPR, and so on. Figure 1(a) shows,
for a typical individual on Douban, the distribution P(l) of l visiting
different interest categories, which exhibits a fat-tailed distribution:
P(l) , l2a. The long tail associated with the scaling indicates that the
individual tends to spend an abnormally long time visiting certain
interests during browsing. Similar scaling behaviors have been found
for users on Taobao and MPR, as shown in Figs. 1(b) and 1(c),
respectively. A typical sequence that the values of l corresponding
to an identical interest appear is shown in Fig. 1(d). From Fig. 1(d),
we observe a highly non-uniform behavior in the values of l, which
gives rise to the fat-tailed distribution in Fig. 1(a). We have examined
many individuals from the three data sets, and found similar

Figure 1 | Distribution of interest-dwelling time. (a–c) Probability distributions P(l) of the time interval l of consecutive visits to the same interest for

three representative individuals, each from one of the three data sets (Douban, Taobao, and MPR), where the numbers of interests are 3, 24, and 44,

respectively. The numbers of clicks (Na) for the three cases are 18396, 106571, and 4398, respectively. The three distributions can be fitted as P(l) , l2a,

with exponents a < 1.16, 4.02 and 3.35, respectively (the values of the exponent a are estimated using the maximum-likelihood criterion63). Panel (d)

shows the various values of l as they appear with time, where n is the event index (an integer variable).
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behaviors. In fact, the distribution of l for all users from any
particular data set exhibits a robust fat-tailed distribution (Fig. S1
in Supplementary Information). The scaling observed for all cases
implies substantial derivation of the human-interest dynamics from
that of the Markovian process (associated with the transition
probability matrix for interests) for which the scaling of l would be
exponential40.

Memory effect in human-interest dynamics. Memory, as one of the
key attributes of human being, has been widely studied in the
past23,24,35,41–44. We observe from our data sets that, often, an
individual tends to return to specific interests that he/she has
recently visited with relatively higher probabilities than those
visited long ago. For example, even when an interest had been
visited many times in the past, if the most recent visit dates back
one year or longer, the probability of revisiting is lower as compared
with that associated with another interest that was visited merely a
week ago. But would the probability that an interest is revisited after a
very long time be exponentially small? To answer this question, we
calculate the distribution of the return time44 t, the time interval that
an individual revisits the same interest after the last visit. Typical
distributions from three individuals, one from each data base, are
shown in Figs. 2(a–c), which can again be well fitted by fat-tailed
distributions: P(t) , t2b, with the exponent b. While P(t) is higher
for small values of t, the probability of the occurrence of very large
values of t is, surprisingly, not exponentially small, indicating that
such events can indeed occur. An important implication is that, both
short-term and long-term memories can shape the human-interest
dynamics. Similar results are obtained for many other users (Fig. S5
in Supplementary Information). Additionally, the distribution of t
for all users from any particular data set exhibits a fat-tailed
distribution (Fig. S1 in Supplementary Information).

Interest ranking and transition among interests. An individual can
possess a number of interests, which can be ranked in terms of the
respective frequencies of visit. In a given (large) time interval, an
individual can focus on different interests, giving rise to a kind of
‘‘transition’’ among the interests. The interest ranking and transition
are important not only for the study of human dynamics14,30 and
decision-making45,46, but also for applications such as behavior
prediction and search-algorithm design.

A convenient way to assess the interest-transition pattern for an
individual is to use a network representation, where nodes denote
different interests with sizes determined by their ranks, links corre-
spond to the observed transitions among the interests, and the dwell-
ing time in any particular interest is represented by a self loop.
Similar network representations have also been used in other con-
texts such as transportation dynamics47, citations48, and human-
mobility behaviors49. Figures 3(a–c) show examples of the transition
networks of one typical individual from each of the three data sets,

respectively. Setting the most frequently visited interest to have rank
r 5 1 and the successively less frequently visited interests to have
ranks r 5 2, 3, and so on, we can generate a distribution of the interest
rank for each individual, examples of which are shown in Figs. 3(d–f).
In all cases, such a rank distribution can be approximately fitted by
the following exponentially truncated fat-tailed distribution: fr 5 r2c

exp (2r/S), where S is the number of distinct interests that the
individual has selected. Note that this truncated fat-tailed distri-
bution is with respect to an individual. When the collective behavior
of a large number of individuals is considered, the signature of the
exponential truncation diminishes and the scaling of fr can be better
fitted by a fat-tailed distribution (see Fig. S1 in Supplementary
Information). This is similar to the fat-tailed ranking distribution
observed in the collective human-mobility patterns28,30,50 where the
distribution is with respect to the actual locations that the individual
visits physically.

Model of human-interest dynamics. To gain insights into the
development of a quantitative model describing the dynamics of
human interest, we study the transition pattern of any individual
among interests, which can be characterized by the probability for
transitional events to take place between interests i and j, defined as

p i,jð Þ~n i,jð Þ
.X

i,j
n i,jð Þ, where n(i, j) is the number of switchings

from interest i to j. Examples of the transition probabilities, those
corresponding to the respective transition networks in Figs. 3(a–c),
are shown in Figs. 3(g–i) in the two-dimensional representation of i
and j. We observe two key features: (i) p(i, j) exhibits relatively large
values for transitions among the highly ranked interests (note that r
5 1 corresponds to the highest ranked interest), and (ii) the diagonal
elements p(i, i) have relatively large values as well. The first feature
suggests a kind of preferential selection12,30,51–53 of interests: indi-
viduals tend to return to highly ranked interests with relatively
larger probabilities and stay in these interests. The second feature
indicates an inertial effect: an individual tends to stay in the interest
that he/she has already been exploring. These two ingredients,
preferential return and inertia, plus an individual’s desire to
explore new interest, are the basic ingredients underlying the
human-interest dynamics, based on which a phenomenological
model can be developed.

A schematic illustration of our model is shown in Fig. 4(a). To
initiate the dynamical evolution of interest, an individual has two
options: exploration of new interest or return to one of the previously
visited interests, with probability rn2l and 1 2 rn2l, respectively,
where 0 , r # 1 and l . 0 are parameters30,44, and n denotes the
number of hopping-events among different interests, which is
obtained by merging the same interest in click-event series into
one. For example, the click-event series 1, 1, 2, 2, 2, 1, 3 with 7 actions
can be transformed into the following hopping-event series: 1, 2, 1, 3,
where n 5 4. In the exploration state, individual visits a new interest

Figure 2 | Memory effect of human interest dynamics. (a–c) For the data sets in Figs. 1(a–c), respectively, fat-tailed distributions (t2b) of the time t taken

to revisit the same interest. The values of the fitted exponent b are approximately 1.58, 2.04, and 1.41 for (a–c), respectively.
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and continuously browses the same interest, due to the effect of
inertia. At a ‘‘microscopic’’ level, inertial browsing can be regarded
as an excited random-walk process (ERW)54. If the individual returns
to a set of previous revisited interests, he/she preferentially selects an
interest category to browse according to the prior probability of visit
to the same interest. Once a particular interest is chosen, the inertial
effect sets in and the individual has the tendency to stay in the same
interest category. The microscopic browsing behavior again can be
modeled by an excited random-walk process. A detailed mathemat-
ical analysis of the model in Fig. 4(a) can be found in Supplementary
Information. Examples of the predicted scaling relations are illu-
strated in Figs. 4(b–d) (with more examples in Supplementary
Information), which are consistent with those uncovered from real
data as exemplified in Figs. 1–3.

Discussion
Despite recent efforts in human-mobility dynamics14–19, little is
known about human-interest dynamics. We aim to explore the fun-
damental mechanisms underpinning the human-interest dynamics
through a completely data-driven approach. In particular, we have
analyzed three large-scale data sets: two from e-commerce and one

from mobile communication, and uncovered the emergence of fat-
tailed behaviors in a number of fundamental quantities. These are the
interval l to stay in an interest, the time interval t to return to a
previously visited interest, and the interest-ranking distribution. A
detailed analysis of the patterns of the transition probabilities among
different interests suggests preferential return, inertia, and explora-
tion as the three basic dynamical ingredients underlying the human-
interest dynamics, enabling us to construct a phenomenological,
random-walk based model. The model captures the essential features
of the human-interest dynamics in that it is constructed based on
generic ingredients extracted from real data, and it is capable of
reproducing the scaling laws observed from data. The model, how-
ever, may still be idealized as it cannot predict the scaling exponents.
To develop a more predictive model, additional effects must be
included, such as individual’s memory effect12,24,35, cognitive activ-
ities45,53, and the specific web categories, etc. Nonetheless, the current
model provides a phenomenological framework where the basic
properties and scaling behaviors associated with human-interest
dynamics can be explained.

The fat-tailed distributions uncovered from data and the dynam-
ical model developed accordingly can be applied to addressing

Figure 3 | Interest-transition network and transition probabilities. (a–c) For the three individuals represented in Figs. 1(a–c), the respective transition

networks, where nodes correspond to distinct interests, a self loop represents the dwelling time in the same interest category, and the weighted links

characterize the interest transitions. A few highly frequently visited interests are marked. (d–f) Truncated fat-tailed in the rank distribution: fr / r2c exp

(2r/S), where the fitted values of the exponent c and the numbers of interests are (c, S) 5 (0.89, 24) (panel (e), Taobao) and (c, S) 5 (1.39, 44) (panel (f),

MPR) (The dashed line in Fig. 3(d) is for eye guide). (g–i) Two-dimensional representation of the interest-transition probabilities for the three networks

in (a–c), respectively. The probabilities are represented on a logarithmic scale; see side bars.
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significant problems ranging from human-behavior prediction and
the design of search algorithms30,55 to controlling spreading dyna-
mics56,57. As a demonstration, we have quantified the degree of pre-
dictability of user-behavior patterns underlying the three data sets by
using the statistical measures of entropy and Fano inequality30, with
the result that such patterns are in fact quite predictable, despite the
apparent randomness in the human-interest dynamics (see Supple-
mentary Information).

Methods
Data collection. The massive data sets used in this article are from large-scale real e-
commerce and communication systems: Douban, Taobao, and MPR. For fair
comparison, in each data set we focus on users who performed at least 100 actions.
Data description and basic statistical properties are listed in Table I.

(i) Douban. The experimental data set is randomly sampled from Douban, a major e-
commerce company in China. It is similar to the Social Networking Services (SNS)
that allows registered users to record information and create contents related to
movies, books, and music, etc., yet it can also make personalized recommendations
for the registered users. In this data set, we select 21,148 individuals, each executing at
least 100 rating actions, from which we can find historical information about the
users, such as user ID, item ID, rate, timestamps, and item types (considered as
interest types), etc. The sampling time resolution is one second.

(ii) Taobao. The Chinese web site Taobao is one of the world’s largest electronic
marketplaces. The browsing behaviors of users on Taobao are recorded, and any user
can browse and trade with any other users. Our data is composed of all browsing
behaviors of 34,330 users, each browsing more than 100 items in the time span
between September 1 and October 28, 2011. For each user, information is available
such as the user ID, item ID, item classes (regarded as interest types), timestamps, etc.
The sampling time resolution is one second.

(iii) MPR. a widely used electronic reading tool. The usage of such a mobile service
reflects well customers’ interests. We collected the reading records of 19,067 users,
each performing more than 100 reading tasks between October 1 and October 31,
2011. The categories of books that each reader chose are regarded as interests. The
sampling time resolution is one day.
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Figure 4 | Proposed model of human-interest dynamics and predicted scaling relations. (a) Schematic illustration of the model, where an individual can

enter one of the two dynamically complementary states at each hopping step: exploring new interests with the probability rn2l (the state of

‘‘Exploration’’, the white circles representing available new interests) or returning preferentially to a previously explored interest with the probability 1 2

rn2l (the state of ‘‘Preferential return’’, the circles of different colors illustrating those visited interests, with the size corresponding to their frequencies to

be visited by users). Regardless of which state takes place, as one interest is selected, an inertial effect was triggered, which can be modeled as an excited

random walk (ERW)54. (b, c) Fat-tailed distribution of P(l) and P(t), respectively. (d, e) Predicted interest-ranking distribution and transition-probability

pattern, respectively. These results are obtained from model simulations where the number of agents in each case is 1000, for the parameter setting of l 5

0.4 and r 5 0.6. For P(l), analytic result can be derived: P(l) , l2(22f), where f and 1 2 f are the probabilities of moving towards the ‘‘right’’ or the ‘‘left’’,

respectively. In (b–d), three values of f are used: f 5 0.4, f 5 0.5, and f 5 0.6. In (e), the value of f is 0.5.

Table I | Basic parameters of the three massive data sets studied in
this paper

Data Sets #Users #Time-span Origins

Douban 21,148 18 months This article
Taobao 34,330 2 months This article
MPR 19,067 1 month This article
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Definition of length of interest interval l. Previous studies defined session as a
sequence of Web pages viewed by a user within a given time window, which has been
widely used in modeling and tracking individuals’ navigation behaviors52,58–61.
However, for characterizing human interest, this definition of session has two
deficiencies: (1) difficulty to split an individual’s click sequence into sessions60 due to
the continuous nature of the user online activities30,62, and (2) limit in the data sets,
due to the time resolution of MPR (day). Thus, we define the interest duration l as the
length of a sequence of clicks within the same interest category.
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