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Typically, glycerophospholipids are represented with two esterified fatty acids. However,
by up to 20%, a significant proportion of this lipid class carries an ether-linked fatty alcohol
side chain at the sn-1 position, generally referred to as ether lipids, which shape their
specific physicochemical properties. Among those, plasmalogens represent a distinct
subgroup characterized by an sn-1 vinyl-ether double bond. The total loss of ether lipids in
severe peroxisomal defects such as rhizomelic chondrodysplasia punctata indicates their
crucial contribution to diverse cellular functions. An aberrant ether lipid metabolism has
also been reported in multifactorial conditions including Alzheimer’s disease.
Understanding the underlying pathological implications is hampered by the still unclear
exact functional spectrum of ether lipids, especially in regard to the differentiation between
the individual contributions of plasmalogens (plasmenyl lipids) and their non-vinyl-ether
lipid (plasmanyl) counterparts. A primary reason for this is that exact identification and
quantification of plasmalogens and other ether lipids poses a challenging and usually labor-
intensive task. Diverse analytical methods for the detection of plasmalogens have been
developed. Liquid chromatography–tandem mass spectrometry is increasingly used to
resolve complex lipid mixtures, and with optimized parameters and specialized
fragmentation strategies, discrimination between ethers and plasmalogens is feasible.
In this review, we recapitulate historic and current methodologies for the recognition and
quantification of these important lipids and will discuss developments in this field that can
contribute to the characterization of plasmalogens in high structural detail.

Keywords: ether lipid biosynthesis, mass spectrometry, phospholipid analytics, PEDS1, plasmalogen physiology,
plasmenyl and plasmanyl isomers

1 INTRODUCTION TO PLASMALOGENS AND OTHER ETHER
LIPIDS

Many complex lipids are made up of simple lipid building blocks such as fatty acids. In the case of
glycerophospholipids, these fatty acids are derivatized to a glycerol backbone as fatty acyl esters
(Figure 1A). However, besides this esterification, other linkage types also exist that lead to
structurally distinct subclasses of glycerophospholipids with divergent physicochemical
properties and cellular functions. The so-called ether lipids carry ether-linked fatty alcohols
instead of fatty acyls (Figure 1A). A well-known subgroup of ether lipids are plasmalogens,
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which are characterized by a vinyl ether double bond (alkenyl)
instead of an ether bond (alkyl). Consequently, every plasmalogen
can be regarded as an ether lipid, while not every ether lipid is a
plasmalogen.

1.1 Occurrence and Molecular Composition
of Plasmanyl and Plasmenyl Lipids
In mammals, the ether bond of plasmalogens and other ether
lipids is predominantly located at the sn-1 position of the
glycerol backbone (Marinetti and Erbland, 1957; Rapport
et al., 1957; Debuch, 1958), typically substituted with a
saturated or mono-unsaturated alkyl/alkenyl residue, such
as palmitoyl, stearyl, and oleyl alcohols (Debuch, 1958). In
contrast, the fatty acyls of ether lipids, which are generally
derivatized to the sn-2 position, are frequently long-chained

(≥20) and polyunsaturated (Arthur et al., 1985). The exact
fatty acyl composition strongly depends not only on the
respective organisms (Vítová et al., 2021) but also follows a
pronounced tissue-specificity (Koch et al., 2020). The main
substituents at the sn-3 position of the glycerol backbone are
ethanolamine and choline, generating ether-linked
phosphatidylethanolamines (PEs) and phosphatidylcholines
(PCs), respectively. However, ether lipid analogs to the
neutral di- and triacylglycerides (DG and TG, respectively)
exist, which have already been known for decades (Schmid
et al., 1967; Snyder and Wood, 1968; Lin et al., 1977) and have
recently been getting more and more attention (Schievano
et al., 2013; Draijer et al., 2020; Meletis, 2020; Wang et al.,
2020; Beyene et al., 2021). Additionally, the presence of small
proportions of ether lipid species has also been described for
other lipid classes (Ivanova et al., 2010).

FIGURE 1 | (A)Overview of the chemical structures and unique features of diacyl (ester) lipids, and plasmanyl and plasmenyl lipids. Ether lipids comprise lipids that
harbor both alkyl (1-O-alkyl, plasmanyl, indicated in blue) and alkenyl (1-O-alk-1′-enyl, plasmenyl, indicated in green) residues, while the latter is also referred to as
plasmalogens. The alkyl/alkenyl residues of mammalian ether lipids are predominantly localized at the sn-1 position, while the sn-2 position is frequently substituted with
polyunsaturated fatty acyls. Ether lipids belong for the most part to the lipid classes phosphatidylethanolamines (PEs), phosphatidylcholines (PCs), and 1-O-alkyl-2-
acylglycerols (alkyl-DG). (B) Ether lipid metabolism. The initial steps of ether lipid biosynthesis take place in the peroxisomes and are based on substrates derived from
glycolysis and fatty acid metabolism. The rate-determining step is the provision of fatty alcohols, which are formed from acyl-CoA by fatty acid reductase 1 (FAR1).
Remodeling/interconversion pathways of ether lipids are partially shared with their ester lipid analogs. The enzyme plasmanylethanolamine desaturase (PEDS1) is
responsible for converting plasmanyl lipids (blue) into their plasmenyl counterparts (green) and accepts PE as substrates. The catabolism of ether lipids proceeds from
their lyso-forms and is catalyzed by alkylglycerol monooxygenase (AGMO; in the case of plasmanyl lipids) and (lyso)plasmalogenases (in the case of plasmenyl lipids).
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Plasmalogens and ether lipids are abundant in animals across
invertebrate and vertebrate species (Goldfine, 2010), where they
can account for up to 20% of the phospholipid mass, depending
on the respective tissues (Nagan and Zoeller, 2001; Braverman
and Moser, 2012). Furthermore, plasmalogens are also present in
many anaerobic bacteria (Řezanka et al., 2012) and archaea (Jain
et al., 2014). However, these lipids typically do not occur in
aerobic bacteria (Kamio et al., 1969), fungi (Horrocks and
Sharma, 1982), and possibly plants (Felde and Spiteller, 1994).

1.2 Biosynthesis and Metabolism of
Plasmanyl and Plasmenyl Lipids
As shown in Figure 1B, ether lipids are initially synthesized in
peroxisomes (Wanders and Brites, 2010), where the glycolysis
intermediate glycerone-phosphate [GnP; previously called
dihydroxyacetone phosphate (DHAP)] is first acylated by
glycerone-phosphate O-acyltransferase (GNPAT). This
produces acyl-GnP (which is a precursor for both
diacylglycerols and ether lipids) and is followed by
replacement of the acyl group for a fatty alcohol by
alkylglycerone-phosphate synthase (AGPS) (Nagan and
Zoeller, 2001). The so-formed alkyl-GnP is then reduced by
an alkylglycerone-phosphate reductase activity (encoded by
DHRS7B; also acting on acylglycerone-phosphate) to 1-alkyl-
glycero-sn-3-phosphate (alkyl-G3P) and exported from the
peroxisomes. The availability of fatty alcohols is thought to be
the rate-limiting factor in ether lipid and plasmalogen
biosynthesis and is controlled by fatty acid reductase 1 and
2 (FAR1/2) (Cheng and Russell, 2004; Honsho et al., 2010;
Ferdinandusse et al., 2021). A series of lipid metabolic
enzymes that catalyze reactions at the sn-2 and sn-3
positions of glycerophospholipids are thought to also
accept their ether lipid analogs as substrates and are
responsible for generating the main ether lipid classes 1-O-
alkyl-2-acyl-glycerol, alkyl-PE, and alkyl-PC. The formation
of plasmalogens is catalyzed by the enzyme
plasmanylethanolamine desaturase (PEDS1), which is
capable of introducing the vinyl ether double bond at the
Δ1 position of an alkyl-PE. Despite its central position in
plasmalogen biosynthesis, the gene coding for PEDS1 has only
recently been identified (Gallego-García et al., 2019; Werner
et al., 2020; Wainberg et al., 2021). In contrast to the
molecular oxygen requiring PEDS1, the anaerobic
biosynthetic pathway of plasmalogens that has been
characterized recently operates in an oxygen independent
manner (Jackson et al., 2021). This is in line with the
hypothesis that the capability of species to synthesize
plasmalogens was once lost during evolution and only later
reemerged in eukaryotes (Goldfine, 2010). Once formed,
plasmalogens follow a different catabolism regime from
other ether lipids. While the alkyl bond of ether lipids is
cleaved by the tetrahydrobiopterin-dependent enzyme
alkylglycerol monooxygenase (AGMO) (Watschinger et al.,
2010), the removal of an alkenyl residue requires specialized
(lyso)plasmalogenases (Warner and Lands, 1961; Jenkins
et al., 2018). However, the plasmanyl and plasmenyl

catabolic pathways both form fatty aldehydes that are toxic
to cells if not readily oxidized by the enzyme fatty aldehyde
dehydrogenase (FALDH) (Keller et al., 2014; Weustenfeld
et al., 2019). Genetic impairment of FALDH function leads
to the inherited metabolic disease Sjögren–Larsson Syndrome
(SLS) (Weustenfeld et al., 2019), in which fatty aldehydes are
interconverted into fatty alcohols, instead of fatty acids (Rizzo
and Craft, 2000; Keller et al., 2012). This represents a FAR1-
independent source of fatty alcohols that can induce the
biosynthesis of ether lipids, which accumulate, for example,
in the brain of SLS patients (Staps et al., 2020). Further
significant crosstalk has been reported between ether lipid
metabolism and other lipid classes such as cholesterol and
sphingolipids, indicating that the metabolic routes shown in
Figure 1B are additionally deeply rooted in the regulation of
cellular phospholipid homeostasis (Braverman and Moser,
2012; Dean and Lodhi, 2018; Harayama and Riezman, 2018).

1.3 Physiological Roles of Plasmanyl and
Plasmenyl Lipids
The full functional spectrum of plasmalogens and other ether
lipids is still far from being comprehensively elucidated. However,
it is clear that they are structural components of cellular
membranes across a broad range of different tissues
(Braverman and Moser, 2012) because ether lipids are found
in the plasma membrane and in different subcellular
compartments (Sun, 1973; Kuerschner et al., 2012). Due to
their frequently polyunsaturated fatty acid (PUFA)-rich sn-2
side chains, they are considered to be an important reservoir
for lipid second messenger precursors (Nagan and Zoeller, 2001).
In previous research studies, particular attention has been paid to
the specific properties of the vinyl ether bond of plasmalogens,
which was demonstrated to be much more susceptible to
oxidative cleavage than analog ester lipids (Broniec et al.,
2011). Because of that, and due to their high PUFA content,
plasmalogens are considered to be efficient membrane-localized
antioxidants (Brites et al., 2004; Engelmann, 2004). More recently
(however due to the same physicochemical properties), ether
lipids have been implicated in the promotion of and robustness
against ferroptosis (Zou et al., 2020). Some individual ether lipid
species have been found to encompass highly specific functions.
An important representative is certainly the platelet-activating
factor (PAF), a 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine
which acts as a highly potent intracellular signaling molecule, that
is involved in the regulation of many cellular processes
[discovered in Demopoulos et al. (1979) and reviewed in
Snyder (1999) and Lordan et al. (2019)]. Another example is
the ether lipid seminolipid - besides sulfatide the only other major
sulfoglycolipid - which is mainly synthesized in primary
spermatocytes and essential for spermatogenesis (Goto-Inoue
et al., 2009). A third important example are
glycosylphosphatidylinositol (GPI) anchors that
posttranslationally attach more than 250 different eukaryotic
proteins to the surface of membranes (Paulick and Bertozzi,
2008). A neglected aspect in many functional studies on ether
lipids is the clear differentiation between the potentially different
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biological functional spectrum of plasmanyl and plasmenyl lipids
(Jiménez-Rojo and Riezman, 2019).

2 THE ANALYTICAL CHALLENGE

Novel breakthroughs and findings in the field of plasmalogen and
ether lipid research are strongly linked to the available analytical
possibilities. An overview of respective developments throughout the
last century is provided in the Section 3. In the past until today,
reliable differentiation between plasmanyl and plasmenyl lipids
represents a major analytical challenge that determines the pace of
scientific progress. An important analytical principle that can be
exploited for the quantification of ether lipids is that their alkyl and
alkenyl residues are nonsaponifiable. Furthermore, the vinyl ether
bond of plasmalogens—but not the ether bond of all other ether
lipids—can be cleaved under acidic conditions, thereby yielding the
respective fatty aldehydes (Werner et al., 2018). Subsequent
derivatization of the released aldehydes allows for the
quantification of plasmalogen levels; however, the disadvantage is
that the presence of free fatty aldehydes, produced from other
sources, can significantly distort the validity of the results. With
measurement methods based on this principle, the concentrations of
plasmanyl ether lipids remain completely obscure.

In recent years, the use of liquid chromatography–tandem
mass spectrometry (LC-MS/MS) has become increasingly
popular, also for ether lipid analytics. Despite the great
possibilities this technology offers for characterizing complex
lipid mixtures, ether lipids still remain a challenging class of
analytes, as will be discussed in Section 4. Specifically, it is not
possible to univocally differentiate between monounsaturated

plasmanyl and saturated plasmenyl residues based on exact
mass-to-charge ratios and fragment spectra alone (Koch et al.,
2020). This challenge can be overcome by employing specialized
instrumentation and techniques (Section 3, 4). Another
possibility is to exploit the differential chromatographic
behavior of isobaric plasmanyl and plasmenyl lipids, which
can, however, not always readily be integrated due to the lack
of sufficiently complete sets of commercially available standards
(Koch et al., 2020). One property that eases the analysis of
molecular ether lipid species is that their structural variability
is less diverse than that of other phospholipid classes (Keller,
2021) because at the sn-1 position only a limited set of relevant
fatty alcohols is found (Cheng and Russell, 2004), while the sn-2
position is often occupied by polyunsaturated fatty acids (Arthur
et al., 1985; Koch et al., 2020). A further aspect that represents a
major challenge in the research of plasmalogens and other ether
lipids is that our knowledge about the respective metabolic
pathways for a long time (and partially still) showed
substantial gaps because the genes of several important
enzymes were not known. This rendered the establishment of
suitable model systems very difficult.

3 HISTORY OF ETHER LIPID RESEARCH
AND THE PROGRESS IN ETHER LIPID
ANALYTICS
3.1 Discovery and Characterization of Ether
Lipids
The first evidence for the existence of ether lipids was published in
1909, in which the presence of a nonsaponifiable lipid fraction in

FIGURE 2 | Timeline of selected noteworthy discoveries and milestones in plasmalogen and ether lipid research. In the more than a hundred years since the first
evidence for the existence of ether lipids was found, there have been groundbreaking results on a wide variety of conceptual levels. These include their 1) discovery (blue),
2) structural characterization (green), 3) enzymology and metabolism (yellow), and 4) function and physiological roles (red). Corresponding references and additional
pioneering findings are listed in Table 1.
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isolates from starfish was established (Dorée, 1909). In the more
than 100 years that followed, a whole series of breakthroughs led
to our current understanding of ether lipids and plasmalogens, a
selection of which is represented in Figure 2 (for references,
Table 1). Fred Snyder, without a doubt one of the most central
figures in the advancement of the field, provided a detailed
personal and historical perspective on many of these
developments up to the turn of the millennium (Snyder,
1999). Until the 1970s, a majority of the research activities
relating to plasmalogens focused on the elucidation of their
fundamental structure and composition. Later on, important
further discoveries were made, such as solving the exact
chemical structure of the platelet-activating factor (PAF) in
1979 (Benveniste et al., 1979; Blank et al., 1979; Demopoulos
et al., 1979). In parallel, but especially starting from the late 1950s,
increasing attention was paid to the natural occurrence of ether
lipids and plasmalogens in a wide variety of species, tissues, and
other diverse biological sources (Carter et al., 1958; Hanahan and
Watts, 1961; Gross, 1985). The growing understanding of
plasmalogens and ether lipids triggered an era of research on
their metabolism, biochemistry, and biological functions. The
first signs of this change in research focus appeared in the 1960s
(Kiyasu and Kennedy, 1960; Wykle and Snyder, 1969; Zoeller
et al., 1988; Blank et al., 1993), a strong intensification of efforts
was especially noticeable from the late 1980s onward. However,

many research questions still remain unanswered, particularly
regarding the enzymology of the metabolic network related to
ether lipids and plasmalogens. Surprisingly, for a long time, it was
not possible to identify the genes for many of the enzymes
involved in their metabolism, even after the human genome
had been deciphered. For example, only recently the genes
coding for important functions such as the catabolism of
plasmalogens (Wu et al., 2011), the sn-1 cleavage of plasmanyl
lipids (Watschinger et al., 2010), and the core enzyme responsible
for plasmalogen biosynthesis were identified (Gallego-García
et al., 2019; Werner et al., 2020; Wainberg et al., 2021). In
ether lipid metabolism other orphan enzymes might be
present, but it is unclear so far whether the respective ester
metabolizing enzymes that are already known also accept the
ether analogs as substrates.

3.2 The Role of Novel Analytical Techniques
A major driving force behind the scientific progress in ether lipid
and plasmalogen research was (and is) the different accessible
analytical technologies. Importantly, the analytical tools available
at the respective time also had a decisive influence on the
trajectory of the research activities (and vice versa). Several
methods for quantifying plasmalogen concentrations rely on
the cleavage of the vinyl ether double bond in the presence of
an acid, and the detection of the liberated aldehyde, frequently as

TABLE 1 | Milestones in plasmalogen research [expanded on the basis of Snyder (1999)].

Year Milestone Citation

1909 Nonsaponifiable lipid isolates from starfish Dorée (1909)
1924 Condensation of a long-chain fatty alcohol and glycerol forms an ether bond Toyama (1924)
1924 First detection of plasmalogens Feulgen and Voit (1924)
1928 Presence of an O-alkyl bond Heilbron and Owens (1928)
1933 O-Alkyl moiety located at the sn-1 position Davies et al. (1933)
1941 Stereochemistry of ether lipids Baer and Fischer (1941)
1957 O-Alk-1′-enyl moiety of plasmalogens Rapport et al. (1957); Debuch (1958)
1958 Presence of PE ether lipids in egg yolk Carter et al. (1958)
1960 First intact isolate of the glyceryl ethers Mangold and Malins (1960)
1960 Choline and ethanolamine phosphotransferases catalyze the transfer of CDP-choline and CDP-

ethanolamine to O-alk-1′-enyl-acylglycerols
Kiyasu and Kennedy (1960)

1961 Isolation of ether lipids from bovine erythrocytes Hanahan and Watts (1961)
1962 cis-nature of plasmalogen double bond Norton et al. (1962); Warner and Lands (1963)
1963 Double bond position in the O-alkyl chain of selachyl alcohol at carbons 9 and 10 Hanahan et al. (1963)
1969 Cell-free synthesis of O-alkyl bond Snyder et al. (1969)
1969 Alkyl-DHAP synthase forms ether lipids from glycerone-phosphate and a fatty alcohol Hajra (1969); Wykle and Snyder (1969)
1979 Discovery of the chemical structure of platelet-activating factor (PAF) Benveniste et al. (1979); Blank et al. (1979); Demopoulos

et al. (1979)
1985 Plasmalogens are the major phospholipid constituent of the cardiac sarcoplasmic reticulum Gross (1985)
1988 Plasmalogen bond protects against cell death Zoeller et al. (1988)
1993 Choline plasmalogens are mainly derived from the ethanolamine plasmalogens Blank et al. (1993)
1997 Identification of AGPS de Vet et al. (1997)
1997/1998 Identification of GNPAT Thai et al. (1997); Ofman et al. (1998)
2004 Identification of FAR1 and FAR2 Cheng and Russell (2004)
2010 FAR1 is the rate-limiting enzyme in ether lipid biosynthesis Honsho et al. (2010)
2012 Identification of DHRS7b Lodhi et al. (2012)
2017 Identification of EPT1 (SELENOI) Ahmed et al. (2017)
2018 Role of SELENOI for plasmalogen biosynthesis Horibata et al. (2018)
2019/2021 Identification of PEDS1 Gallego-García et al. (2019); Werner et al. (2020);

Wainberg et al. (2021)
2020/2021 Role of ether lipids in ferroptosis Zou et al. (2020); Cui et al. (2021)
2021 Plasmalogen synthase in anaerobic bacteria Jackson et al. (2021)
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an acetal or hydrazone derivative (Figure 2 and Table 1). While
the special reactivity of plasmalogens increases their specificity,
information on the remaining structure of the molecule, that is,
the residues at sn-2 and sn-3 of the glycerolipids, is lost. In
addition, proper controls need to be included to subtract the
amounts of free aldehydes present in the sample before acidic
liberation of the aldehyde at sn-1. This can be done by using
hydrochloric acid to cleave the vinyl ether double bond and
running an additional reaction with acetic acid instead of
hydrochloric acid in parallel, which leaves the vinyl double
bond intact and therefore represents the free aldehyde content
only (Werner et al., 2018). However, in the selected mouse tissues
investigated so far, the amount of free aldehydes was always below
1% as compared to the amount of plasmalogens (Werner et al.,
2018). An additional drawback of these methods is that they fail
to quantify ether lipids without the vinyl ether double bond, that
is, plasmanyl lipids.

Already the very first detection of plasmalogens in 1924 relied
on such a reaction, the formation of an adduct of aldehydes
liberated from plasmalogens with fuchsin in sulfuric acid
(Feulgen and Voit, 1924). A related procedure allowed high-
throughput screening for bacterial colonies lacking plasmalogen
formation in the search for genes responsible for plasmalogen
formation in anaerobic bacteria (Jackson et al., 2021). The
formation of dimethyl acetals by cleavage in acidic methanol
(Gray, 1969) is still frequently used to quantify plasmalogens by
gas chromatography–mass spectrometry (GC-MS) and liquid
chromatography–mass spectrometry (LC-MS) methods
(Ingrand et al., 2000; Moraitou et al., 2008; Brites et al., 2009;
Bueno et al., 2012; Gallego-García et al., 2019). Other methods
used 2, 4-dinitrophenyl hydrazine and thin layer chromatography
(Rhee et al., 1967), or staining of thin-layer chromatograms with
4-amino-5-hydrazino-1,2,4-triazole-3-thiol sprays (Rahn and
Schlenk, 1973). Derivatization with (pentafluorobenzyl)
hydroxylamine hydrochloride allowed analysis using GC-MS
(Ingrand et al., 2000). We developed a method to measure
plasmalogens using dansylhydrazine as a derivatization agent
and reversed-phase HPLC with fluorescence detection for
quantification (Werner et al., 2018). This method was essential
for independent measurement of total plasmalogen in mice
deficient in PEDS1 (Werner et al., 2020), enabling the
validation of LC-MS methods for the unequivocal
discrimination between plasmanyl and plasmenyl lipids (Koch
et al., 2020; Werner et al., 2020).

Besides the aforementioned thin layer chromatographic
techniques with varying detection reagents and principles for
the semi-quantitative analysis of ether lipids and plasmalogens
(Schmid et al., 1975; Shantha and Napolitano, 1998), and other
chromatographic approaches (Christie and Han, 2012), a
diversity of analytical approaches has been developed (Messias
et al., 2018). A series of assays based on radiolabeled substrates
have been established, often to study the respective metabolic
pathway structures and enzymology in a targeted manner
(Paltauf, 1972; Wykle et al., 1972; Blank and Snyder, 1992).
Furthermore, also 1H, 13C, and especially 31P nuclear magnetic
resonance (NMR) approaches have been employed to quantify
PC and PE plasmalogens on the basis of the characteristic

chemical shifts that vinyl ether double bonds cause (Meneses
and Glonek, 1988; Sacchi et al., 1995), a technology that provides
new scientific insights (Kimura et al., 2018; Bozelli et al., 2020). A
major disadvantage of many of these methods, is that only little or
no information about the respective molecular species, especially
the chemical structure of their side chains, is extractable. In
addition, the methods used often either do not allow a clear
distinction between plasmalogens and other ether lipids or can
solely quantify plasmalogens. Overcoming this often requires a
laborious combination of different methods, such as the
saponification of previously extracted and pre-separated ether
lipids followed by GC-MS analysis of the fatty acids released
(Maulik et al., 1993). For this reason, the analysis of ether lipids by
means of LC-MS/MS is increasingly pursued in light of the
rapidly improving instrumental performance in the field of
mass spectrometry. LC-MS/MS-based approaches are highly
attractive due to the abundance of extractable information, but
of course, they come along with their specific challenges and
problems, especially in regard to the reliable identification of
plasmanyl and plasmenyl species, which are summarized in
Section 4.

3.3 Implications for the Pathophysiological
Knowledge About Ether Lipids
These and other conceptual and technical advances have of
course had a major impact on our understanding of the role
of plasmanyl and plasmenyl lipids in health and disease. A
detailed summary would go far beyond the scope of this work
and is already part of excellent reviews such as Braverman and
Moser (2012) and Dean and Lodhi (2018). The functional
involvement of ether lipids has been discussed in many
pathologies. These include inherited peroxisomal disorders,
often caused by mutations in one of the 14 different peroxin
(PEX) genes (Berger et al., 2016) that lead to different
manifestations of the Zellweger syndrome, as well as in the
case of PEX7 to rhizomelic chondrodysplasia punctata (RCDP)
(Waterham and Ebberink, 2012). Additionally, reduced
plasmalogen levels have been associated with
neurodegenerative diseases such as Alzheimer’s disease
(Dorninger et al., 2020) and are discussed as a potential
treatment target (Fujino et al., 2017). Furthermore,
plasmalogens were recognized for their protective role against
oxidative stress (Zoeller et al., 1988) and have been shown to
inhibit apoptosis (Yamashita et al., 2015). However, this behavior
has been reported to be cell-type specific, as plasmalogens play an
important role in the apoptotic behavior of mouse
neuroblastoma-derived cells but not in astrocyte-derived cells
(Hossain et al., 2013).

4 MASS SPECTROMETRY-BASED ETHER
LIPID ANALYSIS

Historically, characterizing the composition of alkyl and alkenyl
lipids with reliable molecular subspecies resolution has been a
highly laborious and tedious task, as detailed in the previous
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section. With the advent of omics technologies and related
bioinformatics capabilities, each of which is entangled with the
developments in mass spectrometry (MS) instrumentation, the
discriminative power and data quality were propelled forward.
This is also related to the generation of large, information-rich
data sets, where reliable data analysis strategies play a crucial role
in systematically deciphering complex lipid compositions. There
are a broad range of possibilities and different setups, where MS is
used as the core detection principle for the quantification of
plasmalogens and other ether lipids. Vítová et al. have recently
provided a comprehensive overview on plasmalogen analysis
methods and how they are used to study these lipids in
various species (Vítová et al., 2021). There are both targeted
and untargeted mass spectrometric approaches, and both have
their specific advantages and disadvantages in terms of reliability,
reproducibility, and information content. These are based on
either direct infusion (shotgun) lipidomics (Han and Gross, 2005;
Surma et al., 2021) or mass spectrometric detection after different
types of pre-separation, including gas or liquid chromatography
(Mawatari et al., 2007; Fauland et al., 2011; Lísa et al., 2017),
capillary electrophoresis (Zhang et al., 2017; Ly et al., 2021), ion
mobility separation (Vasilopoulou et al., 2020; Kirkwood et al.,
2022), and supercritical fluid chromatography (Lísa et al., 2017;
Schoeny et al., 2020). In this section, we will focus on how to
tackle the analytical challenge to discriminate between plasmanyl
and plasmenyl lipids. This differentiation is of great importance
as introduction of a vinyl ether double bond in ether lipids
severely alters the physicochemical properties of the molecule
(e.g., its oxidizability) and therefore defines the respective
functional roles.

4.1 Ether Lipid Identification by Mass
Spectrometry
In general, a distinction must be made between high-resolution
mass spectrometers, where the instrument can determine
masses with an accuracy of as low as 0.1 mDa in relation to
the exact mass, and low-resolution mass spectrometers that are
only accurate to approximately 1 Da (Wallace and McCord,
2020, 254). In the molecular context of lipids, this implies that
distinguishing between isobaric lipids such as the pair PE P-36:2
(plasmenyl) and PE 35:3 with respective mass-to-charge ratios
(m/z) of 726.5443 and 726.5079 m/z in electrospray ionization
(ESI) negative mode is possible only with high-resolution
instruments, while the isomeric counterpart PE O-36:3
(plasmanyl, 726.5443 m/z) cannot be readily differentiated
from PE P-36:2 even with highest resolution instruments
(Keller, 2021). A further challenge is that such non-resolvable
mass overlaps also occur between pairs of lipid species with a
nominal mass difference of 2 m/z, as is the case for plasmenyl
and plasmanyl species with identical side-chain substitution;
that is, the M+2 isotopologue of a plasmenyl species interferes
with the M+0 peak of the corresponding plasmanyl lipid (type-
II isotopic effect) (Höring et al., 2021). This effect is particularly
important when significantly larger amounts of plasmenyl
species are present, which is often the case with PE ether
lipids (Koch et al., 2020). In addition, the possible distortion

due to mass overlaps scales with increasing numbers of non-
most abundant (natural) isotopes contained within a lipid,
which are responsible for changing isotopic intensity
distributions (type-I isotopic effect) (Han and Gross, 2001).
In other words, with increasing numbers of, for example, carbon
atoms, the natural isotope prevalence causes changes in the
isotopic distribution from (M+0) to (M+1) and higher isotopes,
thus increasing the problem of interference due to signal
interference. A type-II isotopic effect, if lipids differ by one
double bond, can be (at least theoretically) circumvented when
reaching very high mass resolutions (R > 200,000 for PE O-36:2/
PE P-36:2); however, a correction using suitable deconvolution
approaches during data analysis is possible. In contrast, this is
not the case for the aforementioned overlap between isomers,
which can only be resolved through combination with
additional complementary analytical techniques.

4.2 Mass Spectrometry-Based
Fragmentation and Derivatization
Approaches
Several powerful possibilities to discriminate between plasmanyl
and plasmenyl lipids arise from the fragmentation capabilities
that many mass spectrometers provide. However, pure MS/MS
fragment spectra in the negative ESI mode are not sufficient to
achieve a clear assignment of plasmalogens and other ether lipids
(Koch et al., 2020). A more advanced approach is the generation
of unique fragmentation signatures obtained via repeated
collision dissociations of lithiated ether lipid precursor ions in
positive ESI mode [(M + Li)+, (M-H + 2Li)+, and (M-2H + 3Li)+]
(Hsu and Turk, 2008) restricted to mainly PE and PC, while in
negative mode distinction for all major glycerophospholipid
classes can be achieved by multistage fragmentation (Hsu and
Turk, 2007; Hsu et al., 2014). However, those approaches are
limited to mass spectrometers with MSn (n > 2), and therefore
intrinsically limited in their applicability (Hsu and Turk, 2008).
In another method, silver ion adducts of
phosphatidylethanolamine plasmalogens enabled their detection
via neutral loss scans in the positive ESI mode. In the presence of
Ag+ ions, a characteristic neutral loss of 141 Da is also
predominantly observed for plasmenylethanolamines, and
quantification is enabled by differential analysis (Kim et al.,
2012). A further possible workflow includes the combination of
ozone-induced dissociation (OzID) in the MS1 dimension with
additional collision-induced dissociation (CID) fragment spectra
(MS2) acquired in direct infusion (shotgun) workflows boosting
lipidome coverage via a higher number of duty cycles (Deeley et al.,
2009; Marshall et al., 2019). Depending on the combinations of
CID and OzID, the sn position of each fatty acyl (FA) (CID/OzID),
the double bond positions in the sn-1 FA (CID/OzID2), and a full
characterization (all double bond positions and chain lengths of sn-
1 and sn-2 FA) are possible with (CID/OzID)2 (Pham et al., 2014).

Also, derivatization strategies, for example, with iodine/
methanol derivatized plasmenyl lipids, enable the differentiation
between plasmanyl and plasmenyl species, and in combination
with 13C1–S, S′-dimethylthiobutanoyl-N-hydroxysuccinimide ester
derivatization of aminophospholipids, this method can also resolve
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type-I isotopic effects (Fhaner et al., 2013). Quite recently, a new
application was published where the acquisition of fragmentation
spectra at three different higher collision energy settings allowed an
established computational model to correct and deconvolute
different isobaric and isomeric features with different structural
compositions (Schuhmann et al., 2019). Theoretically, this
approach could also be able to distinguish between plasmanyl
and plasmenyl lipids, but this was not discussed by the authors. A
general discussion of the various derivatization strategies applied
for MS-coupled lipidomics can be found in Hu et al. (2019).
Furthermore, when primarily focusing on the quantification of
plasmalogens, a distinct fragmentation behavior of plasmenyl PE
lipids in the positive ESI mode can be exploited for their structure-
specific quantification (Tsugawa et al., 2020; Morel et al., 2021).

4.3 Exploiting Different Chromatographic
Properties of Plasmanyl and Plasmenyl
Lipids
In addition, but also as an alternative to more complex MSn

methods, the combination of MS with chromatographic
separation methods can in principle be used for the
discrimination of plasmanyl and plasmenyl lipids. Generally,
normal phase chromatography and hydrophilic interaction
liquid chromatography (HILIC) separate lipids in a lipid class-
dependent manner, while in reversed-phase chromatography a
lipid species-specific separation behavior is facilitated. Both
principles are widely applied in lipidomic studies as described
by Harrieder et al. (2022), while promising methods utilizing
supercritical fluid chromatography for separation are under
development (Wolrab et al., 2020; Le Faouder et al., 2021) that
should enable class-wise separation of plasmanyl and plasmenyl
lipid species, which in comparison with strategies refined for DI
methods (necessary to correct for type-II isotopic effects) should
allow high-throughput lipidomics with plasmalogen resolution
on a whole lipidome scale.

A major limiting factor for the systematic characterization of
the separation properties of plasmalogens and other ether lipids is
the lack of commercially available standards in sufficient numbers
and variety. Pairs of plasmanyl/plasmenyl species rarely occur
together in the same sample, precluding mutual relative
referencing (Koch et al., 2020). However, with the help of a
plasmalogen-deficient mouse model (Werner et al., 2020), it was
possible to comprehensively describe that reversed-phase
gradients allow for distinguishing between plasmanyl and
plasmenyl lipids by a characteristic retention time offset (Koch
et al., 2020). Furthermore, this retention time behavior is
systematic (in addition to the contributions of double bond
content and carbon atom number within fatty acyl side
chains) and allows for building predictive models for the
retention time behavior of plasmanyl and plasmenyl lipids in a
lipid class-wise manner (Vaňková et al., 2022). This allows the
challenging mass spectrometric problem of deconvoluting
isomeric and isobaric ether lipids to be transformed into a
much easier solvable chromatographic and data analysis issue.
Even type-II isotopic effects can be readily resolved with baseline
separation (Lange and Fedorova, 2020; Vaňková et al., 2022). This

principle is also implemented in several targetedmultiple reaction
monitoring (MRM) and selective reaction monitoring (SRM)
assays (Benjamin et al., 2013; Lee et al., 2021), which can be
expanded and improved with an increasing variety of commercial
standards. In contrast, in HILIC-based methods, the respective
lipid class-wise elution behavior (Buré et al., 2013) reduces the
potential to separate plasmanyl and plasmenyl species, although
they elute prior to the diacyl lipids (Otoki et al., 2017). With such
a separation method entirely focusing on the goal to distinguish
plasmalogens, it is possible to achieve a clear separation also with
HILIC; however, simultaneously there is a tradeoff in respect to
the applicability of the method to characterize the general
lipidome (Morel et al., 2021), which diminishes general
feasibility of HILIC for detailed lipidomics (Lange and
Fedorova, 2020).

4.4 Correctly Reporting the Level of
Structural Identification
Different identification and quantification strategies for the
analysis of plasmalogens and other ether lipids result from the
current set of utilized LC-MS/MS-based approaches. Since, as
discussed earlier, a differentiation between plasmanyl and
plasmenyl species cannot be automatically assumed, this must
be taken into account for both identification and lipid species
nomenclature. When following good practice rules (Köfeler et al.,
2021), it is clearly important to consider the level at which
identifications take place, which in turn should be reflected in
the name of the lipids (Liebisch et al., 2013, 2020). Depending on
how conscientiously this is implemented, this leads to lipidomic
studies in which a clear assignment of plasmalogens and other
ether lipids 1) is not regarded at all, 2) is based on educated
guesses, 3) is honestly reflecting the level of identification, or 4) is
explicitly executed with one of the approaches detailed
previously. Many general lipidomic studies that are based on
reversed-phase HPLC separation do not (yet) distinguish
between plasmanyl and plasmenyl lipids. Thus, it is advisable
to fully utilize the existing analytical potential of untargeted LC-
MS/MS-based lipidomics approaches, as already in standard
workflows the combined information of exact masses,
fragmentation behavior, and a well-characterized retention
time behavior would be sufficient to correctly assign the
otherwise tricky plasmanyl and plasmenyl isomers.

5 FUTURE PERSPECTIVES

PE, PC, and DG are the main lipid classes for which ether lipid and
plasmalogen analogs have been described and are currently studied.
However, ether-linked lipid species have also been found in a range of
different other lipid classes, including phosphatidylinositol,
phosphatidic acid, phosphatidylserine, and phosphatidylthreonines
(Ivanova et al., 2010). Although these occur in comparatively small
amounts, theymust still be taken into account as part of the lipidome.
However, since commercially available standards are already limited
for the main lipid classes, this problem is even more pronounced for
rarer ether lipid variants.
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Likewise, much of the current research focus related to
plasmalogens and other ether lipids relies on a relatively small
subset of model organisms. Nevertheless, it has been shown that
ether lipids can be much more complex in other organisms such
as archaea (Albers et al., 2000; Pineda De Castro et al., 2016;
Vítová et al., 2021). For example, while in mammals it can be
assumed by default that the ether bond is located at the sn-1
position, this is far from set in stone in other species (Grossi et al.,
2015) and can also become relevant in the analysis of
plasmalogens in food (Yamashita et al., 2016). This
circumstance must be explicitly taken into account in ether
lipid and plasmalogen analytics.

Plasmanyl and plasmenyl ether lipids are increasingly being
associated with diseases other than specific inherited metabolic
diseases involving peroxisomes (Ferreira et al., 2021). In addition
to Alzheimer’s (Han et al., 2001; Igarashi et al., 2011; Kling et al.,
2020), Down syndrome (Murphy et al., 2000), and Parkinson’s
disease (Dragonas et al., 2009), these also include abnormalities in
the plasma of colorectal cancer patients (Liu et al., 2020). However,
the use of plasmalogens as early diagnostic biomarkers places
particularly strict demands on the performance of the analytical
approaches used.

From the point of view of ether lipid and plasmalogen
analytics, there are a number of important measures that
should be taken in light of these developments. 1) Above all, it
is important that the research field focuses on truthfully reporting
the exact structural level of analysis of ether lipids, which should
also be reflected in the respectively used lipid nomenclature
(Liebisch et al., 2013, 2020) and thereby render them
compatible with unified computational naming approaches like
Goslin (Kopczynski et al., 2020). This aspect should not only be
implemented “in-house” but also urged for, for example, in
reviewing activities. 2) A further step is to utilize the structural
information that is already available in the raw data more
comprehensively, to differentiate between plasmanyl and
plasmenyl lipids whenever applicable. 3) With increasing
demand, it would be a welcome development if a greater
diversity of commercial ether lipid and plasmalogen standard
substances becomes available. In this regard, the recent
identification of the gene that encodes for a key enzyme in

plasmalogen biosynthesis can be of great help (Gallego-García
et al., 2019; Werner et al., 2020; Wainberg et al., 2021). 4) Last but
not least, it can be highly rewarding to continue working on the
development and combination of new technologies. Within
certain limits, a further increase in the mass resolution of new
mass spectrometers can still have positive effects (type-II isotopic
effects). There is strong potential for improvement in data
analysis, for example, in terms of the utilization of already
existing information and by means of sophisticated
deconvolution methods. A promising approach could be the
integration of techniques such as ion mobility, which for lipids
produces a separation behavior similar to that of reversed-phase
chromatography in lipids.

As the history of plasmalogen analysis shows, the continuous
development of analytical possibilities has resulted in ever greater
insights into the chemistry, biochemistry, and physiology of ether
lipids. Nevertheless, the precise physiological functions of these
lipids are only superficially understood. Particularly, this applies
to the delimitation of the functional spectrum between lipid
species that contain plasmenyl and plasmanyl residues,
respectively. The intensification of research activities in this
field, which is also reflected by this special issue, conveys a
highly optimistic perspective about possible upcoming
breakthroughs, to which plasmalogen analytics will most likely
have a significant contribution.
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