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Abstract: Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiol-
ogy and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive
injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally
involves an aberrant airway epithelial response, which contributes significantly to disease develop-
ment and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and
single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell
type composition in IPF. We furthermore give a comprehensive overview on the genetic and mecha-
nistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and
describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms
in this context. The collected evidence argues for the investigation of possible therapeutic avenues
targeting these processes, which thus represent important future directions of research.

Keywords: basal cells; bronchial epithelium; airway epithelium; lung fibrosis; MUC5B; single cell
RNA sequencing; epithelial populations; IPF

1. Introduction: An Emerging Role of the Airway Epithelium in IPF Aetiology

Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extra-
cellular matrix (ECM) within the alveolar compartment of the lung, leading to impairment
of gas exchange, increased stiffness and, ultimately, loss of lung function. Despite approval
of the two first effective antifibrotic drugs more than six years ago [1,2] and intensive
sustained efforts in clinical drug development, IPF remains associated with high mortality
rates. Current therapeutic options do not halt disease progression and prevalence of IPF
appears to be rising worldwide [3].

The aetiology of IPF is incompletely understood. Traditionally, IPF was believed to be
mainly caused by repetitive injuries to the alveolar epithelium. A growing body of evidence,
however, based on genome-wide association studies (GWAS), molecular profiling of patient
samples, high-resolution micro-CT imaging, and single cell RNA-Sequencing (scRNA-Seq),
suggests that IPF equally involves an aberrant response of the bronchial and bronchiolar
epithelium, which contributes significantly to disease development and progression. In
this review, we summarize known alterations in airway structure, function, and cell type
composition in IPF. We furthermore give a comprehensive overview on the genetic and
mechanistic evidence pointing towards an essential role of the airway epithelium in IPF
pathogenesis. Potential mechanisms of aberrant airway epithelial regeneration and, finally,
possible therapeutic avenues targeting these processes are discussed.
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2. General Airway Structure

The lung is structurally and functionally categorized into two regions, the conduct-
ing zone and the respiratory zone. The conducting airways consist of the trachea, the
bronchi, and the conducting bronchioles, whereas the respiratory zone contains the areas
of gas exchange, the terminal (respiratory) bronchioles and the alveoli (Figure 1A). The
conducting airways are lined with a pseudostratified epithelium composed primarily of
basal, club, goblet and ciliated cells, which play an essential role in the first-line defence
against inhaled toxins, particles, and pathogens. Structure and cell type composition of
the conducting airway epithelium gradually changes with increasing airway generations
from a pseudostratified appearance with mainly ciliated next to secretory and basal cells
over a simple columnar to a simple cuboidal epithelium, which harbours fewer ciliated
cells and more secretory cells, particularly club cells. In contrast, the alveolar epithelium in
the respiratory airways is lined with alveolar type 1 (AT1) and type 2 (AT2) cells, which,
together with endothelial cells below and the interjacent basement membrane, make up
the blood-air barrier for O2/CO2 exchange [4,5] (Figure 1A). Basal cells are established as
the main human progenitor cells for all cell types in the pseudostratified epithelium lining
the conducting airways [6] while AT2 cells give rise to AT1 cells in the alveoli [7]. More
recently, in the murine lung, the bronchoalveolar duct junction at the transition between
bronchioles and alveoli has been described to harbour additional multipotent stem cells,
the so-called bronchoalveolar stem cells (BASCs). These can give rise to club and ciliated
cells on the one hand and AT1 and AT2 cells on the other hand, in particular in response to
injury [8]. Whether such a population exists in the human lung, however, is unclear to date.
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Figure 1. Schematic overview of airways in healthy lung and idiopathic pulmonary fibrosis (IPF). 
(A) Airways in the healthy lung, depicting normal cell type distribution in the proximal and distal 
airways as well as in the bronchioalveolar duct junction. (B) Airways in the IPF lung, depicting 
dilated bronchioles, impaired mucociliary clearance and the thickened basement membrane in the 
distal airways, two types of honeycomb cysts (HC, mucociliary, basaloid), and accumulation of ex-
tracellular matrix (ECM) in the alveolar region. AT1, alveolar cell type 1; AT2, alveolar cell type II; 
ECM, extracellular matrix; SMC, smooth muscle cell. Figure was created with biorender.com. 
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airways as well as in the bronchioalveolar duct junction. (B) Airways in the IPF lung, depicting
dilated bronchioles, impaired mucociliary clearance and the thickened basement membrane in the
distal airways, two types of honeycomb cysts (HC, mucociliary, basaloid), and accumulation of
extracellular matrix (ECM) in the alveolar region. AT1, alveolar cell type 1; AT2, alveolar cell type II;
ECM, extracellular matrix; SMC, smooth muscle cell. Figure was created with biorender.com.

3. Changes in Airway Morphology in IPF
3.1. Airway Dilation

In recent years, multiple evidence has emerged that strongly argues for consider-
able changes in airway morphology and physiology in IPF, which contribute to disease
progression. For instance, clinical CT findings in IPF patients as well as experimental
micro-CT imaging of explanted IPF lungs demonstrate that proximal and distal airways
are dilated [9–12], which may explain why FEV1/FVC ratios for IPF patients are higher
than expected [13,14]. This is in agreement with aerosol-derived airway morphometry
and capnographic measurements, which equally show increased airway volumes in IPF
patients [15,16]. While changes in conducting airway volumes seem independent of dis-
ease severity [16], they appear to facilitate the distinction between stable and progressive
disease, hence bear prognostic value [9]. The underlying mechanisms for airway dilation
in IPF are not fully understood. Traditionally, traction bronchiectasis and bronchiolectasis,
caused by increased collagen deposition and contraction of the peripheral fibrotic areas,
have been thought to “pull open” the bronchi and bronchioles, respectively [17,18]. This
concept is supported by the observation that the quantity of fibroblast foci correlates with
traction bronchiectasis in high-resolution CT (HRCT) scans [19]. However, considering the
comparatively distant location of fibrotic areas relative to the affected airways in IPF, and
recent findings on emerging proliferative epithelial cell type populations in IPF (discussed
below in Section 4), it has been suggested that the HRCT pattern of traction bronchiectasis
in IPF is rather caused by bronchiolar proliferation than by mechanical traction alone [20].

3.2. Increased Airway Wall Thickness (AWT)

Recent studies report increases in airway wall thickness (AWT). Verleden et al. per-
formed clinical CT and micro-CT of IPF explant and donor lungs, in combination with
matched histological examinations. The authors observed that, due to increased AWT,
more small airways are visible in CT scans of IPF specimens [21], a finding which was very
recently confirmed by Ikezoe et al. [12] (Figure 2A). Additionally, a retrospective analysis
of clinical chest CT images by Miller et al. suggested that lungs of IPF patients display
significant increases in AWT, notably already in early disease stages [22]. Here, the authors
performed so-called Pi10 measurements, which rely on a series of experimental determina-
tions of total airway and luminal airway areas at different luminal perimeters. For each
patient, the airway wall areas are calculated by subtraction of the luminal airway from
the total airway area and the square root of these values is plotted against the perimeter.
Regression analysis allows for the determination of the airway wall thickness of a hypo-
thetical airway with an internal perimeter of 10 mm, the Pi10, a measure, which can then
be directly compared between patients and disease cohorts. Interestingly, and explicitly
mentioned by the authors as a limitation of their study, the way Pi10 is determined implies
that changes in the internal luminal area, e.g., altered mucus layers, may have impacted
the findings. As altered mucociliary clearance and increased MUC5B expression indeed are
important features of IPF airways (discussed in Section 5), this raises the question whether
Pi10 measurements are affected by increased levels of airway MUC5B, for example.

biorender.com
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Figure 2. Airway epithelial abnormalities in IPF. (A) Comparison of airway features in control and 
IPF lungs as monitored by computed tomography (CT, adapted from Ikezoe et al. [12] with permis-
sion of the American Thoracic Society). Computed tomography (CT) scans from lungs of a control 
subject (upper row) and a case of IPF (lower row). The panels show from left to right: (1) Axial 
midslice multidetector computed tomography (MDCT) scans indicating where a random tissue 
sample was obtained for microCT (red circles); (2) reconstructed airway tree for the same scan from 
the lateral perspective; (3) midslice microCT scans of the tissue sample circled in red; (4) small air-
way tree segmentations obtained from the microCT scans visualized in three dimensions, identify-
ing terminal bronchioles (TB, white arrowheads) and transitional bronchioles (asterisks); (5) repre-
sentative cross-sectional image of the terminal bronchiole (TB) highlighted by the yellow arrow-
head. This figure panel is adapted from Ikezoe et al. [12] with permission of the American Thoracic 
Society. Copyright © 2022 American Thoracic Society. All rights reserved. The American Journal of 
Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society. Read-
ers are encouraged to read the entire article for the correct context at https://www.atsjour-
nals.org/doi/10.1164/rccm.202103-0585OC (last accessed 8/03/2022). The authors, editors, and The 
American Thoracic Society are not responsible for errors or omissions in adaptations. (B) Immuno-
fluorescent stainings of serial lung sections of a representative control subject (upper row) and a 
case of IPF (lower row) with mouse isotype control antibody (mIgG1) and antibodies directed to-
wards keratin 5 (KRT5), keratin 14 (KRT14), club cell-specific protein 10 (CC10), α-smooth muscle 
actin (α-SMA) as a marker for smooth muscle cells and myofibroblasts, and type I collagen (Coll I). 
Scale bar 100 µm. 

Figure 2. Airway epithelial abnormalities in IPF. (A) Comparison of airway features in control and IPF
lungs as monitored by computed tomography (CT, adapted from Ikezoe et al. [12] with permission of
the American Thoracic Society). Computed tomography (CT) scans from lungs of a control subject
(upper row) and a case of IPF (lower row). The panels show from left to right: (1) Axial midslice
multidetector computed tomography (MDCT) scans indicating where a random tissue sample was
obtained for microCT (red circles); (2) reconstructed airway tree for the same scan from the lateral
perspective; (3) midslice microCT scans of the tissue sample circled in red; (4) small airway tree
segmentations obtained from the microCT scans visualized in three dimensions, identifying terminal
bronchioles (TB, white arrowheads) and transitional bronchioles (asterisks); (5) representative cross-
sectional image of the terminal bronchiole (TB) highlighted by the yellow arrowhead. This figure
panel is adapted from Ikezoe et al. [12] with permission of the American Thoracic Society. Copyright
© 2022 American Thoracic Society. All rights reserved. The American Journal of Respiratory and
Critical Care Medicine is an official journal of the American Thoracic Society. Readers are encouraged
to read the entire article for the correct context at https://www.atsjournals.org/doi/10.1164/rccm.20
2103-0585OC (last accessed 8 March 2022). The authors, editors, and The American Thoracic Society
are not responsible for errors or omissions in adaptations. (B) Immunofluorescent stainings of serial
lung sections of a representative control subject (upper row) and a case of IPF (lower row) with
mouse isotype control antibody (mIgG1) and antibodies directed towards keratin 5 (KRT5), keratin 14
(KRT14), club cell-specific protein 10 (CC10), α-smooth muscle actin (α-SMA) as a marker for smooth
muscle cells and myofibroblasts, and type I collagen (Coll I). Scale bar 100 µm.
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3.3. Bronchiolar Abnormalities

Bronchiolar lesions involving abnormal bronchiolar proliferation and migration are
typical features of IPF and represent regions of injury and active regeneration [23–25].
While the observed increase in bronchiolar proliferation has been interpreted to result
in an increased number of bronchioles in IPF [14,23], recent evidence based on micro-CT
imaging and histology suggests it more likely leads to dilation and distortion of the small
airways [10–12,21] (Figure 2A). In contrast, the number of terminal bronchioles is even
reduced in IPF [10,12,21]. Importantly, the latter observation was made in areas of mild
fibrosis and the number of terminal bronchioles did not further decline in areas with more
severe fibrosis, indicating that loss of terminal bronchioles is an early event in IPF [21]. In
addition, it was demonstrated in two very recent independent studies that loss of terminal
bronchioles correlates with honeycomb formation and that conducting airways directly
lead into honeycomb cysts [10,12]. In agreement, early studies have demonstrated that
peripheral cystic air spaces are ventilated, but represent physiological dead-space because
they are not perfused [26]. This supports the concept that small airways are the origin of
honeycomb cysts, abnormal peripheral airway spaces that will be discussed in more detail
in the following.

3.4. Honeycomb Formation and Bronchiolization

In thoracic radiology, the term “honeycombing” refers to clustered cystic airspaces
which typically are located in the subpleural region of the lung [27]. While clinical HRCT
only detects honeycomb cysts with a diameter of about 1 mm and bigger, smaller honey-
comb cysts are usually observed in histology [28]. Typical microscopic honeycomb cysts
in IPF are small, subpleural, and localized in vicinity to fibrotic areas. Figure 2B (lower
row, IPF) shows a collapsed honeycomb cyst characterized by KRT5+ KRT14+ CC10−

cells in close proximity to fibroblast foci. On a cellular level, these honeycomb cysts are
characterized by p63+ KRT5+ airway epithelial-like cell types replacing the normal alveolar
epithelium, a process termed bronchiolization [29]. Some honeycomb cysts appear to be
composed of stratified layers of hyperplastic p63+ KRT5+ KRT14+ cells [25] (e.g., Figure 2B),
while others display a pseudostratified mucociliary epithelium, containing ciliated, p63+

KRT5+ basal, and goblet cells expressing MUC5B as the main mucin component [25,30,31].
Whether honeycomb cysts derive from the small airways or from the alveolar epithelium as
a result of ectopic bronchiolar differentiation is still controversially discussed. Considering
the current knowledge about epithelial progenitor cells in the distal lung, bronchiolization
could be a result of AT2 cells committing to an aberrant differentiation program [7], or
derive from migrating basal cells [6] or BASCs [8,32] originating from the small airway
or of bronchoalveolar duct junction, respectively. BASCs, at least in the mouse, can give
rise to AT2 and club cells upon injury [32], but there is, to the best of our knowledge, no
evidence that they can give rise to p63+ KRT5+ basal cell-like populations, which most
frequently line bronchiolized areas in the IPF lung [23,25,30,33]. This, in contrast, has been
unambiguously demonstrated for airway stem cells in distal lung regeneration after injury:
After influenza infection of mice, for example, p63+ cells emerge in the bronchioles and
form extra-bronchiolar parenchymal clusters of p63+ Krt5+ basal cells, despite of little
TP63-expression in normal murine bronchioles [34,35]. Lineage tracing experiments per-
formed in independent laboratories have demonstrated that these cells derive from a rare
population of SOX2+ p63+ Krt5+/− progenitor cells, but not from alveolar epithelial cells
or BASCs [34,36,37]. Hence, studies in mouse models of lung injury have argued against
an alveolar origin of bronchiolized areas in IPF and rather suggested that bronchiolization
may originate from the airways.

However, it is important to mention in this context, that studies in human organoid
culture systems have provided compelling evidence that, in contrast to mouse AT2 cells,
human AT2 cells can give rise to Krt5+ basal cells. This differentiation capacity into KRT5+

basal-like cells was strictly dependent on adult human lung mesenchymal cells (AHLM) as
feeder cells. The resulting Krt5+ basal cells expressed canonical basal cell markers (SOX2,
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TP63) in addition to genes typically associated with aberrant basal epithelial populations
in IPF [38]. Interestingly. scRNA-Seq analysis of AHLM further revealed that during
organoid culture mesenchymal subpopulations emerge that resemble such enriched in
IPF lung tissue [38]. Collectively, these findings indicate that pathological mesenchymal
cells in IPF generate a niche that is supportive of aberrant differentiation of human AT2
cells into KRT5+ basal cells. Whether this is what happens in IPF, too, remains elusive,
but it is plausible that aberrant basal cells in IPF derive from both airway and alveolar
epithelial cells.

In summary, airways are drastically altered in IPF, with changes that (1) include macro-
scopic morphological changes visible by clinical and experimental CT imaging (airway
dilation, increased airway wall thickness, honeycomb cysts), (2) manifest in physiologi-
cal parameters like increased dead-space ventilation and higher FEV1/FVC ratios, and
(3) involve repopulation of the injured alveolar region with basal-like epithelial cells, which
may be both airway- and alveolar-derived (Figures 1B and 2). On a cellular level, recent
scRNA-Seq analyses of IPF lungs have provided even more weight to the importance of
airway-like cells in IPF and will be discussed in the following chapter.

4. Recent Insights from Single Cell RNA-Sequencing (scRNA-Seq) Studies

Since the advent of single-cell RNA sequencing (scRNA-Seq), several studies in the
past five years have revolutionized the concept of epithelial cell populations in IPF. In the
earliest study, Xu et al. isolated Epcam+/HTII-280+ cells from peripheral regions of control
and IPF lung and subjected that cell population to scRNA-Seq. Initially, they found that
the yield of Epcam+/HTII-280+ cells, classically reflecting AT2 cells, drastically decreased
in IPF lungs. However, more interestingly, in IPF, Epcam+/HTII-280+ subpopulations
emerged which expressed transcripts typically associated with conducting airways and
extracellular matrix-expressing cells, at the expense of genes typically associated with
AT2 function [39]. Overall, the authors identified four subpopulations of Epcam+/HTII-
280+ cells in IPF including (1) normal AT2 cells, (2) cells which expressed Goblet cell-
specific markers, (3) cells which expressed basal cell-specific markers, and (4) indeterminate
cells, which expressed multi-lineage markers including such for AT2, AT1, conducting
airway cells and mesenchymal cells, and could thus not unambiguously be assigned to
one cell type. Remarkably, the latter often co-expressed SOX2 and SOX9, genes that
typically define proximal airway progenitor and distal airway progenitor cells in the
adult lung, respectively, thus indicating a loss of proximal-distal patterning in the IPF
lung. Notably, SOX2+/SOX9+ progenitor cells otherwise only emerge in human lung
development during the pseudoglandular stage in the distal epithelium but are already
lost in the canalicular stage [40]. In addition, a more recent study suggests that surfactant
processing is lost in these newly emerging epithelial cell populations, adding an important
functional outcome of these changes [41]. Hence, in summary, in IPF a drastic loss of normal
AT2 cells is paralleled by an increase of conducting airway characteristics in peripheral
alveolar epithelial cells and an activation of aberrant differentiation programs or possibly
reactivation of early lung developmental programs.

While the study above analyzed sorted Epcam+/HTII-280+ cells, isolated from a
limited number of control and IPF lungs (n = 3), four more recent studies analyzed sin-
gle cell suspensions from more specimens, without prior experimental enrichment for
epithelial cells [42–45]. For visualization of the most important and consistent findings
regarding epithelial cell populations in IPF/interstitial lung disease (ILD), we generated an
integrative data set comprising all four studies (Figure 3A–C) using the Scanpy package
(v1.8.0) [46]. To address potential batch effects, the integration was performed as described
in Mayr et al. [43]. Briefly, the publicly available raw count matrices were re-processed
data set wise with the same procedure. To mitigate effects of background mRNA con-
tamination, the matrices were corrected by using the function adjustCounts() from the R
library SoupX [47]. The expression matrices were normalized with scran’s size factor based
approach [48], log transformed via scanpy’s pp.log1p() and finally scaled to unit variance
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and zero mean before concatenating them. A shared set of variable genes was selected by
calculating gene variability patient-wise (flavor = “cell_ranger”, n_top_genes = 4000) and
excluding known cell cycle genes. The intersection of the variable genes across all data
cohorts was used as input for principal component analysis (1311 genes). After subsetting
to the epithelial cell populations, the BBKNN method [49] was used to generate a batch
balanced data manifold (Munich: ILD = 7, controls n = 12; Chicago: ILD n = 9, controls n = 8;
Nashville: ILD n = 20, controls n = 10; and New Haven: ILD = 32, controls n = 22). Cell
type identities from the original publication were retained and harmonized across studies.
All four studies consistently confirmed the concept of an emerging diverse repertoire of
epithelial cell types in ILD including IPF, most strikingly an increase in cells with features
of conducting airways at the expense of classical alveolar epithelial cells (Figure 3D).
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Figure 3. Single cell RNA-Sequencing has revealed drastic changes in epithelial cell populations
in ILD. (A) Uniform Manifold Approximation and Projection (UMAP)-based dimension reduction
of single cell transcriptomic data to delineate epithelial cell types, labelled by cell type. (B) Same
UMAP visualization labelled by ILD cohort. Data used for visualization was derived from in
total four datasets [42–45] of control and interstitial lung disease (ILD) samples: New Haven [45],
Nashville [44], Chicago [42], and Munich [43]. (C) Same UMAP visualization labelled by disease.
(D) Relative frequencies of epithelial cell populations demonstrate a consistent increase in conducting
airway cell populations in ILD at the expense of alveolar type 1 (AT1) and 2 (AT2) cells. ab., aberrant.

In more detail, up to 10 distinct clusters of epithelial cells were defined in these studies.
While all identified most classical epithelial cell types, i.e., AT1, AT2, basal, ciliated, and
secretory cells by similar expression signatures (Figure 4), there are some differences in sub-
categorization of the described cell type clusters. For instance, while Habermann et al. [44]
distinguished between ciliated cells and differentiating ciliated cells, such a distinction
was not made in the other studies [42,45]. Furthermore, categorization of secretory cells
differs significantly between these reports. Reyfman et al. categorized club cells based
on SCGB1A1 (also termed CC10 or CCSP) expression and did not report goblet cells but
MUC5B-expressing cells within their cluster of club cells [42]. Adams et al. distinguished
between club and goblet cells, but in their report SCGB1A1 expression is a characteristic of
both cell types and club and goblet cells are differentiated from each other by SCGB3A2 and
MUC5B expression, respectively [45]. Published and unpublished results from our lab have
shown that SCGB1A1 is expressed by a subpopulation of MUC5AC+ goblet cells, too [50];
so indeed, SCGB1A1 should rather be considered a more general marker for secretory cells
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than specifically for club cells. Possibly reflecting similar considerations, Habermann et al.
refrained from the attempt to distinguish between club and goblet cells and instead defined
several secretory cell type clusters based on expression of SCGB1A1, SCGB3A2, and MUC5B
and combinations thereof. Collectively, these studies show that, at least based on single cell
transcript analysis, there is a continuum of secretory cells with overlapping gene expression
patterns, which are not easily sorted into club and goblet cells without information on
cell shape, spatial distribution within the bronchial tree, and protein expression patterns.
Therefore, here, we also refer to those as secretory cells, without further distinction into
goblet and club cells (Figures 4 and 5). Independent of secretory cell subcategorization,
all studies consistently demonstrate an increase in secretory cells including MUC5B+ cells.
This was equally observed in an independent scRNA-Seq study where the authors refer to
SCGBB1A1+ MUC5B+ cells as club cells, which, as explained above, may not be entirely
accurate due to the ambiguity of SCGBB1A1 as a marker in that context. Still, also this study
clearly demonstrates an increase of secretory cells in IPF relative to the healthy lung [51].
Furthermore, beyond quantitative alterations in epithelial cell populations, all IPF/ILD
airway subpopulations displayed many significantly upregulated genes in their expression
signatures when compared to their healthy counterparts (Figure 5B).
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Basal cells appear to be particularly important in the context of IPF aetiology and
progression for several reasons. For instance, a basal cell signature detected in the bron-
chioalveolar lavage transcriptome in IPF patients was predictive of mortality, strongly
suggesting that basal cells play a central role in IPF progression [31]. Basal cell numbers are
drastically increased in ILD (Figure 3D) and novel basal cell subpopulations and character-
istics have already been demonstrated before the scRNA-Seq era. In 2015, Jonsdottir et al.
reported that p63+ KRT14+ cells overlay fibroblastic foci in IPF (see also Figure 2B) and
displayed characteristics of epithelial-to-mesenchymal transition (EMT) [52]. Shortly after,
using immunofluorescence studies, Smirnova et al. quantified KRT5+ and KRT14+ basal
cell population in healthy and IPF lungs and equally observed a drastic increase of basal
cell populations in the distal IPF lung and proposed KRT14+ as a marker for an aberrantly
differentiating progenitor cell pool [25]. The above-mentioned scRNA-Seq studies confirm
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these findings, showing that KRT14 is overexpressed in basal cells in ILD, and also a marker
of aberrant basaloid cells, which will be described below [42,44,45].
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described in Figure 3, differential gene expression analysis was performed with diffxpy (https:
//github.com/theislab/diffxpy, last accessed 22 December 2021) while accounting for number of
transcripts per cell and patient cohort. The top 50 deregulated genes in specific subpopulations of
epithelial cells are given, ranked by log2 fold change. (A) Top 50 genes induced in aberrant basaloid
cells relative to gene expression of all other healthy epithelial cell types. (B) Top 50 genes increased
in ILD in other airway epithelial cell populations. pct., percentage; avg. expr., average expression;
ab., aberrant.

A recent scRNA-Seq study focussed on changes in basal cell plasticity in IPF and
defined basal cell heterogeneity in the normal and IPF lung in greater detail [53]. Ac-
cording to this study, basal cells in the healthy lung can be subdivided in at least four
subpopulations, namely classical multipotent basal cells (MPB), proliferating basal cells
(PB), secretory-primed basal cells (SPB), and activated basal cells (AB). Based on scRNA-Seq
data, surface marker screening, as well as bronchosphere assays, the authors established
CD66 as a surface marker for SPBs and demonstrated an increase of CD66+ KRT5+ SPBs in
IPF. With the importance of MUC5B and thus secretory airway cells in disease aetiology,
these observations put forward modulation of basal cell priming as a novel therapeutic
strategy in IPF [53].

Interestingly, Habermann et al. as well as Adams et al. identified a novel epithelial cell
population with features of basal cells, which exclusively emerged in pulmonary fibrosis,
namely KRT5−/KRT17+ epithelial cells [44], or aberrant basaloid cells [45]. These cells
are comparably rare (Figure 3D) and characterized by expression of basal cell markers
like TP63, KRT17, LAMB3, and LAMC2 (but not KRT5, see Figure 4), in combination with
mesenchymal markers like COL1A1, VIM, TNC, and FN1, and markers of senescence like
CDKN1A (Figure 5A) [44,45]. Expression of SOX9 and other markers of a distal differentia-
tion program suggested that these cells also display characteristics of alveolar epithelial
cells. Furthermore, these cells also showed the highest expression levels of MMP7, encoding
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matrix metallopeptidase 7, the probably best-validated peripheral blood biomarker for
IPF (Figure 5A). Using RNA in situ hybridization, KRT17+/COL1A1+ basaloid cells were
shown to cover fibrotic foci in IPF lungs but were not detected in non-fibrotic controls [44].
Given that these cells display characteristics of conducting and respiratory airways, the
cellular origin is not clear. ScRNA-Seq-based pseudo-time analysis has raised the possibility
that both transitional AT2 and SCGB3A2-expressing secretory cells may act as precursors
for aberrant basaloid cells [43,44], a hypothesis which still requires experimental validation.
Notably, studies in mouse models of lung fibrosis and injury have identified similar con-
verging differentiation pathways, namely from club cells on the one hand and AT2 cells on
the other to a population called Krt8+ alveolar differentiation intermediate (ADI) cells. This
cell population is highly similar to the aberrant basaloid cells in IPF [54], but of transient
character in bleomycin-induced lung fibrosis: Krt8+ ADI cells peak in the fibrotic phase
and gradually disappear during resolution of fibrosis. Importantly, lineage tracing using
Sox2- and Sftpc-Cre drivers has confirmed the dual, conducting airway and alveolar, origin
of Krt8+ ADI cells. Collectively, this supports a model where an intermediate cell type,
transiently emerging during a normal repair process, accumulates and persists in IPF.

In summary, scRNA-Seq studies have consistently demonstrated drastic changes in
epithelial subpopulations in ILD, which strongly argue for an essential role of airway
epithelial cells in disease development and progression. These include: (1) A dramatic
decrease of normal alveolar cell types of the respiratory zone and their replacement by
diverse conducting airway cell populations (Figure 3D). (2) The emergence of a novel
ILD-specific cell type reminiscent of an intermediate cell involved in normal alveolar repair,
which probably derives from both proximal and distal precursors and persists in lung
fibrosis (Figures 3D and 4). (3) Considerable changes in overall gene expression patterns in
epithelial cell types (Figure 5).

5. Changes in Airway Function
5.1. Mucociliary Clearance

The discovery of the MUC5B polymorphism (see below, Section 6) has drawn a lot
of attention to dysregulated mucociliary clearance as a major aetiological mechanism in
IPF [29]. IPF is characterized by increased expression of MUC5B in the distal airways
and honeycomb cysts. Increased expression is often driven by the minor allele (T) of
the risk single nucleotide polymorphism (SNP) rs35705950, which is overrepresented in
IPF patients. Consequently, the mucin MUC5B accumulates in airways of the distal lung
where even mucous plugs can be observed within microscopic honeycomb cysts [55].
From other lung diseases, most prominently cystic fibrosis, it is very well known that
overproduction of mucus impairs mucociliary clearance, leads to accumulation of particles
and pathogens in the airways and increases the risk for chronic injury and inflammation.
Indicating that this likely applies to lung fibrosis as well, MUC5B overexpression in distal
airways has been shown to significantly impair mucociliary clearance and aggravate lung
fibrosis in the mouse model of bleomycin-induced lung injury [56]. Importantly, in the
same model, mucolytic treatment led to clearance of inflammatory cells from the lungs
and counteracted the production of fibrillar collagen, providing proof-of-concept that
restoring impaired mucociliary clearance may be beneficial in prevention and treatment of
pulmonary fibrosis [56].

A potential key role of impaired mucociliary clearance for lung fibrogenesis is further
emphasized by an independent study, where the issue of mucociliary clearance was ap-
proached from a very different angle. The E3 ubiquitin-protein ligase NEDD4-2 targets
the epithelial Na+ channel (ENaC, encoded by SCNN1A) for intracellular degradation and
thus plays a key role in limiting the levels of active ENaC at the cell surface. ENaC in
turn is a critical regulator of epithelial surface hydration and consequently affects mucus
properties. Overexpression of SCNN1A and activation of ENaC increases transepithelial
transport of salt and water leading to dehydration of the apical epithelial mucous layer and
thus impaired mucociliary clearance [57]. NEDD4-2 levels are decreased in IPF airways.
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With NEDD4-2 representing an antagonist of ENaC, conditional deletion of NEDD4-2 from
airway epithelial cells in mice, as expected, increased ENaC activity and significantly im-
paired mucociliary clearance. A striking long-term consequence of this NEDD4-2 deficiency
in murine airways, however, was the development of patchy lung fibrosis, bronchiolar
remodelling, and increased MUC5B production in the peripheral airways, all features
strongly reminiscent of IPF and actually reflecting IPF pathology more accurately than the
most commonly used bleomycin-induced mouse model of lung fibrosis [58]. Collectively,
these findings strongly indicate that mucociliary dysfunction is a major aetiological factor
in IPF and, even though the minor risk allele within the MUC5B promoter will probably
remain the most important cause, may have multiple origins including, e.g., dysregulation
of epithelial surface hydration properties by NEDD4-2/ENaC.

5.2. Epithelial Barrier Dysfunction in IPF Pathogenesis

The bronchial epithelial barrier plays an important role in protecting the airways
against environmental insults not only via mucociliary clearance and production of antimi-
crobial substances to eliminate inhaled pathogens, but also by tight junctions that maintain
the cell–cell contact and regulate paracellular permeability [59]. Even if this has not been
comprehensively assessed, some reports suggest that epithelial barrier function is altered
during IPF pathogenesis. Zou et al., for instance, have demonstrated by immunohistochem-
istry (IHC) stainings for several tight junction proteins, that specifically levels of claudin-2
were elevated in IPF bronchiolar regions [60]. Others have found that levels of protein
kinase D (PKD), a negative regulator of airway barrier integrity [61], were increased in IPF
bronchiolar epithelium relative to normal lung tissue sections [62].

5.3. Other Changes in Airway Function

In a study designed to investigate the pathogenesis of cough in IPF, authors found
increased levels of nerve growth factor and brain-derived neurotrophic factor in induced
sputa of IPF patients compared to healthy control subjects [63]. These results indicated
functional upregulation of sensory neurons in the proximal airways of IPF lungs.

6. Genetic Evidence Indicating Involvement of Bronchial Epithelium in IPF

IPF is a multifactorial disease where the interplay between environmental exposure
and genetic susceptibility plays a central role in disease pathogenesis. Genome-wide
association studies (GWAS) on large cohorts of various ethnical backgrounds have provided
interesting insights into genetic susceptibility for IPF development and have linked specific
genetic variants to poorer outcomes in sporadic IPF and familial pulmonary fibrosis [64]. In
this context, single nucleotide polymorphisms (SNPs) conferring a higher risk for IPF were
discovered in several genes reported to be expressed in airway epithelial cells, strongly
suggesting a role for bronchial and bronchiolar epithelial cells in IPF aetiology [65,66]. These
include mucin-5B (MUC5B), toll interactive protein (TOLLIP), desmoplakin (DSP), family
with sequence similarity 13 member A (FAM13A), and A kinase anchor protein 13 (AKAP13).
For all but TOLLIP, which seems comparably little expressed in airway epithelial cells,
scRNA-Seq data confirms variable expression of these genes in bronchial, bronchiolar, and
aberrant basaloid cells (Figure 6). While MUC5B and FAM13A are particularly expressed
by secretory cells and ciliated cells, respectively, DSP is expressed by all bronchial and
bronchiolar epithelial cell types including aberrant basaloid cells, where it is one of the
top overexpressed genes relative to all other healthy epithelial cell types (Figure 5A). In
contrast, except for AKAP13, expression of which is enriched in AT2 and aberrant basaloid
cells, alveolar epithelial cells show relatively little expression of these genes (Figure 6).
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6.1. MUC5B

A common promoter SNP in the airway gene MUC5B on chromosome 11, rs35705950,
is the strongest risk factor for IPF, accounting for 30–35% of the overall risk to develop
IPF [29,55]. MUC5B encodes mucin-5B, a mucin protein predominantly expressed in serous
cells of submucosal glands in healthy lungs, and normally little expressed in airway surface
epithelium [67]. In contrast, in IPF lungs, MUC5B is overexpressed in secretory cells within
honeycomb cysts as well as in bronchioalveolar regions [29,30,39]. A series of elegant
in vivo work has demonstrated that overexpression of MUC5B, both in proximal and distal
airways, aggravates bleomycin-induced lung fibrosis in mice, while MUC5B-deficient mice
are protected from the development of lung fibrosis. Interestingly, increased mortality was
particularly observed when MUC5B was overexpressed in the distal murine airways [56].

6.2. TOLLIP

The gene TOLLIP encodes a ubiquitous protein with essential functions in the innate
immune response, epithelial survival, defence against pathogens and further biological
processes [68,69]. The TOLLIP gene is located adjacent to MUC5B and evidence regarding
linkage disequilibrium between the MUC5B SNP rs35705950 and TOLLIP SNPs suggests
that TOLLIP and MUC5B SNPs may not be passed on independently [68]. Three common
variants within the TOLLIP locus (rs111521887, rs5743894, rs574389) have been shown to
associate with higher susceptibility for IPF [66]. The minor alleles for all TOLLIP SNPs
result in reduced expression by 20–50%, with rs111521887 and rs5743894, which are in high
linkage disequilibrium, having stronger effects on expression than rs5743890 [66]. Interest-
ingly, even though all result in reduced expression, the clinical effects of the rs111521887
and rs5743894 minor alleles are opposite to the rs5743890 minor allele: Individuals who
carry the minor allele for rs111521887 and rs5743894 are more susceptible to developing
IPF, while the minor allele rs5743890 is associated with less susceptibility. However, de-
spite this initial protective effect, mortality in IPF patients with this variant is actually
increased [66,68]. In the integrative scRNA-Seq data set that we examined, TOLLIP overall
was comparably little detected (Figure 6). However, a recent study focusing on TOLLIP
expression in the lung has demonstrated TOLLIP expression in AT2 cells, basal cells, and
aberrant basaloid cells, but at the same time reported a global downregulation of TOLLIP
expression in the IPF lung [70].

6.3. DSP

Linking intermediate filaments to the plasma membrane, desmoplakin, encoded by
DSP, is a critical intracellular component of desmosomes, cell–cell adhesive junctions,
which are critical for tissue integrity [71]. In the lung, DSP is primarily expressed in bronchi
and bronchioles, with comparably little expression in alveoli [72]. The latter is also reflected
by the scRNA-Seq data shown here (Figure 6). GWAS have linked at least two genetic
variations in DSP with risk for IPF development, namely the minor alleles of rs2076295 and



Cells 2022, 11, 1050 13 of 27

rs2744371 [65,72]. Among those, the minor allele of the intronic SNP rs2076295 (intron 5)
is established as the strongest causal factor and is associated with an increased risk for
IPF development, while the minor allele of rs2744371 confers a protective effect against
IPF onset. Paradoxically, while DSP expression is increased in IPF lungs, the risk allele
rs2076295 correlates with lower DSP expression. Some well-designed in vitro experiments
using CRISPR/Cas9 gene editing in human bronchial epithelial cells have shown that
deletion or disruption of the DNA region spanning rs2076295 as well as introduction of
the minor allele (G) led to decreased expression of DSP, in agreement with an enhancer
function of this region in intron 5 [73]. Decreased DSP expression in turn resulted in
reduced barrier integrity, enhanced cell migration, and increased expression of markers for
EMT and of ECM genes [73].

6.4. FAM13A

FAM13A encodes a so far uncharacterized protein with largely unknown function.
Amino acid sequence homology suggests that FAM13A contains a Ras homologous (Rho)
GTPase-activating protein (GAP) domain and hence a function in Rho GTPase signalling [74].
In the lung, FAM13A is primarily expressed in bronchial epithelial cells, but also by AT2
cells, and macrophages [75,76]. GWAS have identified a genetic risk variant within this
gene, intronic rs2609255, that increases susceptibility for COPD and IPF with opposite
risk alleles [65,77]. For IPF, this risk variant appears not to be associated with expression
changes on transcript level [65]. Owing to its association with COPD and IPF disease risk,
experimental studies have been performed in both disease contexts. These studies suggest
that, on the one hand, FAM13A, protein levels of which are increased in COPD, may protect
from cigarette smoke-induced disruption of airway integrity and neutrophilia [75], but
at the same time promote β-catenin degradation, thus inhibit β-catenin signalling and
associated repair processes, and increase susceptibility to emphysema [76]. On the other
hand, FAM13A deficiency has been reported to exacerbate bleomycin-induced lung fibrosis
in the mouse, possibly via induction of EMT-related gene expression [78]. Overall, FAM13A,
even though its exact function remains unclear, appears to play an important role in airway
epithelial barrier integrity and repair.

6.5. AKAP13

AKAP13, encoding A kinase anchor protein 13, is another gene with a genetic variant,
rs62025270, conferring increased risk for development of IPF [79], expression of which is
largely confined to the airway epithelium [80]. AKAP13 is overexpressed in IPF where
it localizes to aberrant epithelial regions [79] and functions as a Rho guanine nucleotide
exchange factor regulating activation of RhoA [81], known for its involvement in profi-
brotic pathways.

7. Implicated Mechanisms

The precise pathogenesis of IPF is still not entirely understood, but the current knowl-
edge on environmental and genetic risk factors strongly suggests epithelial injury-triggered
reactivation of developmental pathways which, ultimately, leads to aberrant repair and
regeneration resulting in drastic changes in lung structure and function. Therefore, in
the following we will recapitulate these processes with a focus on what is known for the
contributions of the bronchial and bronchiolar epithelium.

7.1. Types of Epithelial Injury

The airway epithelium represents the first line defence against inhaled particles,
pathogens, and toxicants. Environmental and occupational triggers like cigarette smoke,
wood dust, metal dust, pesticides, and herpesvirus infection are established risk factors
for IPF [82,83]. Additionally, inhalation of traffic-related air pollutants has been linked to
increased incidence of IPF [84]. Furthermore, gastroesophageal reflux (GER) is an overrep-
resented comorbidity of IPF, suggesting that microaspiration of stomach acids increases



Cells 2022, 11, 1050 14 of 27

risk for IPF. Moreover, treatment of GER in IPF patients decelerates IPF disease progression
and improves survival, indicating that GER also influences disease progression [82,83].

7.2. Epithelial Apoptosis

Apoptosis of alveolar epithelial cells is a well-established phenomenon in IPF and
clearly reflected by the above discussed scRNA-Seq data showing a drastic decrease in
normal alveolar type I and II cells in IPF relative to control lung tissue (Figure 3D). Im-
munofluorescent stainings of pro- and anti-apoptotic proteins in combination with terminal
deoxynucleotide transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling
(TUNEL) stainings for DNA strand breaks have revealed that bronchiolar epithelial cells,
hyperplastic epithelial cells and epithelial cells lining honeycomb cysts in the lungs of IPF
patients show distinct signs of ongoing apoptosis [85–88]. While such cells in the past have
often been referred to as “hyperplastic AT2 cells” [88], our recently gained more detailed
understanding of the arising epithelial subpopulations in IPF, thanks to the above-described
scRNA-Seq studies, strongly suggests that these cells also include epithelial cells of a bron-
chiolar origin like activated hyperplastic basal cells. Moreover, strengthening a potential
role of apoptotic SCGBB1A1+ secretory cells in IPF, a recent report has demonstrated that
ablation of programmed cell death 5 (PDCD5) expression in these secretory cells, but not in
AT2 cells protects from experimental lung fibrosis [89].

7.3. Endoplasmic Reticulum (ER) Stress as Trigger for Epithelial Apoptosis

ER stress is a well-established trigger of alveolar epithelial apoptosis in IPF [85,90],
but has received less attention for bronchial or bronchiolar epithelial cells. Many types of
epithelial injury linked to an increased IPF risk, as, e.g., herpesvirus infection, cigarette
smoke, and particulate matter, have been shown to cause ER stress and induce the unfolded
protein response (UPR), also in cultured bronchial epithelial cells [90–92]. An elegant
recent study has provided an intriguing link between the MUC5B promoter polymorphism
(see Section 6) and ER stress in secretory airway epithelial cells. Chen et al. not only
demonstrated that central components of the UPR induced MUC5B expression in secretory
airway epithelial cells in pulmonary fibrosis, but also were able to show that this induction
is dependent on sequences within the promoter variant rs35705950 region which harbours
the IPF risk variant. Notably, in a luciferase reporter assay, the minor risk allele T alone
increased expression of MUC5B by almost two-fold. This study provides another piece of
evidence that ER stress and induction of the UPR in bronchiolar cells likely also contributes
to expression of MUC5B, impaired mucociliary clearance, and the development of IPF [93].

7.4. Ageing and Epithelial Senescence

IPF predominates in the elderly and is characterized by increased senescence in many
cell types, presumably because of replicative exhaustion and/or repetitive injuries to the
epithelium [94]. It is by now well established that epithelial cells covering fibroblast foci are
positive for senescence-associated β-galactosidase activity, nuclear p16 and p21 [95–99]. In
agreement, recent scRNA-Seq-based studies have demonstrated that the above-described
basaloid cells as well as hyperplastic basal cell population in bronchiolized regions express
genes related to growth arrest and senescence [44,45,100]. This has also been observed for
the transient population of Krt8+ ADI cells in mouse models of lung injury [54]. Collectively,
these observations put forward an attractive hypothesis where a specific population of
epithelial cells, normally committed to repair an injury of the lung mucosa followed by
clearance, persists “locked in repair” in IPF [101]. Notably, senescent epithelial cells from
fibrotic tissue have been shown to secrete proinflammatory and profibrotic molecules as
components of their senescence-associated secretory phenotype (SASP) [97], suggesting
that they may be a direct driver of disease pathogenesis.
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7.5. Reactivation of Developmental Pathways

Reactivation of molecular signalling pathways such as the transforming growth factor-
β (TGF-β), WNT, sonic hedgehog (SHH), and Notch pathways are critical players during
the developmental stages of lung, remain largely inactive in the postnatal lung except for
the maintenance of progenitor cell niches, but can become aberrantly reactivated during an
injury repair response and then trigger chronic disease [102]. In the following, the induction
and regulation of these developmental pathways during IPF pathogenesis is discussed
with a focus in bronchial and bronchiolar epithelial cells.

7.5.1. Transforming Growth Factor-β (TGF-β) Signalling

All three TGF-β isoforms (β1, β2, β3), their receptors TGF-β receptors (TGFBR) I,
II, and III, and their signalling mediators SMAD-2, -3, -4, -5, -6 and -7 are involved in
embryonic lung development where they regulate branching morphogenesis and alveolar-
ization [102]. TGF-β ligands act by binding to their cognate receptors on target cells, where
they trigger intracellular signalling pathways including the canonical SMAD-mediated
pathway but also non-canonical signalling pathways [103].

TGF-β is synthesized as an inactive precursor homodimer with N-terminal prodomains,
which, after cleavage by the intracellular protease furin, remain non-covalently bound
to the TGF-β homodimer as latency-associated peptide (LAP), collectively forming the
small latent complex (SLC). Only if this complex is bound to the latent TGF-β-binding
protein (LTBP), it will be secreted to the extracellular matrix as a complex called large
latent complex (LLC) [104]. Hence, TGF-β is always secreted in a latent form and requires
activation in situ by additional triggers.

Out of the three isoforms, TGF-β1 plays a well-recognized central role in IPF patho-
genesis [105–107]. Activation of latent TGF-β1 implies the release of active TGF-β1 ligands
from the ECM by proteolysis or deformation of their LAP portion. Many potential mech-
anisms have been observed in vitro, but for many the physiological relevance remains
unclear. In vivo activation has been clearly shown for several αv integrins in the context of
fibrosis, e.g., avβ1, avβ3, avβ5, and avβ6 [108]. Even though the underlying mechanisms
are not fully understood, it appears that cells carrying these integrins can exert a pulling
force on the LLC which “unwraps” the LAP and releases active TGF-β1 from the ECM.
Other reasonably well-established activators are thrombospondin-1 (TSP1), pregnancy
specific glycoproteins, and tenascin X. Additionally, activation by unspecific physico- or
biochemical factors like low pH and reactive oxygen species has been described, which
may also be physiologically relevant. Finally, proteolytic activation has been described for
a variety of proteases, including, e.g., several matrix metalloproteinases (MMPs), calpain,
plasmin, kallikrein, and cathepsin D. Interestingly, while deficiency of integrin subunits
like αv, β6, and β8 in mice phenocopies the TGF-β1 knockout mouse, this has not been
observed for any protease-deficient mouse so far, indicating considerable redundancy in
proteolytic activation of TGF-β1 in vivo [108–110].

Bronchial epithelial cells potentially may contribute to TGF-β1-mediated mechanisms
in IPF by at least three mechanisms. First, bronchial and bronchiolar epithelial cells ex-
press TGF-β1 [111,112], implying that the underlying ECM likely harbours latent TGF-β1.
Second, bronchial epithelial express many of the suggested activating factors in fibrosis:
Airway epithelial cells express both αvβ6 and αvβ8 integrin heterodimers, and expression
of αvβ6 is dramatically increased after injury [113]. Notably, the ITGAV transcript for
the αv integrin monomer is clearly enriched in aberrant basaloid cells relative to all other
healthy epithelial cell types (Figure 5A). Second, airway and aberrant basaloid epithelial
cells also have been shown to express activators of latent TGF-β1 in IPF, including MMP-
8 [114], MMP-3, MMP-13, MMP14, calpain, and cathepsin D in IPF [44,45] (ipfcellatlas.com),
all representing proteases previously proposed to activate latent TGF-β1 [108]. ScRNA-Seq
data also demonstrates expression of the thrombospondin 1 precursor by bronchial epithe-
lial cells [44,45] (ipfcellatlas.com). Third, bronchial epithelial cells themselves are reactive
to TGF-β1 and have been shown to undergo partial epithelial-to-mesenchymal transition
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(pEMT) in response to TGF-β1 [115,116]. Whether EMT contributes to the myofibroblast
population in IPF is controversially discussed, as conflicting results have been reported
in in vivo models of pulmonary fibrosis—so far neither lineage-tracing experiments nor
scRNA-Seq data have provided unambiguous evidence for a complete EMT as a source for
myofibroblasts in the lung [117,118]. However, the resulting cell phenotype after pEMT is
partly reminiscent of the aberrant basal-like cell phenotype observed in IPF—following
pEMT, human bronchiolar epithelial cells lose epithelial morphology and polarity and
upregulate mesenchymal markers like type I collagen and fibronectin. On the other hand,
downregulation of expression of typical epithelial markers such as E-cadherin and up-
regulation of vimentin is not evident in the scRNA-Seq data sets published so far [44,45]
(ipfcellatlas.com). These discrepancies may reflect the crosstalk between variously activated
profibrotic pathways and the complex cellular and ECM environment in end-stage IPF,
parameters frequently not considered in studies of EMT. Clearly, further work is warranted
to elucidate the role of TGF-β1 in the emergence of aberrant basaloid cells, and how this
process relates to pEMT.

7.5.2. WNT Signalling Pathway

Wingless/integrase-1 (WNT) signalling pathways are fundamentally important for
tissue morphogenesis including all stages of lung development [119]. The WNT ligand
family comprises 19 human members which are characterized by strictly controlled spa-
tiotemporal expression in various organs during development and tissue homeostasis
and associated with a constantly growing number of human diseases by upregulation,
genetic polymorphisms and mutations [120]. It is well-established that the WNT signalling
pathway is reactivated in IPF [119,121] and expression of WNT ligands (WNT1, WNT3a),
intracellular downstream inducers (β-catenin, GSK-3β), as well as extracellular inhibitors of
canonical WNT signalling (Dickkopf proteins DKK1, DKK4 and the interacting transmem-
brane receptor Kremen 1) has been demonstrated in bronchial and bronchiolar epithelium
in IPF [122,123]. Studies in various models of lung injury have put forward WNT signalling
as a critical component for stem cell maintenance, lung regeneration, and repair [119].
WNT signalling is activated during repair after proximal lung injury and dynamically
regulates submucosal gland progenitor maintenance, proliferation, and differentiation to
other airway epithelial cell types [124–128]. Furthermore, in mice, expression of Wnt7b by
basal cells in the proximal airways generates their own stem cell niche via induction of
fibroblast growth factor 10 (Fgf10) in adjacent smooth muscle cells [129]. Airway injury
induces Wnt7b in the more distal airways, generating new Fgf10-expressing mesenchymal
cells and allowing for recruitment of basal cells and/or differentiation of lineage-negative
progenitors into the basal progenitor cell lineage [129,130]. Collectively, these studies imply
an important role of WNT signalling in aberrant bronchial and bronchiolar repair in IPF.

7.5.3. Sonic Hedgehog Signalling (SHH) Pathway

During lung development, sonic hedgehog (SHH) is expressed in the respiratory
epithelium in a gradient with higher levels in the branching tips, presumably providing
polarization during branching morphogenesis in the embryonic and pseudoglandular stage.
Furthermore, SHH is essential for the coordination of epithelial-mesenchymal compartment
growth, also during the alveolarization phase [131,132]. Bolaños et al. systematically
assessed expression of SHH signalling pathway components in control lung tissue and IPF
and found that expression of all SHH signalling components was induced or drastically
increased in IPF. They observed expression of the ligand SHH exclusively in bronchial,
bronchiolar, and alveolar epithelial cells, but expression of the receptors transmembrane
receptor Patched-1 and the G-protein coupled receptor Smoothened mainly in fibroblasts
and inflammatory cells. While the SHH signalling transcription factor glioma-associated
oncogene homolog (GLI) 1 was expressed ubiquitously, including in fibroblasts, nuclear
GLI2 was confined to distal epithelial cells [133]. Furthermore, the authors could show that
recombinant SHH increased proliferation, expression of ECM components, and migration
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of primary human lung fibroblasts and at the same time inhibited fibroblast apoptosis [133].
These results indicate that SHH generated by distal, bronchiolar and alveolar, epithelial cells
activates fibroblasts, which indicates an important profibrotic contribution of epithelial-
derived SHH in IPF pathogenesis. Interestingly, a more recent study provided evidence that
a profibrotic feed-forward mechanism may exist in this context: Gli+ mesenchymal stromal
cells promote differentiation of airway progenitors into aberrant metaplastic Krt5+ basal
cells by antagonizing activation of the bone morphogenetic protein (BMP) pathway [134].
Overall, this suggests that upregulation of epithelial SHH may be an early event in IPF
pathogenesis and trigger reciprocal epithelial-mesenchymal interactions that propagate
lung fibrogenesis.

7.5.4. Notch Signalling Pathway

In lung development, Notch signalling determines ciliated versus secretory cell fate
in conducting airways [135,136]. Following bleomycin injury or influenza infection in
mice, Notch signalling has been shown to activate proliferation and migration of a KRT5+

progenitor cell lineage in the context of repair after injury while blockade of Notch signalling
induced an alveolar cell type faith. Importantly, active Notch signalling was detected in
IPF honeycomb cysts [130], indicating a role for Notch signalling in aberrant epithelial
repair and honeycomb cyst formation. Interestingly, overexpression of Notch can also
induce EMT [137]; so, Notch signalling may not only promote aberrant cyst formation,
but also contribute to the emergence of the above- described aberrant basaloid cells. In
mice, Dlk1-mediated temporal regulation of Notch signalling is required for differentiation
of AT2 to AT1 cells during repair [138]. Interestingly, deletion of Dlk1 in AT2 cells led
to the accumulation of an intermediate cell population. We may speculate that a similar
Notch-dependent mechanism might drive the appearance of aberrant basaloid cells in IPF.

In summary, bronchial and bronchiolar epithelial cells including airway-cell derived
disease-specific lineages contribute to the reactivation of developmental pathways in IPF,
including central pathways like the TGF-β1, WNT, SHH, and Notch signalling pathways.
The collective evidence clearly demonstrates that, via autocrine and paracrine mechanisms,
conducting airway epithelial-derived factors induce and modulate developmental pro-
grammes in IPF and drive major pathological outcomes in this disease like excessive ECM
deposition and honeycomb cyst formation.

7.6. Epigenetic Mechanisms

Epigenetics traditionally comprises DNA methylation and histone modification, molec-
ular alterations in chromatin which serve as marks for transcriptional activation or repres-
sion without affecting the DNA sequence per se. Epigenetic regulation mechanisms are
typically persistent, can be inherited, and have the potential to translate environmental
exposures into regulation of gene transcription at the level of chromatin structure [139,140].
This applies particularly to the airway mucosa, which represents a direct interface between
environment and human body [141,142]. As IPF development seems to be orchestrated
by genetic predisposition and environmental risk factors, epigenetic mechanisms may
provide important mechanistic links and novel targets for therapy. Indeed, a number of
studies have established that epigenetic signatures are changed in IPF, including DNA
methylation and expression of DNA methyl transferases [143,144] as well as single histone
modification marks [140] and expression of histone modifying enzymes [145]. To the best
of our knowledge, genome-wide histone modification studies in IPF are lacking to date.

Our knowledge on epigenetic marks in IPF and their cell type-specific contribution to
disease pathogenesis and progression is still very limited. However, it is well-known that
IPF risk factors like cigarette smoke or particulate matter, for instance, induce epigenetic
alterations in bronchial epithelial cells [146–148], indicating that such changes may be
frequent in IPF. Furthermore, increased expression and activity of histone deacetylases
in IPF has been localized to myofibroblasts, but also to aberrant basal cells in IPF [145].
Clearly, the role of epigenetic changes in airway epithelial cells requires more attention and
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detailed mechanistic studies, and such investigations may ultimately provide interesting
novel therapeutic intervention opportunities for early therapy.

7.7. Non-Coding RNAs

Non-coding RNA (ncRNA), i.e., RNA which is not translated to proteins, constitutes
approximately 98% of the total transcribed RNA in humans [149]. NcRNAs include house-
keeping RNAs, such as ribosomal, spliceosomal, or transfer RNA, expression of which
is constitutive, but also regulatory RNAs, such as long noncoding RNAs (lncRNA) or
microRNAs (miRNA), which are expressed in a cell type- and tissue-specific manner and
often altered in disease. LncRNA molecules are arbitrarily defined as >200 nucleotides
in length and can regulate gene expression by transcriptional interference, chromatin re-
modelling, promoter inactivation, activation and transport of accessory and transcription
factors, epigenetic silencing, and as precursors for small interfering RNAs [150,151]. In
contrast, miRNAs are short, approximately 22 nucleotides long, RNA molecules which
suppress protein translation by non-perfect complementary binding to regions in the 3′UTR
of their target mRNAs.

Even though our knowledge on function and regulation of lncRNAs in general is still
very limited, several studies support the concept that lncRNAs contribute to profibrotic
cellular mechanisms in IPF [152,153]. While some studies in this context focussed on
the function of specific lncRNAs in lung fibroblasts [154], other recent reports highlight
altered lncRNA expression and function in bronchial epithelial cells. For instance, increased
expression of lncRNA MEG3 was observed in atypical KRT5+ p63+ basal cells in IPF relative
to normal donor lung tissue. In vitro studies showed that MEG3 induced basal cell gene
transcription (KRT14, TP63) in bronchial cell lines, but also fundamental events of EMT,
including increased cellular migration and downregulation of CDH1 (E-cadherin) [155].
MEG3 may thus cause or at least contribute to the emergence of the aberrant basal-like
cell populations in IPF described above (see Section 4). In contrast, loss of the terminal
differentiation-induced lncRNA (TINCR), a lncRNA normally expressed in the bronchial
epithelium, but decreased in IPF, has been described to, among others, induce basal cell
markers and ECM genes [156,157], reminiscent of gene expression signatures of aberrant
basal and basaloid cells in IPF [42,44,45]. Studies in mouse models of lung fibrosis and
primary human cells have proposed additional lncRNAs as regulators of EMT in bronchial
epithelial cells, but localization in the IPF lung has, to the best of our knowledge, not yet
been demonstrated. These include lncRNAs uc.77 and 2700086A05Rik [158] and lncRNA
H19 [159]. Collectively, these studies support the concept of bronchial epithelial cell-specific
lncRNA expression as an emerging driver in IPF pathogenesis.

To date, few studies have addressed the function of airway epithelial miRNAs in
IPF pathogenesis. A pioneering study has globally assessed expression of miRNAs in
bronchoscopy-assisted bronchial brushes from fibrotic airways of bronchiolitis obliterans
syndrome (BOS) and found that miR-323a-3p was drastically downregulated (>18-fold)
in airways of BOS patients relative to control lung transplant patients. The authors also
examined miR-323a-3p expression in isolated AT2 cells from IPF lung explants and from
fibrotic mouse lungs after bleomycin injury and observed significant downregulation, indi-
cating general downregulation in lung epithelium during fibrogenesis [160]. Furthermore,
miR-323a-3p mimics and miR-323a-3p antagomirs suppressed and exacerbated lung fi-
brogenesis, respectively, in the bleomycin mouse model. In vitro studies suggested that
miR-323a-3p directly targets central mediators of TGF-α and TGF-β signalling as well
as caspase 3, thereby attenuating key profibrotic mechanisms and epithelial cell apopto-
sis [160]. Given that miRNA therapeutics are coming of age and, in the case of the lung,
can be easily delivered to the epithelium by inhalation, more such studies are warranted to
identify further epithelial-specific miRNA-based profibrotic mechanisms.
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8. Summary, Conclusions, and Emerging Questions

The last decade has transformed our understanding of IPF pathogenesis and set forth
multiple evidence that strongly argues for a critical role of conducting airway epithelial
cell populations in IPF aetiology and disease development (summarized in Figure 7). The
discovery of the MUC5B promoter polymorphism as the strongest causative factor for
IPF onset drew attention from the alveolar department to bronchial and bronchiolar cell
contributions to lung fibrogenesis. IPF airways are drastically distorted, and alveolar areas
are repopulated by airway-like epithelial cells in a process termed bronchiolization. In
agreement, several recent scRNA-Seq analyses of IPF lungs have consistently revealed
drastic alterations in epithelial subpopulations including the replacement of alveolar ep-
ithelial cells by various airway-like cells that are either directly distal airway-derived or the
result of alveolar epithelial cell transdifferentiation or a combination of both. Emerging
new evidence suggests that specific mesenchymal niche environments in the IPF patient
may promote plasticity of the alveolar epithelium that leads to full transdifferentiation
towards airway-like states [38]. Another line of evidence shows that persistent alveolar
repair generates intermediate cells, which display features of senescence and p53 activation.
In mice, inducing senescence in AT2 cells and thereby shifting them to a state that resembles
injury-induced alveolar differentiation intermediates [54,161] and the aberrant basaloid
cells [42,44,45] leads to progressive pulmonary fibrosis as seen in IPF patients [162]. Future
work needs to leverage histopathological disease grade staging to further clarify the cel-
lular origins of these intermediate cell populations and the natural evolution of epithelial
metaplasia and bronchiolization in IPF disease progression.

1 
 

 

Figure 7. Hypothetical contributions of the airway epithelium to IPF pathogenesis. Summarizing
scheme linking established environmental and genetic risk factors via the bronchial and bronchiolar
epithelium to IPF-specific disease mechanisms and outcomes like bronchiolization and interstitial
scarring. Figure was created with biorender.com.

Critical airway functions like mucociliary clearance and epithelial barrier integrity
are also affected in IPF. Genetic risk factors beyond the MUC5B promoter polymorphism,

biorender.com


Cells 2022, 11, 1050 20 of 27

in particular the DSP and FAM13A risk SNPs, argue for airway epithelial cells as central
culprits in disease onset. Finally, evidence is accumulating that bronchial epithelial cells di-
rectly trigger central profibrotic mechanisms like the reactivation of multiple developmental
programmes in an aberrant injury response.

The balance between epithelial proliferation, trans-differentiation, apoptosis and cellu-
lar senescence is drastically disturbed in IPF airway epithelial cells. Impaired mucociliary
clearance may be a key disease-initiating feature in this context. However, we still under-
stand very little about the mechanisms that trigger the balance to tip from normal alveolar
repair towards this aberrant, airway epithelial cell-driven repair process leading to the
emergence of epithelial metaplasia and aberrant basaloid cells in the lung periphery. Simi-
larly, the sequence of events that ultimately lead to IPF development remains ill-defined.
For instance, is bronchiolization an epiphenomenon and characteristic of end-stage disease,
or may pEMT of airway epithelial cells actually precede activation of fibroblasts? What are
key mechanisms that can be safely and effectively employed to target profibrotic epithelial-
mesenchymal cross-talk and regenerate normal stem cell niches? In particular epigenetic
mechanisms, the role of epithelial non-coding RNAs, how these affect profibrotic and
disease-perpetuating mechanisms, and whether they can be targeted for therapy remains a
largely unexplored area. Additionally, the contributions of immune cells to the described
processes remain little understood. Evidently, more mechanistic studies are needed to
decipher these processes in molecular detail. It is becoming increasingly clear that, for this
aim, we need to develop novel animal lung fibrosis models, which recapitulate impaired
mucociliary function and environmental exposure. The above-described mouse model
derived by conditional deletion of NEDD4-2 from airway epithelial cells represents a great
opportunity to study in more detail the mechanisms that trigger fibrosis as a result of
impaired mucociliary clearance. The good news about airway epithelial cells as emerging
central culprits in IPF pathogenesis is that, finally, targeting airway epithelial cells is a
more straightforward task than targeting fibroblasts, because, given that fibrotic areas are
ventilated, the inhalatory route would deliver the drug directly and specifically onto the
aberrant epithelium.
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