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Abstract 
Genomic prediction has become the new standard for genetic improvement programs, and currently, there is a desire to implement this 
technology for the evaluation of Angus cattle in Brazil. Thus, the main objective of this study was to assess the feasibility of evaluating young 
Brazilian Angus (BA) bulls and heifers for 12 routinely recorded traits using single-step genomic BLUP (ssGBLUP) with and without genotypes 
from American Angus (AA) sires. The second objective was to obtain estimates of effective population size (Ne) and linkage disequilibrium (LD) 
in the Brazilian Angus population. The dataset contained phenotypic information for up to 277,661 animals belonging to the Promebo breeding 
program, pedigree for 362,900, of which 1,386 were genotyped for 50k, 77k, and 150k single nucleotide polymorphism (SNP) panels. After im-
putation and quality control, 61,666 SNPs were available for the analyses. In addition, genotypes from 332 American Angus (AA) sires widely 
used in Brazil were retrieved from the AA Association database to be used for genomic predictions. Bivariate animal models were used to es-
timate variance components, traditional EBV, and genomic EBV (GEBV). Validation was carried out with the linear regression method (LR) using 
young-genotyped animals born between 2013 and 2015 without phenotypes in the reduced dataset and with records in the complete dataset. 
Validation animals were further split into progeny of BA and AA sires to evaluate if their progenies would benefit by including genotypes from 
AA sires. The Ne was 254 based on pedigree and 197 based on LD, and the average LD (±SD) and distance between adjacent single nucleotide 
polymorphisms (SNPs) across all chromosomes were 0.27 (±0.27) and 40743.68 bp, respectively. Prediction accuracies with ssGBLUP outper-
formed BLUP for all traits, improving accuracies by, on average, 16% for BA young bulls and heifers. The GEBV prediction accuracies ranged from 
0.37 (total maternal for weaning weight and tick count) to 0.54 (yearling precocity) across all traits, and dispersion (LR coefficients) fluctuated 
between 0.92 and 1.06. Inclusion of genotyped sires from the AA improved GEBV accuracies by 2%, on average, compared to using only the 
BA reference population. Our study indicated that genomic information could help us to improve GEBV accuracies and hence genetic progress 
in the Brazilian Angus population. The inclusion of genotypes from American Angus sires heavily used in Brazil just marginally increased the 
GEBV accuracies for selection candidates.

Lay Summary 
There was a desire to implement genomic selection for Angus cattle in Brazil since the technology has been proved to increase genetic gain 
in animal breeding programs. Single-step genomic best linear unbiased prediction (ssGBLUP), which simultaneously combines pedigree and 
genomic information, was used to estimate individuals’ genomic breeding values (GEBV) or genetic merit. Genomic selection can accelerate 
genetic progress by increasing accuracy, especially in young animals without progeny. The accuracy of GEBV can also be improved by combing 
data from other countries to increase the reference population (i.e., genotyped and phenotyped animals) in small, genotyped populations. Thus, 
the main objective of this study was to evaluate the accuracy of GEBV for young Brazilian Angus (BA) bulls and heifers with ssGBLUP, including 
or not the genotypes from American Angus sires. The accuracies with ssGBLUP were higher than those from traditional BLUP (EBV calculated 
from pedigree), improving accuracies by, on average, 16% for young bulls and heifers. Including genotypes from American Angus sires heavily 
used in Brazil just marginally increased the GEBV accuracies for selection candidates.
Key words: beef cattle, exchange of genotypes, genomic selection, multi-country evaluation, single-step GBLUP
Abbreviations: AA, American Angus; BA, Brazilian Angus; BLUP, best linear unbiased prediction; BW, birth weight; CG, contemporary group; Corr, correlation 
between true and imputed genotypes; CR, call rate; EBV, estimated breeding value; G, genomic relationship matrix; GEBV, genomic estimated breeding value; LD, 
linkage disequilibrium; LR, linear regression; MAF, minor allele frequency; Ne, effective population size; PCG, preconditioned conjugate gradient algorithm; Perc, 
percentage of correctly imputed genotypes; PWG, post-weaning gain; QTL, quantitative trait loci; QC, quality control; RP, reference population; ssBR, single-
step Bayesian regression; ssGBLUP, single-step genomic best linear unbiased prediction; ssGBLUP_AA, single-step genomic best linear unbiased prediction 
including genotypes from American Angus Association; SNP, single nucleotide polymorphism; TC, tick count; TCP, perineum tick count; TM, total maternal; WC, 
weaning conformation; HCW, weaning hair coat; WP, weaning precocity; WM, weaning muscling; WWG, weaning weight gain; YC, yearling conformation; YHC, 
yearling hair coat; YP, yearling precocity; YM, yearling muscling
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Introduction
The traditional genetic improvement program for Angus cattle 
in Brazil based on phenotypes and pedigree was established in 
1974 to improve growth, carcass quality, and more recently 
disease resistance (tick resistance) and adaptability (hair coat). 
However, genomic selection has become the new standard 
for genetic improvement programs because of its ability to 
produce larger genetic gains than traditional programs based 
on pedigree and phenotypes (Schaeffer, 2006; García-Ruiz et 
al., 2016). There is currently a desire to implement this tech-
nology for the evaluation of Angus cattle in Brazil. The success 
of genomic selection depends on the size of the reference popu-
lation, effective population size (Ne), linkage disequilibrium 
(LD) between markers and quantitative trait loci (QTL), and 
statistical methods used to estimate genomic breeding values 
(GEBV) (Hayes et al., 2009). In particular, the number of geno-
typed Angus animals in Brazil will likely need to be augmented, 
as sizeable reference populations are generally required to 
achieve the larger genetic gains expected from genomic selec-
tion (Goddard and Hayes, 2009; VanRaden et al., 2011).

One of the most successful methods for genomic evaluation 
that has been implemented worldwide is the single-step gen-
omic best linear unbiased prediction (ssGBLUP; Aguilar et al., 
2010; Christensen and Lund, 2010). This method combines 
pedigree, phenotypes, and genotypes into one single analysis to 
compute GEBV for all animals in the pedigree. The ssGBLUP 
has computational advantages over multistep methods that 
lead to more accurate and less biased GEBV (Lourenco et al., 
2013). Variations of the single-step method exist, and one ex-
ample is the single-step Bayesian Regression (ssBR; Fernando 
et al., 2014). Single-step is now the method of choice for beef 
cattle genomic evaluations in large and small populations.

The accuracy of GEBV in small-genotyped populations 
may be limited regardless of method. One way to increase 
GEBV accuracies is to combine populations from several 
countries to conduct a multi-breed or single-breed multi-
country evaluation (Berry et al., 2016). Lund et al. (2011) 
found an increase of 10% in reliability (accuracy squared) 
when combining small Holstein populations from France, 
Nordic countries, Germany, and The Netherlands. Andonov 

et al. (2017) simulated a large dairy cattle population with 
more than 20 generations and a small dairy cattle population 
(3 generations), and the authors reported an increase in ac-
curacy in the small populations when all information (pedi-
gree, phenotypes, and markers) from a larger population 
was added to the evaluation. However, these authors warned 
about the difficulties regarding extensive data sharing among 
countries. In populations where a small proportion of ani-
mals is genotyped and semen from foreign sires is heavily 
used, as is the case of Angus in Brazil, incorporation of geno-
types from foreign relatives may help us to boost GEBV ac-
curacies for Brazilian Angus selection candidates without 
records or progeny. This is especially true if foreign sires 
have progeny with phenotypes, and possibly genotypes, in 
the local population. Thus, the main objective of this study 
was to assess the feasibility of evaluating young Brazilian 
Angus bulls and heifers for 12 routinely recorded traits 
using ssGBLUP with and without genotypes from American 
Angus sires. The second objective was to obtain estimates of 
effective population size and linkage disequilibrium in the 
Brazilian Angus population.

Material and Methods
Animal Care and Use Committee approval was not needed 
because information was obtained from pre-existing 
databases.

Phenotype, pedigree, and genotype data
The phenotypes, pedigree, and genotypes for the Brazilian 
Angus cattle used in this study were provided by the Promebo 
breeding program (Promebo®, 2020). Animals were born 
from 1974 to 2018 and had phenotypes collected for birth 
weight (BW), weaning weight gain (WWG), weaning con-
formation (WC), weaning precocity (WP), weaning muscling 
(WM), weaning hair coat (WHC), post-weaning gain (PWG), 
yearling conformation (YC), yearling precocity (YP), year-
ling muscling (YM), yearling hair coat (YHC), and tick count 
(TC). Table 1 shows the number of animals with records for 
each trait. The conformation, precocity, and muscling data at 

Table 1. Data structure and descriptive statistics for the Brazilian Angus population

Trait1 Number of 
observations 

Mean ± SD Min Max Number of 
contemporary 
groups 

Number 
of sires 

Number 
of dams 

Number of animals 
with phenotypes 
and genotypes 

Number of 
animals in 
validation set 

BW 140,043 33.70 ± 4.93 15 60 3,218 4,306 65,844 943 334

WWG 277,661 138.40 ± 39.44 20.57 410 11,732 6,775 123,260 1018 373

WC 249,480 3.17 ± 1.08 1 5 12,306 6,346 110,832 1020 376

WP 228,596 3.23 ± 1.06 1 5 10,938 5,910 101,730 1021 377

WM 228,575 3.17 ± 1.06 1 5 10,937 5,912 101,734 1021 377

WHC 79,003 2.05 ± 0.72 1 3 4,904 2,801 39,571 795 193

PWG 180,090 148.24 ± 113.00 0.74 510 12,448 5,749 90,797 942 327

YC 174,015 3.23 ± 1.07 1 5 15,021 5,635 86,000 953 332

YP 159,408 3.31 ± 1.03 1 5 13,599 5,261 79,242 953 332

YM 159,342 3.22 ± 1.03 1 5 13,596 5,261 79,183 953 332

YHC 64,572 1,89 ± 0.71 1 3 5,823 2,792 35,644 698 103

TC 2,263 41.57 ± 36.94 0 150 30 150 1,052 921 344

1BW, birth weight; WWG, weaning weight gain; WC, weaning conformation; WP, weaning precocity; WM, weaning muscling; WHC, weaning hair coat; 
PWG, postweaning gain; YC, yearling conformation; YP, yearling precocity; YM, yearling muscling; YHC, yearling hair coat; TC, tick count.
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weaning and yearling were recorded by trained technicians 
(Cardoso et al., 2001, 2004). The conformation score is re-
lated to the body volume of the carcass, basically considering 
the body length and the depth of ribs. Finishing precocity 
score is a measure of the animal capacity to store fat reserves, 
and it is used to evaluate the animal’s ability to achieve a 
minimum market required degree of finishing for slaughter. 
Muscling score reflects apparent muscle mass, and individuals 
with more convex muscles receive higher grades. Each animal 
received visual scores from 1 to 5, where 5 refers to the max-
imum expression and 1 to the lowest expression of a trait 
relative to its contemporaries. Additional information can be 
found in Cardoso et al. (2001) and Cardoso et al. (2004). The 
visual score for weaning and yearling hair coats ranged from 
1 to 3, where 1 refers to short, 2 to medium, and 3 to long 
hair coat (Reimann et al., 2018). Tick counts were performed 
manually by counting adult female ticks with at least 4.5 mm 
on one side of each animal (Wharton et al., 1970). One to 
three subsequent tick counts were obtained between 2012 and 
2017 from five different herds. Mean age during the evalu-
ation period was 546 ± 60 d, and the mean TC was 51 ± 53 
ticks. Tick counts records were log-transformed to normalize 
the distribution, and a constant of 1.001 was added to the 
counts prior to this transformation because log10(1.0)=0.0 
and null values are treated as missing by the used software 
(Cardoso et al., 2015).

Three different SNP panels were used to genotype 1386 
animals, of which 1247 animals with GeneSeek Genomic 
Profiler 150k, 92 animals with GeneSeek Genomic Profiler 
50k, and 17 animals with GeneSeek Genomic Profiler 77k 
(Neogen Agrigenomics, Lincoln, NE). Quality control of 
genotypes (QC) was implemented using the R/SNPStats 
package (Clayton, 2014). Samples with genotyping call 
rates (CR) < 0.90, heterozygosities three SD above or below 
the observed mean, mismatched sex, and duplicate records 
were removed. Only SNPs mapped to autosomes with CR 
> 0.98, minor allele frequencies (MAF) > 0.03, and with a 
probability of deviation from Hardy–Weinberg Equilibrium 
> 10−7 were considered in the analyses. Lastly, when SNPs 
were observed in the same position or genotypes were highly 
correlated (r > 0.98), only the SNP with the highest MAF 
was retained.

American Angus genotypes
Genotypes from 332 American Angus (AA) sires widely used 
in Brazil were retrieved from the AA Association database. 
These sires were genotyped with the Illumina Bovine 50k 
v2 SNP panel (50k_AA), which contains 54,609 SNP. The 
chosen American Angus sires had to have at least one progeny 
in the Promebo dataset. The AA provided sire genotypes, but 
no phenotypes were shared for any trait. Nonetheless, these 
sires had 19,944 progeny phenotypes (i.e., weaning weight) 
in the Brazilian dataset. A QC was separately conducted 
using the same procedure described above. After QC, 330 
American Angus sires and 33,692 SNPs remained for subse-
quent analyses.

Genotype imputation
A joint imputation of Brazilian and American Angus geno-
types was performed by combining SNPs in common among 
150k, 77k, 50k, and 50k_AA. After editing and merging 
SNP from the four SNP panels, 61,666 SNPs and 1,292 sam-
ples from BA and 330 samples from AA animals remained 

for imputation. Missing genotypes were imputed using the 
FImpute software v2.2 (Sargolzaei et al., 2014).

To evaluate the accuracy of genotype imputation, ani-
mals were divided into reference and validation sets using 
the 150k SNP panel. The reference set included BA animals 
born before 2013 (n = 835) and the validation set comprised 
all BA cattle born between 2013 and 2014 (n = 281). The 
validation set included the younger animals, because they 
are the ones that would be genotyped in practice. Animals 
from the validation set had their 150k genotypes masked, 
except for SNP genotypes present in the commercially avail-
able lower density SNP panels under evaluation (50k or 
77k), thus mimicking a situation in which these animals 
were genotyped with lower density SNP panel (Carvalheiro 
et al., 2014; Piccoli et al., 2014a). We pretended the animals 
in the validation set were genotyped with lower density SNP 
panel (50k or 77k), calculating statistics only for the masked 
genotypes.

The FImpute software uses a deterministic algorithm and 
family and population information. Family information is 
considered only when pedigree information is available. 
FImpute assumes that all animals are related by using the 
overlapping sliding windows method, and the shared haplo-
types among individuals may differ in length and frequency 
based on relationship (Sargolzaei et al., 2014).

We performed imputations with and without pedigree 
information to evaluate the performance of FImpute when 
using family information. Imputation accuracy was assessed 
using the percentage of correctly imputed genotypes (Perc) 
and the mean correlation between true and imputed geno-
types (Corr; Hickey et al., 2012).

Statistical analysis
Contemporary groups (CG) were formed by animals from the 
same farm, sex, year and season of birth, management group, 
and date of phenotypic evaluation. For continuous traits (BW, 
WWG, PWG, and TC), CG with less than three animals and 
data exceeding 3.5 SD above or below the CG mean were ex-
cluded. For visual score traits (WC, WP, WM, WHC, YC, YP, 
YM, and YHC), CG with less than three animals and without 
variability were eliminated (Table 1).

Variance components based on phenotypes and pedigree 
were estimated using Bayesian inference via Gibbs sampling. 
The GIBBS2F90 software (Misztal et al., 2014) was applied 
with a linear animal model for all traits, except for HCW 
and HCY that were analyzed using a threshold model with 
the THRGIBBS1F90 program (Misztal et al., 2014). The 
GIBBS2F90 analyses utilized a single chain of 200,000 cycles, 
a burn-in of 50,000 cycles, and a thinning interval of 10 cycles. 
The THRGIBBS1F90 analyses used a single chain of 400,000 
cycles, a burn-in of 100,000 cycles, and a thinning interval 
of 10 cycles. Posterior estimates were obtained using the 
POSTGIBBSF90 program (Misztal et al., 2014). Convergence 
was tested using the criterion proposed by Geweke (1992), 
with the “boa” package in R (Smith, 2007).

The variance component analyses utilized the same bi-
variate animal models currently used in the Promebo genetic 
evaluations. The bivariate models for growth traits always 
used WWG as one of the traits because WWG was recorded 
in the largest number of animals. The models for conform-
ation, muscling, precocity, and hair coat considered measure-
ments at weaning and yearling as different traits. The model 
for TC included perineum tick counts (TCP) as a correlated 
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trait, although only results from whole side body tick count 
are described in this study.

The models included the systematic effects of CG and age 
of dam by sex of calf interaction and linear and quadratic 
covariates for animal age. Additionally, direct and maternal 
additive genetic, maternal permanent environmental, and re-
sidual were included as random effects for traits measured at 
weaning, whereas only direct additive genetic, maternal per-
manent environmental, and residual random effects were con-
sidered for yearling traits (model 1). The model for the trait 
with repeated measures (TC) included direct additive gen-
etic, permanent environmental, and residual random effects 
(model 2). These bivariate animal models can be represented 
in matrix notation as follows:

ñ
y1
y2

ô
=

ñ
X1 0
0 X2

ô ñ
β 1

β 2

ô
+

ñ
Za1 0
0 Za2

ô ñ
a1
a2

ô

+

ñ
Zm1 0
0 Zm2

ô ñ
m1

m2

ô
+

ñ
Zmpe1 0
0 Zmpe2

ô ñ
mpe1
mpe

ô
+

ñ
e1
e2

ô
,

 (1)

ñ
tc1
tc2

ô
=

ñ
X1 0
0 X2

ô ñ
β 1

β 2

ô
+

ñ
Za1 0
0 Za2

ô ñ
a1
a2

ô

+

ñ
Zpe1 0
0 Zpe2

ô ñ
pe1
pe2

ô
+

ñ
e1
e2

ô
,

 (2)

where

 a) For model (1): yi is the vector of observations for the ith 
trait measured at weaning or at yearling; βi is the vector 
of systematic effects for the ith trait; ai is the vector of dir-
ect additive genetic effects for the ith trait; mi is the vec-
tor of maternal additive genetic effects for the ith trait; 
mpei is the vector of maternal permanent environmental 
effects for the ith trait; and ei is the vector of random re-
siduals for the ith trait. The Xi, Zai, Zmi, and Zmpei are 
incidence matrices relating observations in vector yi to 
effects in vectors βi, ai, mi, and mpei, respectively.

 b) For model (2): tci is the vector of tick counts on the whole 
side body (i = 1) and between the legs (i = 2); pei is the 
vector of random permanent environmental effects for 
the ith tick count; and Zpei is the incidence matrix relat-
ing tick counts in vector tci to animal permanent envir-
onmental effects in vector pei. Vectors βi and ai as well as 
matrices Xi and Zai are as defined for model (1).

The following assumptions associated with the sampling dis-
tribution of the data were considered for the models 1 and 2:

y|β , a, m, mpe R ∼ N (Xβ + Za+ Zm+ Zmpe, R) ,
y|β , a, pe, R ∼ N (Xβ + Za+ Zpe, R) ,

where β, a, m, mpe, and pe are the positional parameters 
of observations conditional distribution; R = R0 ⊗ I; R0 

=

ñ
σ2
e1 σe1,e2

σe1,e2 σ2
e2

ô
, where R0 is the (co)variance matrix of re-

siduals for the ith trait or for the ith tick count trait, I is the 
identity matrix, and ⊗ denotes the direct product between the 
matrices.

For the systematic effects, it was assumed the following 
prior distribution: β ∼ N(0, Vβ), in which Vβ is the 

non-informative diagonal variance matrix, assuming Vβ → 
1012. For the genetic effects, we had the following prior dis-
tributions of position parameters for the models (1) and (2):
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where σ2
aiis the additive genetic variance for the ith trait; σai,j is 

the additive genetic covariance between the ith and jth traits; 
σ2
mi is the maternal genetic variance for the ith trait, and Λ is 

the pedigree relationship matrix (A) in BLUP and the realized 
relationship matrix in ssGBLUP (H). The maternal effect was 
considered only for the traits measured at weaning, and the 
covariance between direct and maternal effect was considered 
null. For the model (2), σ2

tci is the additive genetic variance for 
the ith tick count trait; σtci,j is the additive genetic covariance 
between the ith and jth tick count traits. The other parameters 
were defined above:

ñ
mpe1
mpe2

ô
∼ N

Çñ
0
0

ô
,

ñ
σ2
mpe1 0

0 σ2
mpe2

ô
⊗ I

å
and

ñ
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ô
∼ N
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0
0

ô
,

ñ
σ2
pe1 σpe1,pe2

σpe1,pe2 σ2
pe2

ô
⊗ I

å
,

where σ2
mpei is the maternal permanent environmental vari-

ances for the ith trait and I represent an identity matrix. For 
the model (2), σ2

pei is the permanent environmental variances 
for the ith tick count trait; σpe1,pe2 is the covariance between 
permanent environmental effects.

For the (co)variances, the prior distributions were inverted 
Wishart that have been described previously by Gianola and 
Fernando (1986).

The full Bayesian threshold model for WHC and YHC 
contained systematic, additive, maternal genetic, and ma-
ternal permanent environmental effects. A linear model using 
Markov Chain Monte Carlo (MCMC) with Gibbs sampling 
was used for analysis of the underlying liability and it was 
defined as the following data distribution:

L|β , a, m,mpe,R ∼ N(Xβ + Za+ Zm+ Zmpe,R),

where L is a vector of unobserved liabilities of all animals. 
For the systematic and genetic effects, the prior distribu-
tions were previously defined in a Bayesian framework. 
The model assumed existence of an underlying unobserv-
able normal variable (Li), to analyze WHC and YHC with 
three scores:

f (y | L) = Π n
i=1f (y | Li) = Π n

i=1I (Li < t1) I (yi = 1)

+ I (t1 < Li < t2) I (yi = 2) + I (Li > t2) I (yi = 3) ,

where y is the observed score for WHC and YHC; t1 and t2 are 
the thresholds that categorize the three levels of response for 
WHC and YHC. The I is an indicator function that assumes 
value 1 if evaluated expression is true and 0 otherwise.
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Subsequently, genomic estimated breeding values (GEBV) 
for all traits were computed using ssGBLUP with the same 
models used to estimate variance components. The inverse 
of the realized relationship matrix (H−1) was obtained as in 
Aguilar et al., (2010):

H−1 = A−1 +

ñ
0 0
0 G−1 − A−1

22

ô
,

where A−1 is the inverse of the pedigree relationship matrix, 
A−1

22  is the inverse of the pedigree relationship matrix for geno-
typed animals, and G−1is the inverse of the genomic relationship 
matrix (G) constructed using the first method of (VanRaden, 
2008), with current allele frequencies. To ensure that the inverse 
of G exists, it was constructed as 0.95G + 0.05 A22. Parameters 
like τ and ω that help make G−1 and A−1

22  compatible, avoiding 
inflation of GEBV, were not changed from the default values of 1. 
This is because including inbreeding in the calculation of all the 
relationship matrices aids in matrix compatibility (Tsuruta et al., 
2019). The pedigree included animals up to 10 generations back 
from animals with phenotypes and/or genotypes. Inbreeding was 
considered in the construction of all relationship matrices.

Two different G matrices were used to investigate the im-
pact of adding genotypes from American Angus sires to the 
ssGBLUP analyses: one with only genotypes for Brazilian 
Angus animals, and another one with genotypes for Brazilian 
and American Angus animals. The blending, as mentioned 
earlier (0.95G + 0.05 A22), was also used when Brazilian and 
American Angus genotypes were combined.

The BLUP90IOD software (Misztal et al., 2002, 2014), 
which is based on iteration on data and the preconditioned 
conjugate gradient algorithm (PCG; Strandén & Lidauer, 
1999; Tsuruta et al., 2001), was used to obtain solutions for 
the ssGBLUP mixed model equations for all traits, except for 
WHC and YHC. Solutions for these two categorical traits 
were obtained with program THRGIBBS1F90 (Misztal et al., 
2014). Official genetic evaluations for Brazilian Angus still 
use traditional pedigree BLUP evaluation procedures. Thus, 
pedigree BLUP analyses were also conducted to assess gains 
in prediction accuracy when using genomic information in 
addition to pedigree and phenotypes.

Validation procedure
The validation set was created using a range of years of birth 
(2013 to 2017), instead of a single year, because of limited 
number of genotyped animals with phenotypes (ranging from 
698 to 1021) and because more influential animals usually have 
genotyping priority. This ensured that approximately 15% to 
35% of genotyped animals with phenotypes were in the val-
idation set (Table 1). The validation animals had no pheno-
types in the partial (p) dataset for both traits in the bivariate 
model but at least one record in the whole (w) dataset. We 
used accuracy and dispersion from the linear regression (LR) 
method (Legarra and Reverter, 2018) to investigate the useful-
ness of utilizing genotypic information from both Brazilian and 
American Angus sires for genomic predictions. The prediction 
accuracy (”acc), which uses the covariance between (G)EBV in 
the whole and partial datasets, was calculated as follows:

”acc =
√
cov[(G)EBVw, (G)EBVp](

1− Fp
)
σ2
a

,
 (3)

where Fp is the average inbreeding coefficient of validation 
animals and σ2

a is the additive genetic variance in the whole 
data set. The LR coefficient of (G)EBVw on (G)EBVp was used 
to assess the degree of inflation/deflation of pedigree and gen-
omic predictions.

Validations were conducted for analyses with only geno-
types from Brazilian Angus animals and analyses with geno-
types from both Brazilian and American Angus animals. 
Additionally, to evaluate if the progeny of American Angus 
sires benefitted from the inclusion of genotypes from their 
sires, validation animals were split into progeny of Brazilian 
and American Angus sires before computing the aforemen-
tioned statistics.

Linkage disequilibrium and effective population 
size
Pairwise linkage disequilibrium (r2) was estimated using allele 
and haplotype frequencies (Hill and Robertson, 1968) with 
R scripts provided by Badke et al. (2012). The LD values be-
tween all pairs of SNPs from all chromosomes were grouped 
according to pairwise physical distances into intervals of 
100 kb starting from 0 up to 10 Mb. Overall mean values of 
r2 for SNP pairs in each interval were obtained by calculating 
means across all chromosomes.

The effective population size (Ne) at a given time point was 
estimated based on the relationship between r2 and Ne, re-
arranging the equation from Sved (1971) as follows:

E
Ä
r2
ä
= 1/ (4cNe + 1) , (4)

where c is the genetic distance between two SNPs expressed 
in Morgans. The Ne was estimated considering each SNP 
pair located within 100  Mb window of the same chromo-
some with physical distances converted to genetic distances 
between each SNP pair located in the same chromosome, 
assuming 1cM = 1  Mb (Qanbari et al., 2009). The Ne for 
past generation t (Net) was estimated using the relationship 
between t and c (t = 1/2c; Hayes et al., 2003) and solving for 
Net in equation (4), as follows:

Net =
Ä
1r2
ä
/
Ä
4cr2
ä
, for 0.0 < r2 < 1.0.

Because generations were assumed to be discrete and dis-
tances between SNP are continuous, the calculation of Net 
for a given generation t = 1/2c in the past was assessed by 
selecting SNP pairs with a map distance within corresponding 
ranges of c values. When applying t = 1/2c, the resulting t 
value was rounded to the target generation. For example, r2 of 
all SNP pairs with distances between 0.333 Mb (t = 1.5) and 
1 Mb (t = 0.5) were selected and averaged across all chromo-
somes to calculate Ne at t = 1. To ensure that sufficient num-
bers of SNP pairs were available to obtain reliable estimates 
of Net for each t, wider intervals around t were used to define 
the corresponding ranges of c, due to the inverse relationship 
between t and c (Sved, 1971). Values of Net were obtained 
with increments of one generation for t between 1 and 10, of 
five generations for t between 15 and 100, and of 50 gener-
ations for t between 150 and 1000 (Corbin et al., 2010).

The Ne was also estimated using the rate of inbreeding 
(ΔF) per generation using the formula Ne = 1/ 2 ΔF 
(Falconer and Mackay, 1996), where ΔF per generation 
was estimated based on the average inbreeding between 



6 Journal of Animal Science, 2022, Vol. 100, No. 2 

2010 and 2017. This period corresponds to approxi-
mately 1 generation interval for Angus cattle in Brazil 
(Piccoli et al., 2014b). The rate of inbreeding was calcu-
lated as∆ F = (F2017 − F2010)/(1− F2010), where F2010 and 
F2017  are the mean coefficients of inbreeding for animals 
born in 2010 and 2017, and estimated with the algorithm of 
Meuwissen and Luo (1992) using the RENUMF90 software 
(Misztal et al., 2014).

Principal component analysis
A principal component analysis (PCA) of the genomic rela-
tionship matrix was performed to investigate the connect-
edness between AA and BA in the reference and validation 
population sets. The PCA was obtained using the preGSf90 
software (Misztal et al., 2014).

Results and Discussion
Estimates of variance components and heritabilities for 
all evaluated traits are presented in Table 2. Heritabilities 
ranged from 0.11 to 0.20 for growth traits, 0.13 to 0.16 
for visual scores, and 0.18 to 0.32 for adaptability traits. 
Genetic correlations varied from 0.23 to 0.31 for growth 

traits, 0.84 to 0.87 for visual scores, and 0.34 to 0.96 for 
adaptability traits (Table 3). These values generally agree 
with the ones reported in the literature for Angus cattle 
(Cardoso et al., 2001, 2004) and for different beef cattle 
breeds in Brazil (Campos et al., 2018; Reimann et al., 2018; 
Teixeira et al., 2018).

Accuracy of imputation
The average accuracy of imputation from the 50k and 77k 
SNP panels to the 150k SNP panel ranged from 0.979 to 
0.986 for Corr and from 97.54% to 98.29% for Perc (Table 
4). Imputation accuracy was slightly higher (0.006) from 77k 
to 150k than from 50k to 150k. As expected, imputation ac-
curacy increased when the number of SNP to be imputed de-
creased. Piccoli et al. (2014a) observed average concordance 
rates of 0.943 and 0.921 among all scenarios when imputing 
from low density to 50k and 777k with FImpute in Hereford 
and Braford cattle. Ventura et al. (2014) imputed genotypes 
from purebred Angus and Charolais and crossbred Angus-
Charolais populations with FImpute; overall, average imput-
ation accuracies ranged from 94.20% to 97.93% for purebred 
animals and from 54.15% to 97.53% for crossbred animals.

Comparison of Corr and Perc values with and without 
pedigree in Table 4 indicated that there was no significant 

Table 2. Variance components and heritabilities for the Brazilian Angus population

Trait1 σ2
a σ2

m σ2
mpe σ2

pe σ2
e  h2a ± SD h2m ± SD 

BW 3.15 ± 0.12 0.49 ± 0.06 0.38 ± 0.06 – 11.43 ± 0.09 0.20 ± 0.005 0.03 ± 0.004

WWG 92.14 ± 3.26 31.39 ± 2.03 46.07 ± 2.00 – 399.30 ± 2.38 0.16 ± 0.005 0.06 ± 0.003

WC 0.126 ± 0.004 – 0.0345 ± 0.034 – 0.663 ± 0.004 0.15 ± 0.006 –

WP 0.147 ± 0.005 – 0.050 ± 0.012 – 0.729 ± 0.004 0.16 ± 0.005 –

WM 0.131 ± 0.005 – 0.081 ± 0.027 – 0.740 ± 0.004 0.14 ± 0.006 –

WHC 0.089 ± 0.004 – 0.005 ± 0.001 – 0.219 ± 0.003 0.28 ± 0.012 –

PWG 92.65 ± 4.66 – – – 734.22 ± 4.49 0.11 ± 0.006 –

YC 0.097 ± 0.005 – – – 0.667 ± 0.004 0.13 ± 0.006 –

YP 0.109 ± 0.004 – – – 0.720 ± 0.005 0.13 ± 0.006 –

YM 0.112 ± 0.005 – – – 0.711 ± 0.005 0.14 ± 0.006 –

YHC 0.121 ± 0.005 – – – 0.253 ± 0.004 0.32 ± 0.012 –

TC 0.0112 ± 0.002 – – 0.003 ± 0.001 0.052 ± 0.002 0.18 ± 0.012 –

1BW, birth weight; WWG, weaning weight gain; WC, weaning conformation; WP, weaning precocity; WM, weaning muscling; WHC, weaning hair coat; 
PWG, postweaning gain; YC, yearling conformation; YP, yearling precocity; YM, yearling muscling; YHC, yearling hair coat; TC, tick count.

Table 3. Covariances and correlations for the Brazilian Angus population

Traits WWG-BW WWG-PWG WC-YC WP-YP WM-YM WHC-YHC TC-TCP 

Covariances

  σa1,a2 5.32 21.47 0.098 0.111 0.101 0.099 0.005

  σa1,m1 0 0 0 0 0 0 –

  σpe1,pe2 – – – – – – 0.006

  σe1,e2 0.07 −109.77 0.194 0.167 0.185 0.148 0

Correlations

  ra1,a2 0.31 0.23 0.89 0.87 0.84 0.96 0.34

  rpe1,pe2 – – – – – – 0.56

  re1,e2 0.01 −0.20 0.29 0.23 0.26 0.63 0

BW, birth weight; WWG, weaning weight gain; WC, weaning conformation; WP, weaning precocity; WM, weaning muscling; WHC, weaning hair coat; 
PWG, postweaning gain; YC, yearling conformation; YP, yearling precocity; YM, yearling muscling; YHC, yearling hair coat; TC, tick count; TCP, perineum 
tick count.
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increase in imputation accuracy when population informa-
tion was used for imputation. The proportion of unknown 
sires was 16% for genotyped animals and 22% for all ani-
mals; thus, these outcomes could be due to poor pedigree 
quality in the Brazilian Angus population.

Linkage disequilibrium
The average r2 ± SD and distance between adjacent SNPs 
across all chromosomes in Brazilian Angus cattle were 
0.27  ±  0.27 and 40743.68 pb. As expected, there was a 
rapid decrease in LD as physical distances between markers 
increased (Figure 1). Lu et al. (2012) estimated an r2 value 
of 0.29  ±  0.30 in an Angus population from Canada with 
the distance between 0 and 30 kb. De Roo et al. (2008) and 
Villa-Angulo et al. (2009) obtained higher r2 values for Angus 
cattle than those estimated in this study at smaller distances 
(0–5 kb) of approximately 0.6. These differences in r2 values 
could be attributed to differences in sample size and number 
of SNPs in these studies.

Average r2 declined rapidly with increasing distance be-
tween markers; it decreased to 50% of its initial value by ~ 
50 kb (Table 5). The average LD was 0.49 ± 0.35 at distances 
of 1 kb, and 0.25 ± 0.26 at distances of 50 kb. Usually Bos 
indicus cattle exhibit smaller LD and rapid decay at small 
distances compared to Bos taurus cattle (Gibbs et al., 2009; 
Biegelmeyer et al., 2016).

Lastly, r2 values were greater than 0.2 for 27.32% and 
greater than 0.3 for 19.94% of adjacent SNP markers in 
this study. The LD levels are an indicator of chance of suc-
cess when implementing a genomic selection program in 
a population. According to Meuwissen et al. (2001), the 
average r2 should be greater than 0.2 for genomic selec-
tion to be effective, which is the case in the Brazilian Angus 
population.

Effective population size
The Ne is a predictor of the effective number of independent 
chromosome segments that are represented in a population 
(Stam, 1980). Furthermore, the accuracy of genomic selec-
tion is highly associated with Ne (Daetwyler et al., 2010). The 
Ne based on LD was 197 in the Brazilian Angus population 
(Figure 2). Lu et al. (2012) computed an Ne equal to 207 in 
Canadian Angus cattle; however, only 597 animals were used 

in their study. Pocrnic et al. (2016) estimated an Ne of 113 
for American Angus based on the eigenvalue decomposition 
of G with over 80,000 genotyped animals. The Ne trend over 
past generations (Figure 2) suggests that the effective popula-
tion size is decreasing, possibly due to the higher use increase 
of artificial insemination in Brazilian Angus in recent years 
(Gibbs et al., 2009). Furthermore, the use of a few purebred 
Angus sires in the most recent generations and high selection 
pressure for some traits may also be contributing to this re-
duction in population size. The historical Ne in the Brazilian 
Angus population decreased from 50 to 12 generations ago, 
was more stable between generations 10 and 4, and declined 
again two generations ago. In general, the observed trend for 
Ne reflects the historical process of domestication and breed 
formation.

The Ne based on pedigree (PED) in the Brazilian Angus 
population was 254. Piccoli et al. (2014b) estimated Ne based 
on pedigree of 185 for Hereford, 128 for Devon, and 303 
for Shorthorn cattle. Differences between these Ne values and 
the Ne value in Brazilian Angus could be due to discrepancies 

Table 4. Number of total SNPs shared between the 150k SNP panel and the 77k and 50k SNP panels before and after quality control, mean and SD of 
imputation accuracy for different SNP panels with and without pedigree using FImpute for the combined genotype dataset from Brazilian and American 
Angus animals

SNP panel Number of SNPs in 
common with 150k 
before quality control 

Number of SNPs in 
common with 150k 
after quality control 

With pedigree Without pedigree

Correlation between 
imputed and 
observed genotypes 

% Correctly 
imputed 
genotypes 

Correlation between 
imputed and 
observed genotypes 

% Correctly 
imputed 
genotypes 

GeneSeek 
Genomic 
Profiler 150k

138,888 86,279 – – – –

GeneSeek 
Genomic 
Profiler 77K

73,144 41,250 0.986 ± 0.014 98.29 ± 1.63 0.985 ± 0.013 98.24 ± 1.61

GeneSeek 
Genomic 
Profiler 50K

37,694 23,824 0.980 ± 0.018 97.59 ± 2.14 0.979 ± 0.017 97.54 ± 2.11

Figure 1. Decay of linkage disequilibrium (r2) as a function of inter-marker 
distance in the Brazilian Angus population.
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in the numbers of animals used in these two studies. The Ne 
values based on LD and PED in this study were above the crit-
ical threshold of 50 (FAO, 1998), which indicates that a pos-
sible loss of genetic diversity is not of concern in the Brazilian 
Angus population at this time. The difference between the LD 
and PED Ne estimates is likely due to the quality and depth of 
pedigree as well as different methods and sources of informa-
tion used in the calculations. The possible stratified sampling 
of animals for genotyping could also contribute to the lower 
estimated Ne using genotypes.

Principal component analysis
The first and second principal components (PC) of G were 
used to evaluate the connectedness and the genetic distance 
between the reference and validation populations of AA 
and BA (Figure 3). Although the percentage of variance ex-
plained was low at 2.79 and 1.24 for PC1 and PC2, re-
spectively, the AA sample used in this study is slightly 
less diverse than the Brazilian one. Cardoso et al. (2020) 
found similar results investigating Angus populations from 
Brazil and Canada. The authors indicated an overall gen-
omic similarity between Angus subpopulations (Brazil x 
Canada), with noticeable signals of divergent selection in 
genomic regions associated with the adaptation in different 
environments.

Genomic predictions with Brazilian Angus 
genotypes
The LR method was used to validate ssGBLUP models 
without and with genomic information from AA sires heavily 
used in Brazil. The LR method is an attractive validation tool 
because it does not require pre-adjustment of phenotypes (as 
with predictive ability) and can be used for any type of traits 
and models, including categorical traits and models with ma-
ternal effects. In summary, the LR method can be applied 

to any model that follows the mixed model assumptions 
(Bermann et al., 2021).

The prediction accuracies of GEBV using ssGBLUP from 
the LR validation with young animals are presented in  
Table 6. The GEBV accuracies ranged from 0.37 to 0.45 
across all traits and the dispersion values (LR coefficients 
of GEBVw on GEBVp) varied from 0.92 to 1.06. Prediction 
accuracies from ssGBLUP outperformed those from BLUP 
for all traits, with an average superiority of 16%. This con-
firmed that utilization of genomic information would bring 
additional benefits to the genetic evaluation of Angus cattle 
in Brazil. The higher prediction accuracies with ssGBLUP oc-
curred because genomic information provided more precise 
relationships among individuals and helped us to estimate 
Mendelian sampling. These improvements could result in 
greater genetic gains in the Brazilian Angus population after 
the implementation of genomic selection.

The average prediction accuracy among growth traits was 
0.40, and WWG had the greatest accuracy (0.45). Lourenco 
et al. (2015) estimated predictive abilities for growth traits in 
American Angus and obtained higher gains for ssGBLUP vs. 
BLUP, likely because of a substantially larger number of geno-
typed animals with WW records (approximately 50k) than 
corresponding numbers in this study. The prediction accuracy 
was lower for total maternal (TM) than for WWG, which was 
expected because of the lower heritability of WWG maternal 
(0.06) than of WWG direct effects (0.16). However, accuracy 
gains by using genomic information were similar for TM and 
WWG. Lourenco et al. (2013) obtained similar results in a 
simulated beef cattle population and concluded that predic-
tion accuracy gains for maternal effects could be as high as 
for direct effects.

The GEBV prediction accuracies for visual score traits 
ranged from 0.44 to 0.54. The visual score traits at yearling 
(YC, YP, and YM) had the highest realized accuracies among 
all visual scores (0.53 to 0.54). GEBV prediction accuracies 
for visual score traits in Hereford and Braford cattle com-
puted with various single-step and multi-step methods ranged 
from 0.09 to 0.61 (Piccoli et al., 2020). The GEBV prediction 

Table 5. Summary statistics for pairwise linkage disequilibrium between 
nonoverlapping adjacent markers in the Brazilian Angus population by 
intermarker distance

Intermarker distance r2 ± SD1 Meandistance (bp) No. SNP2 

0–1 kb 0.49 ± 0.35 674.92 270

1–5 kb 0.47 ± 0.34 3193.89 1996

5–10 kb 0.34 ± 0.30 7649.19 3594

10–20 kb 0.30 ± 0.28 15418.90 11021

20–40 kb 0.26 ± 0.26 29699.66 31310

40–60 kb 0.21 ± 0.23 50004.78 28167

60–80 kb 0.17 ± 0.20 70008.60 28753

80–100 kb 0.15 ± 0.18 90020.59 28211

0.1–0.5 Mb 0.10 ± 0.13 299479.13 61479

0.5–1 Mb 0.07 ± 0.09 749405.45 61136

1–2 Mb 0.05 ± 0.06 1497562.23 60682

2–5 Mb 0.03 ± 0.04 3479953.17 59818

5–10 Mb 0.01 ± 0.02 7468670.91 56794

Average/Total 0.27 ± 0.27 40743.68 61666

The last row contained the average r2 ± SD and distance (pb) between 
nonoverlapping adjacent markers and the total number of SNP.
No. SNP2: Number of SNP in each inter-marker distance.
1Mean and standard deviation (r2 ± SD) for pairwise linkage disequilibrium 
between nonoverlapping adjacent markers.

Figure 2. Estimated effective population size (Ne) as a function of past 
generations in the Brazilian Angus population.



Campos et al. 9

accuracies for adaptability traits (WHC, YHC, and TR) fluc-
tuated between 0.37 and 0.49. The YHC and TC had the 
greatest increases in accuracy when moving from BLUP to 
ssGBLUP among all evaluated traits (32% for YHC and 28% 
for TC). Cardoso et al. (2015) reported ssGBLUP prediction 
accuracies for TC of 0.48 in Hereford and 0.56 in Braford 
with k-means and random clustering. The LR coefficient of 
(G)EBVw on (G)EBVp was generally closer to 1 with ssGBLUP 
than with BLUP, indicating less inflated/deflated predictions. 
The dispersion across all traits ranged from 0.92 to 1.07 for 
ssGBLUP and from 0.91 to 1.13 for BLUP. Inflation/deflation 
may be a problem when predictions of genotyped and non-
genotyped animals need to be compared for ranking and selec-
tion decisions. When the LR coefficient of GEBVw on GEBVp 
is less than 1, predictions are inflated and extreme GEBV may 
exist, favoring genotyped individuals (Cardoso et al., 2015).

Genomic predictions with Brazilian and American 
Angus genotypes
The reliability of genomic predictions increases as the size 
of the reference population (RP) increases (Goddard and 
Hayes, 2009). One way to increase RP is to combine infor-
mation within a country with genotype data from foreign 
animals that are used locally (Andonov et al., 2017). When 
the number of progeny with records from foreign sires is 
small in the local population, EBV or GEBV from a foreign 
evaluation can be used as priors for BLUP and ssGBLUP 
(Legarra et al., 2007; Vandenplas et al., 2014). Additionally, 
all available information (phenotypes, pedigree, and geno-
types) can be used if there are cooperative agreements 
among countries; however, this is seldom the case (Andonov 
et al., 2017).

Genotypes from 330 AA sires heavily used in Brazil were 
available for this study. These AA sires represented an in-
crease of 35% in the size of the RP because of the low number 
of genotyped Angus cattle in Brazil. Thus, an increase in 
ssGBLUP prediction accuracy could possibly be expected 
after adding the American Angus genotypes (ssGBLUP_AA) 
relative to using only Brazilian Angus genotypes (ssGBLUP). 
Table 6 shows LR prediction accuracies for BLUP, ssGBLUP, 
and ssGBLUP_AA for all validation animals and for the 
progeny of BA and AA sires. On average, the prediction ac-
curacy for all young animals was 0.47 with ssGBLUP_AA 
and 0.46 with ssGBLUP. This marginal increase corresponds 
to only 2% of the prediction accuracy with ssGBLUP. The 
highest increase in prediction accuracy among all traits was 
for YHC (0.49 to 0.51), an increase of 4% after the addition 
of genotypes from AA sires. When validation animals were 
split into progeny of BA and AA sires, prediction accuracies 
for the progeny of AA sires were, on average, 0.11 lower 
than prediction accuracies for the progeny of Brazilian 
Angus sires. This possibly happened because progeny size 
and number of records for AA sires were smaller than for 
Brazilian Angus sires. American Angus sires had a total of 
40 progeny in the validation set, whereas Brazilian Angus 
sires had 178; those progeny had phenotypes in the whole 
dataset. Another crucial point to the small increases in ac-
curacies is that only a small number of genotypes from AA 
bulls were added; the number of records stayed the same. 
Overall, the GEBV of validation progeny from AA sires were 
more inflated/deflated than those from Brazilian Angus sires. 
However, the addition of genotypes from AA sires did not 
produce large dispersion changes in the three groups of val-
idation animals. The average LR coefficient differences be-
tween ssGBLUP_AA and ssGBLUP were −0.005, 0.013, and 

Figure 3. First and second principal components of the genomic relationship matrix for the reference and validation Brazilian and American Angus 
population.
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0 for the validation progeny of BA sires, AA sires, and all 
validation animals.

The expected prediction accuracy gains resulting from the 
addition of AA sire genotypes to RP were not realized, and 
only a marginal increase in prediction accuracy was observed. 
This outcome may change when these AA sires gather more 
progeny with phenotypes and genotypes in Brazilian herds. 

Lund et al. (2011) obtained an average increase of 10% in 
reliability (prediction accuracy squared) when combining 
small Holstein populations from France, Nordic countries, 
Germany, and The Netherlands. The increase in reliability 
for some traits was up to 19% relative to using national 
reference data alone. Andonov et al. (2017) reported an in-
crease in prediction accuracy in small-simulated populations 

Table 6. Linear regression accuracy and dispersion of (G)EBV for all validation animals, validation animals that are progeny of Brazilian and American 
Angus sires

Trait1 Method2 Progeny of Brazilian Angus sires Progeny of American Angus sires All validation animals

Accuracy Dispersion Accuracy Dispersion Accuracy Dispersion 

BW ssGBLUP 0.40 1.03 0.32 1.34 0.39 0.92

ssGBLUP_AA 0.41 0.95 0.34 1.33 0.41 0.93

BLUP 0.36 0.87 0.30 1.12 0.35 0.91

WWG ssGBLUP 0.46 1.05 0.36 0.97 0.45 1.01

ssGBLUP_AA 0.47 1.06 0.37 0.99 0.46 1.02

BLUP 0.41 1.01 0.32 0.89 0.39 1.02

TM ssGBLUP 0.35 1.15 0.26 0.88 0.37 1.02

ssGBLUP_AA 0.35 1.09 0.27 0.89 0.37 1.02

BLUP 0.31 1.19 0.21 0.84 0.30 1.13

PWG ssGBLUP 0.37 0.92 0.38 0.98 0.42 0.97

ssGBLUP_AA 0.38 0.94 0.40 1.00 0.42 0.97

BLUP 0.33 0.91 0.32 0.95 0.36 0.96

WC ssGBLUP 0.51 1.04 0.39 1.07 0.49 1.06

ssGBLUP_AA 0.53 1.05 0.39 1.08 0.50 1.07

BLUP 0.46 1.07 0.36 1.00 0.42 1.09

WP ssGBLUP 0.49 1.03 0.31 0.84 0.44 1.02

ssGBLUP_AA 0.51 1.03 0.35 0.88 0.46 1.02

BLUP 0.44 1.05 0.29 0.78 0.39 1.05

WM ssGBLUP 0.47 0.94 0.26 0.97 0.46 0.96

ssGBLUP_AA 0.48 0.94 0.26 0.98 0.47 0.97

BLUP 0.45 0.89 0.21 1.01 0.41 0.94

WHC ssGBLUP 0.48 1.02 0.42 0.86 0.49 0.97

ssGBLUP_AA 0.50 1.03 0.42 0.92 0.50 0.98

BLUP 0.46 0.99 0.40 0.96 0.45 0.96

YC ssGBLUP 0.53 1.05 0.36 1.12 0.53 1.07

ssGBLUP_AA 0.54 1.06 0.36 1.30 0.53 1.08

BLUP 0.50 1.05 0.33 1.10 0.49 1.10

YP ssGBLUP 0.57 1.04 0.41 1.04 0.54 1.03

ssGBLUP_AA 0.57 1.03 0.43 1.06 0.54 1.02

BLUP 0.50 1.00 0.32 0.99 0.45 1.02

YM ssGBLUP 0.52 0.95 0.33 0.97 0.53 0.96

ssGBLUP_AA 0.53 0.95 0.33 1.00 0.53 0.96

BLUP 0.50 0.86 0.29 1.04 0.47 0.92

YHC ssGBLUP 0.45 1.18 0.38 0.66 0.48 1.01

ssGBLUP_AA 0.48 1.26 0.40 0.68 0.51 0.95

BLUP 0.40 1.19 0.31 1.08 0.37 0.95

TC ssGBLUP 0.38 1.09 0.36 1.38 0.37 0.97

ssGBLUP_AA 0.40 1.04 0.39 1.14 0.38 0.98

BLUP 0.30 1.27 0.26 1.13 0.29 1.04

1BW, birth weight; WWG, weaning weight gain; TM, total maternal; WC, weaning conformation; WP, weaning precocity; WM, weaning muscling; WHC, 
weaning hair coat; PWG, postweaning gain; YC, yearling conformation; YP, yearling precocity; YM, yearling muscling; YHC, yearling hair coat; TC, tick 
count.
2ssGBLUP, single-step GBLUP without genotypes from the American Angus Association; ssGBLUP_AA, single-step GBLUP with genotypes from the 
American Angus Association; BLUP, pedigree BLUP.
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when information from a larger population was added to the 
evaluation. These authors observed a beneficial increase in 
prediction accuracies for GEBV relative to EBV in the small 
population when phenotypes, pedigree, and genotypes from 
the small and larger populations were combined. The level of 
relatedness between animals in RP and selection candidates is 
an important aspect that influences the accuracy of genomic 
predictions (Pszczola et al., 2012). Lourenco et al. (2015) 
pointed out that genotyping strategies in breeding populations 
should consider important animals with substantial informa-
tion (high accuracy animals) and selection candidates related 
to them. Thus, the extent of the benefit of incorporating geno-
types from foreign animals into local genomic evaluations is 
determined by the level of connection among them (Berry et 
al., 2016) and the shared amount of information.

An alternative to increase the RP, and consequently the ac-
curacy of genomic predictions in small Angus populations, 
would be an across-country genomic evaluation where not 
only genotypes but also pedigree and phenotypes are shared. 
Several countries in South America use semen from American 
Angus sires; thus, a Pan-American genomic evaluation that 
includes data from the United States, Brazil, Argentina, 
Uruguay, and other countries would benefit a large group of 
breeders. However, this Pan-American genomic evaluation 
would require sharing available data across countries, which 
could be a sensitive issue. A Pan-American evaluation was es-
tablished for Hereford cattle in 2016 (Berry et al., 2016) for 
countries sharing Hereford germplasm. The steady decrease 
of genotyping costs would help countries with smaller herds 
to genotype more animals, especially progeny of foreign sires, 
to increase connectedness among countries. Although the 
benefit of a combined evaluation seems to be greater for coun-
tries with small herds, countries with large datasets would 
also benefit by receiving information from sires that are more 
heavily used internationally than nationally. This informa-
tion would help identify sires with high genetic potential in 
various countries and low levels of inbreeding (Andonov et 
al., 2017). Another interesting area to explore with genomic 
information would be the genotype by environment inter-
action (GxE), which would allow the selection of the best 
genotypes (i.e., young sires) to produce under specific condi-
tions and more robust animals for the Brazilian and American 
environments. However, that was not possible in this study 
because AA phenotypes were unavailable.

Conclusions
The level of LD estimated in the Brazilian Angus population 
indicates that a 60k SNP panel would be a suitable tool to in-
crease genomic prediction accuracies. The Ne estimated based 
on pedigree or as a function of past generations using genomic 
information was sufficiently large to maintain desirable levels 
of genetic diversity and to increase selection responses for 
economically important traits. The GEBV from ssGBLUP had 
higher prediction accuracies than EBV from pedigree BLUP 
for all evaluated traits, indicating that the implementation of 
genomic selection in the Brazilian Angus population would be 
beneficial. The inclusion of genotypes from American Angus 
sires heavily used in Brazil just marginally increased the GEBV 
accuracies for selection candidates. A future investigation that 
shares genotypes, phenotypes, and pedigree across countries 
could help visualize the benefits of combining Brazilian (or 
South American) and American Angus data.
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