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Transcatheter arterial chemoembolization (TACE) is an effective treatment for

hepatocellular carcinoma (HCC). During TACE, chemotherapeutic agents are

locally infused into the tumor and simultaneously cause hypoxia in tumor cells.

Importantly, the poor effect of TACE in some HCC patients has been shown to

be related to dysregulated expression of hypoxia-related genes (HRGs).

Therefore, we identified 33 HRGs associated with TACE (HRGTs) by

differential analysis and characterized the mutational landscape of HRGTs.

Among 586 HCC patients, two molecular subtypes reflecting survival status

were identified by consistent clustering analysis based on 24 prognosis-

associated HRGs. Comparing the transcriptomic difference of the above

molecular subtypes, three molecular subtypes that could reflect changes in

the immune microenvironment were then identified. Ultimately, four HRGTs

(CTSO, MMP1, SPP1, TPX2) were identified based on machine learning

approachs. Importantly, risk assessment can be performed for each patient

by these genes. Based on the parameters of the risk model, we determined that

high-risk patients have a more active immune microenvironment, indicating

“hot tumor” status. And the Tumor Immune Dysfunction and Exclusion (TIDE),

the Cancer Immunome Atlas (TCIA), and Genome of Drug Sensitivity in Cancer

(GDSC) databases further demonstrated that high-risk patients have a positive

response to immunotherapy and have lower IC50 values for drugs targeting cell

cycle, PI3K/mTOR,WNT, and RTK related signaling pathways. Finally, single-cell

level analysis revealed significant overexpression of CTSO, MMP1, SPP1, and

TPX2 in malignant cell after PD-L1/CTLA-4 treatment. In conclusion, Onco-

Multi-OMICS analysis showed that HRGs are potential biomarkers for patients

with refractory TACE, and it provides a novel immunological perspective for

developing personalized therapies.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 85% of all

liver cancers (Villanueva., 2019). Despite advances in treatment

strategies for HCC, the overall 5-years survival rate for patients

with HCC remains below 20% (Zheng et al., 2018). Transcatheter

arterial chemoembolization (TACE) is a therapy in which drugs

are injected into the arteries supplying HCC tissue (Chang et al.,

2020). Some studies suggest that TACE-refractory may lead to

poor prognosis in HCC patients. It has been shown that TACE

procedures can exacerbate hypoxic states (Liu et al., 2016).

However, we still lack a multi-omics data-based perspective

on the immunological characteristics of hypoxia-associated

gene sets in TACE-refractory patients.

Hypoxia is an intrinsic feature of solid tumors due to the

imbalance between tumor cell proliferation rate and vascular

nutrient supply (Gray et al., 1953). Previous studies have shown

that hypoxia can regulate tumor immune microenvironment

(TME), such as promoting the recruitment of innate immune

cells, and interfering with the differentiation and function of

adaptive immune cells (Feng et al., 2022a). Certain cytokines

secreted by malignant tumors, especially in hypoxia condition,

may induce angiogenesis and metastasis (Zarogoulidis et al.,

2014). A retrospective clinical study has shown that high pre-

treatment IL-8 levels are a significant predictor of shorter survival

and increased refractoriness of TACE (Kim et al., 2015).

Therefore, further studies are needed to investigate the

hypoxia-related genes (HRGs) that contribute to TACE

refractoriness. Importantly, exploring the relationship between

the above genes and drug resistance can lead to the development

of new therapeutic strategies.

Nowadays, the study of molecular mechanisms based on

Onco-Multi-OMICS approach has become one of the most

important tools (Feng et al., 2022b; Zhu et al., 2022).

Therefore, we searched for hub HRGs contributing to TACE

refractoriness and searched for optimal biological markers by

combining transcriptome, single cellome, immunome, and

whole-exome. Our study also illustrated the immunological

characteristics in different risk group and explored their

impact on the response to chemotherapy and immunotherapy.

In conclusion, our results were beneficial for the management

and treatment of TACE-refractory patients.

Materials and methods

Data collection and pre-processing

The mRNA expression profile data of HCC patients were

retrieved from TCGA and GEO databases, and the exclusion

criteria was as follows: lack of complete follow-up information,

0 days of survival, and repeated sequencing. Supplementary

Table S1 showed treatment details for patients in the

GSE14520 cohort before exclusion. Finally, 365 tumor samples

from the TCGA-LIHC cohort and 221 tumor samples from the

GSE14520 cohort were included. Moreover, to study TACE

response, we obtained gene expression profile data from

GSE104580, which included 100 TACE-responsive samples

and 100 TACE-refractory samples (He et al., 2022). Both

somatic mutation data and CNV data were obtained from the

TCGA-LIHC cohort, including 371 tumor samples. Notably,

‘maftools’ package was used to present the mutation status of

each gene. We removed the batch effect between RNA-seq and

microarray data by using the ‘sva’ package and made the newly

generated gene matrix based on two cohorts as a meta cohort.

Identification of hypoxia-related genes in
TACE refractoriness

Differentially expressed genes (DEGs) between different

response states were identified by using the ‘limma’ package

in the GSE104580 cohort, p < 0.05, with |logFC| > 1 as the

threshold. In addition, 1,694 HRGs were extracted from the

previous study (Zhang et al., 2020). The above DEGs and HRGs

were overlaid to identify the HRGs associated with TACE

(HRGTs).

Enrichment analysis

Differential genes between subtypes were analyzed using the

‘limma’ package (adj. p < 0.05, |logFC| > 1). Biological pathways

were annotated by using the ‘clusterProfiler’ package for Gene

Ontology (GO), Kyoto Gene and Genome Encyclopedia

(KEGG). p-value < 0.05 and q-value < 0.05 were considered

as significant enrichment pathways. Differences in biological

pathways between subtypes were assessed by using ‘GSVA’

algorithm. And KEGG geneset (c2. cp. kegg. v7. 0. symbols.

Gmt) was used as the reference gene set with FDR <0.05 as the

threshold.

Consistent clustering analysis

In the meta cohort, the prognostic value of each HRGTs was

determined by using univariate cox regression analysis.

Consensus clustering, an unsupervised clustering method, is

a common method to classify subtypes based on the CDF slope

was smallest. Consistent cluster analysis and principal
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component analysis (PCA) were performed to determine

whether each subtype was relatively independent of the other

subtypes based on prognostic HRGTs (p < 0.05) and prognostic

DEGs (p < 0.05). The number of clusters was determined by

using ‘conensusClusterPlus’ package. A 1000 replicates with

pltem = 0.8 were performed to verify the stability of the

subtypes. We used Kaplan Meier analysis and log-rank test

to assess the overall survival (OS) of HCC patients in different

subtypes.

Identification and validation of risk scores

Modeling and validation were performed by TCGA-LIHC

cohort and GSE14520 cohort, respectively. The least absolute

shrinkage and selection operator (LASSO) (Feng et al., 2022c)

model was used to remove redundant genes from HRGTs.

Subsequently, multivariate Cox regression analysis was

performed to integrate the coefficients and then establish risk

score formulas by gene expression values. Univariate and

multivariate Cox regression analyses were used to assess the

prognostic value of risk scores across the entire dataset and the

external validation dataset. Time-dependent subject operating

characteristic (ROC) curves were used to compare the predictive

accuracy of risk scores with traditional clinicopathological

parameters.

Drug sensitivity analysis

Half maximal inhibitory concentration (IC50) was calculated

using the ‘prophetic’ package. Relevant drugs targeting cell cycle,

PI3K/mTOR, WNT, and RTK pathways were obtained from the

Genome of Drug Sensitivity in Cancer (GDSC) database.

Charoentong et al. developed a quantitative scoring scheme

called the Immunophenotype Score (IPS) to identify the

determinants affecting tumor immunogenicity. IPS is a

representative gene associated with immunogenicity calculated

using z-score, and our meta cohort’s IPS was calculated from the

Cancer Immunome Atlas (TCIA) database (Wu et al., 2018).

Moreover, Peng et al. designed a computational architecture,

Tumor Immune dysfunction and ejection (TIDE) score (Jiang

et al., 2018), to integrate the two mechanisms of tumor immune

escape. Our meta cohort’s TIDE score was calculated from the

TIDE database.

Single-cell analysis

The HCC single cell dataset was obtained from GSE125499,

and single cell expression profile with annotated cell information

were obtained from the Tumor Immune Single Cell Hub

(TISCH) database (Sun et al., 2021). Finally, we compared the

expression changes of CTSO,MMP1, SPP1, TPX2 in different cell

types.

Immunological analysis

We used different algorithms to estimate the abundance of

immune cells in different samples, such as ssGSEA, TIMER,

CIBERSORT, QUANTISEQ, MCP-counter, XCELL and EPIC.

Then, ESTIMATE algorithm was used to calculate the immune

score and stromal score to reflect the TME status.

Statistical analysis

All statistical analyses were performed using the R software

(v.4.1.1). Kruskal-wallis test was used for comparison between

groups, χ2 test was used for association between covariates, and

Kaplan-Meier method was utilized to compare survival differences

between groups. More detailed statistical methods for

transcriptome data processing are covered in the above section

(Ye et al., 2022). p < 0.05 was considered statistically significant.

Results

Landscape of HRGTs in HCC

A total of 274 DEGs were first identified from the

GSE104580 cohort (Figures 1A,C) and overlapped with

existing HRGs genes in the database. Finally, 33 HRGTs were

identified (Figure 1B). The above genes may play a key role in

TACE refractoriness. HRGTs were mutated in 34 of 371 samples

with a frequency of 9.16%, most of which had a low mutation

frequency (Figure 1D). In addition, Copy number variation

(CNV) were prevalent in HRGTs. ORG1 focused on copy

number amplification, while CNV deletion frequency was

common in CDC20 (Supplementary Figure S1A). The location

of HRGTs on the chromosome (Figure 1E). GSE14520, TCGA-

LIHC were included in a meta cohort using the ‘combat’

algorithm. The network of HRGTs specifically described the

combined gene interactions and their prognostic significance

for patients (Figure 2A). Cox regression analysis identified

24 HRGTs were indicative of prognostic significance for HCC

patients (Figure 2B).

Identification ofmolecular subtypes based
on HRGTs

The classificationwas optimalwhen the k value = 2 (Figure 2C).

Two different subtypes were finally identified, with 326 cases in

subtype A and 260 cases in subtype B. The heat map showed the
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distribution of the clinical features of the different subtypes, with

most genes significantly overexpressed in subtype A (Figure 2D).

PCA plot revealed that the two molecular subtypes had a relative

discrete features (Figure 2E). Prognostic analysis revealed a

significant survival disadvantage in the subtype B (Figure 2F).

Immunemicroenvironment and biological
pathways in molecular subtypes

The ESTIMATE algorithm reveals that subtypeAhas a higher

immune score, while the stromal score was significantly

FIGURE 1
Landscape of HRGTs in HCC. (A) The heat map showed a total of DEGs were identified from the GSE104580 cohort. (B) The venn plot showed
DEGs overlapped with existing HRGs in the database. (C) The volcano plot showed dysregulation status of DEGs. (D)Mutation landscape of HRGTs in
371 samples. (E) The location of HRGTs on the human chromosome.
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downregulated compared to subtype B (Figure 3A). In addition,

ssGSEA analysis demonstrated the TME status in different

molecular subtypes. We discovered that subtype A is probably

exhibiting hot tumor characteristics. This was due to a significant

rise in activated CD4+ T cells, whichmay have a more active TME

(Figure 3B). In addition, we showed the expression of HLA as well

asICImRNAindifferentsubtypes. Interestingly, thesubtypeAhad

higher mRNA expression inmost HLAs, such as HLA-A, HLA-B,

FIGURE 2
Molecular subtypes based on HRGTs. (A) The network of HRGTs described the combined interactions and prognostic significance. (B) A forest
plot showed 24 HRGTs were indicative of prognostic significance. (C) The classification was optimal when the k value = 2. (D) Heat map of
distribution of clinicopathological characteristics and molecular subtypes based on HRGTs. (E) PCA plot revealed that the two molecular subtypes
had a relative discrete features. (F) Kaplan-Meier analysis of overall survival time in different molecular subtypes.
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HLA-C, and HLA-DDA (Figure 3C). Similarly, subtype A had

highermRNAexpressioninmostICIs,suchasCTLA4(Figure3D).

We made a hypothesis that subtype A would benefit more from

immunotherapy. To explore the biological behavior between these

different subtypes, we performed Gene set variation analysis.

Subtype A showed significant enrichment with cell cycle

pathways compared to subtype B (Figure 3E). In addition, we

performed a differential analysis between the two subtypes. It was

found that the major enrichment pathways of the 496 DEGs

identified (Figure 4A) may be associated with biological

FIGURE 3
Immune microenvironment and biological pathways in molecular subtypes. (A) The Box plot of TME score in different molecular subtypes. (B)
The Box plot of immune cells score based on ssGSEA in different molecular subtypes. The Box plot of mRNA expression of HLA (C) and ICIs (D) in
different molecular subtypes. (E) GSVA analysis in different molecular subtypes using KEGG genesets. *p < 0.05, **p < 0.01, ***p < 0.001.
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processes related to oxidative stress, extracellular genes and drug

metabolism (Figures 4B,C). Finally, we identified three different

regulatory subtypes basedon the aboveDEGs (Figure 4D).Among

them, subtype B had the worst prognosis, while subtype C had the

best prognosis (Figure 4E). And the above 33 HRGTs were

differentially expressed in different subtypes (Figure 4F).

Identification of risk score in HCC

TCGA-LIHC was used as a training cohort with overall

survival (OS) as the outcome. The LASSO model was used to

remove redundant genes (Figures 5A,B). The coefficients of each

gene were obtained by multifactorial Cox regression analysis. A

FIGURE 4
Molecular subtypes based on DEGs. (A) The Volcano plot showed DEGs in different subtypes. Heat map of unsupervised clustering analysis. (B)
The circle plot of GO enrichment analysis based onDEGs. (C) The bubble plot of KEGG enrichment analysis based onDEGs. (D) The classificationwas
optimal when the k value = 3. (E) Kaplan-Meier analysis of overall survival time in different molecular subtypes based on DEGs. (F) The Box plot of
mRNA expression of HRGTs in different molecular subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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final signature containing 4 HRGTs was obtained. The formula of

each patient was as follows: riskscore = (-0.1277 × expression

level of CTSO) + (0.1995 × expression level of MMP1) +

(0.1061 × expression level of SPP1) + (0.2385 × expression

level of TPX2). Using the median value of risk scores in the

TCGA cohort, we identified two risk groups for HCC patients:

FIGURE 5
Identification and validation of risk model. (A) Determination of the number of regulators using LASSO analysis. (B) Forest plot of multivariate
Cox regression analysis. (C) The heat map showed four HRGTs expression in different risk group (TCGA cohort). Risk status plot (D) and the survival
distribution plot (E) demonstrated the poorer prognosis of HCC patients with higher risk score. (F) Sankey diagram based on different subtypes. (G)
Differences in risk scores between the two molecular subtypes based on HRGTs. (H) Differences in risk scores between the three molecular
subtypes based onDEGs. PCA plot (I), Kaplan-Meier analysis (J), ROC curve of 1,3,5 years (K)of different risk groups in the TCGA andGEOcohort. *p <
0.05, **p < 0.01, ***p < 0.001.
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high-risk group, and low-risk group in all cohorts.WhereMMP1,

SPP1, and TPX2 were significantly highly expressed in the high-

risk group, while CTSO was significantly highly expressed in the

low-risk group (Figure 5C). Among them, the risk status plot and

the survival distribution plot demonstrated the poorer prognosis

of HCC patients with higher risk score (Figures 5D,E). The

FIGURE 6
Characteristics of immune microenvironment in different risk groups. (A) The heat map showed correlation between risk score and immune
function score. (B) The heat map showed differences in immune function of different risk groups. (C) The box plot showed differences in immune
checkpoint mRNA expression of different risk groups. (D) The box plot showed differences in HLA mRNA expression of different risk groups. (E) The
box plot showed differences in TMB score of different risk groups. (F) Survival analysis by combining TMB score and risk score. *p < 0.05, **p <
0.01, ***p < 0.001.
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results of the sankey plot showed a strong association between

risk subtypes and molecular subtypes. And most patients in the

subtype A and low risk group were in alive status (Figures 5F–H).

PCA also showed genomic heterogeneity between the two risk

groups (Figure 5I). Survival analysis and ROC curves indicated

(Figures 5J,K) that risk score had a good prognostic value in both

the TCGA-LIHC cohort and the GSE14520 cohort, and that

survival was suboptimal in patients with both high-risk subtypes.

Moreover, we performed correlation analysis between hub genes

and m6A methylation regulators, and interestingly, it was

positively correlated with most of the regulators except

IGFBP1, IGFBP2, and IGF2BP1 (Supplementary Figure S2).

Association of risk subtypes with immune
microenvironment

We simultaneously applied different algorithms such as

TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL

and EPIC to estimate the immune cell infiltration status in

each samples. Correlation analysis showed that as the risk

score increased, the infiltration score of killer immune cells,

such as CD4+ T and CD8+ T cell, also increased (Figure 6A).

Similarly, there were differences in the distribution of immune

cells in the different risk groups. The high-risk group had a more

active TME (Figure 6B). In HLA and ICI analysis, the

corresponding mRNA expression was higher in high-risk

subtypes (Figures 6C,D). Based on whole-exome sequencing

data, patients with both high- and low-risk subtypes did not

show significant differences in Top mutated genes, which were

TP53, CTNNB1, and TTN (Supplementary Figures S1B,C).

Considering the importance of tumor mutational burden

(TMB) for immunotherapy, we performed a statistical analysis

of the TMB differences between the high- and low-risk groups. It

was demonstrated that high-risk group had higher TMB, which

suggested that they might have a better response to

immunotherapy (Figure 6E). Importantly, when low-TMB and

low-riskscore are combined, patients will have the best survival

advantage (Figure 6F). In addition, we validated our risk

signature in immunotherapy cohort (IMvigor210), and the

results were consistent with the above findings, namely, high-

risk patients had poor survival outcomes, and high-risk patients

were more likely to achieve complete remission (CR), as shown in

Supplementary Figure S3.

Risk subtypes could reflect drug resistance
in HCC patients

We predicted the drug sensitivity of HCC patients in the

meta cohort by utilizing the ‘pRRophetic’ algorithm and a ridge

regression model. The results showed that targeting cell cycle

(CGP-60474, GW843682x, BI-2536, and CGP-082996)

(Figure 7A), PI3K/mTOR signaling (JW-7-52-1, MK-2206,

and A-443654) (Figure 7B), WNT signaling (CHIR-99021)

(Figure 7C), and RTK signaling (Sunitinib and PHA-665752)

(Figure 7D) were significantly more effective in high-risk group

than in low-risk group. The TIDE score showed that the

effectiveness of immunotherapy may be better in high-risk

patients (Figure 7E). In addition, the IPS results also

demonstrated that the high-risk group seems to have more

immunogenic phenotypes (Figure 7F).

HRGTs in single cell levels

We annotated the GSE125499 single cell expression profile

file based on the TISCH database, and t-SNE plot demonstrated

the subpopulation of different cells (Figure 8A). In addition, the

violin plot demonstrated the expression of CTSO, MMP1, SPP1,

and TPX2 in different cell types, with SPP1 being more highly

expressed in hepatic progenitor (Figure 8B). Interestingly, after

PD-L1/CTLA-4 treatment, CTSO,MMP1, SPP1, and TPX2 were

significantly up-regulated in tumor cells (Figure 8C). Finally, we

showed the changes in the proportion of different cell types

before and after immunotherapy (Figure 8D). The above data

suggest to us that four HRGTs involved in risk signature may

have a role in reflecting the response to immunotherapy.

Discussion

Primary liver cancer is one of the sixthmost common cancers

worldwide and is a common tumor of the digestive system with

high aggressiveness and poor prognosis (Choi et al., 2020). Since

HCC is not sensitive to conventional radiotherapy, surgery

becomes the main treatment method. TACE is the treatment

of choice for intermediate-stage hepatocellular carcinoma

(Morise et al., 2014). In recent years, however, TACE

refractoriness has become a thorny issue and has received

increasing attention. This is because TACE accompanied by

tumor ischemia plays a dual role in the treatment of HCC.

Initially, TACE induces tumor necrosis by blocking the

vasculature from the hepatic artery to the HCC. However,

TACE also stimulates angiogenesis by inducing hypoxia

thereby promoting tumor recurrence and metastasis (Kenji

et al., 1997). Tumor angiogenesis and invasiveness by TACE

have been found to be mediated by hypoxic signaling, which has

been effectively inhibited by antiangiogenic therapies (Liu et al.,

2016). However, there are few studies related to HRGs associated

with TACE. Although a series of studies have identified

predictors or models associated with TACE refractoriness, no

studies explore the relevance of HGRTs to the immune

microenvironment, prognosis and drug resistance.

Onco-Multi-OMICS approach have been commonly used to

discover potential biomarkers (Chakraborty et al., 2018). To date,
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few studies have constructed prognostic models based on

combinations of multiple HRGs in TACE-refractory HCC.

Importantly, genetic features and clinical characteristics have

performed unsatisfactorily in predicting survival outcomes for

TACE-refractory patients. Therefore, we aimed to explore a new

HRGTs-based risk stratification and propose potential

therapeutic targets for HCC patients. Tumor hypoxia

promotes the growth of tumor cells and their transformation

FIGURE 7
Risk subtypes could reflect drug resistance. (A) The box plot of targeting cell cycle drug in different risk groups, including CGP-60474,
GW843682x, BI-2536, and CGP-082996. (B) The box plot of targeting PI3K/mTOR signaling drug in different risk groups, including JW-7-52-1, MK-
2206, and A-443654. (C) The box plot of targeting WNT signaling drug in different risk groups, including CHIR-99021. (D) The box plot of targeting
RTK signaling drug in different risk groups, including Sunitinib and PHA-665752. (E) The box plot of TIDE score in different risk groups. (F) The
box plot of IPS in different risk groups.
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to a malignant phenotype. The exploration of hypoxia has

opened new perspectives for HCC. Hypoxia is a typical

hallmark of TME in almost all solid tumors, caused by rapid

and uncontrolled tumor proliferation and inadequate blood

supply (Graham and Unger, 2018). Under hypoxic conditions,

HIFs bind to transcriptional co-activators and hypoxia response

elements to increase the expression of a cascade of target genes,

thereby regulating various biological processes, including

proliferation, metabolism, angiogenesis, migration and

invasion. In addition, hypoxia increases the resistance of

FIGURE 8
HRGTs in single cell levels. (A) t-SNE plot demonstrated the subpopulation of different cells. (B) The violin plot demonstrated the expression of
CTSO, MMP1, SPP1, and TPX2 in different cell types. (C) The violin plot demonstrated the expression of CTSO, MMP1, SPP1, and TPX2 in different
treatment groups. (D) The histogram showed the changes in the proportion of different cell types before and after immunotherapys.
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tumor cells to chemotherapy, radiotherapy and even

immunotherapy (Li et al., 2004). It can inactivate effector

cytokine production by inhibiting T cell proliferation and

function. Therefore, it is important to fully understand the

effects of hypoxia on TACE. In our study, a total of

274 DEGs were first identified in the GSE104580 cohort and

overlapped with existing HRGs genes in the database. Finally,

identifying 33 HRGTs that may have played a key role in TACE

refractoriness. Patients were classified into different subtypes

according to the expression of prognostic HRGTs and DEGs.

The ESTIMATE algorithm showed that subtype A had a higher

immune score, and subtype A had higher mRNA expression of

most HLAs and ICIs.

ICIs therapy has been shown to be a highly effective agent for

the treatment of HCC(Graham and Unger, 2018). However, it is

unclear how to identify those who may benefit most from ICIs

therapy. Hypoxia promotes tumor progression in different ways,

including proliferation, metabolism, angiogenesis and migration,

and improves resistance to ICIs(Bao and Wong, 2021). In

addition, many factors, especially in TME, can influence the

effectiveness of ICIs(Zhang and Zhang, 2020). The TME is a

complex and integral component of cancer, containing tumor

cells, stromal cells, inflammatory cells, fibroblasts, metabolites

and cytokines. To investigate the value of risk subtypes in TME

status and immunotherapy, multiple algorithms were used

simultaneously in the immune cell analysis to estimate the

immune cell infiltration score in different samples. Correlation

analysis showed that as the risk score increased, the infiltration

fraction of killer immune cells, such as CD4+ T and CD8+ T cell,

also increased (Li et al., 2021). And the high-risk group had more

active TME. Corresponding mRNA expression was higher in the

high-risk subtype in HLA and ICIs analysis. For drug resistance,

our study suggested that the high-risk group may have a better

response to immunotherapy. We used the pRRophetic algorithm

to predict drug sensitivity of HCC patients in different risk

groups. The results showed that drugs targeting cell cycle,

PI3K/mTOR signaling, WNT signaling, and RTK signaling

were more effective in high-risk patients. Importantly, the IPS

results demonstrated that the high-risk group seems to have

more immunogenic phenotypes.

For the four HRGTs involved in the risk signature, we found

that all of them were associated with tumor immunity.

Secretory phosphorylated protein 1 (SPP1) is a secreted

multifunctional phosphorylated protein that specifically

binds and activates matrix metalloproteinases (MMPs) in

cancer (Chen et al., 2019a). Its main biological functions are

involved in immune response, biomineralization and tissue

remodeling. SPP1 has also been implicated in cell growth,

proliferation, migration, apoptosis and chemotaxis. Previous

studies have demonstrated that SPP1 is overexpressed in a

variety of cancers and can be used to predict chemotherapy

prognosis, such as ovarian cancer (Zeng et al., 2018),

glioblastoma (Kijewska et al., 2017), HCC (Liu et al., 2022)

and gastric cancer (Chen et al., 2018a).MMP1 is a member of a

family of zinc-dependent endopeptidases involved in wound

healing, inflammation, cancer and angiogenic remodeling of the

extracellular matrix (ECM) (Chen et al., 2019b). It has been

shown to be closely associated with migration and invasion in

many cancers. mmp1 promotes cell cycle acceleration in cancer

cells by activating the cdc25a/CDK4-cyclin D1 and p21/cdc2-

cyclin B1 complexes (Yu et al., 2021). A newly discovered

mechanism of MMP1 in tumor promotion is by activating

PAR1 to cleave downstream oncogenic signaling pathways

(Huang et al., 2018). This is expected to be a promising

strategy to address the TACE refractoriness. TPX2 has been

identified as an oncogenic factor in a variety of cancers. For

example, upregulated expression of TPX2 enhances breast

cancer metastasis by mediating MMP2 and MMP9

expression (Tan et al., 2019). In addition, TPX2 can inhibit

cell proliferation and enhance apoptosis by blocking the PI3k/

AKT/p21 pathway and activating the p53 pathway in breast

cancer (Chen et al., 2018b). It has been shown that TPX2 is

highly expressed in HCC tissues. TPX2 expression is associated

with the infiltration status of immune cells in HCC involving B,

CD4+T and CD8+ T cells, neutrophils, macrophages and

DCs(Zhu et al., 2020). In addition, CDK5-mediated

stabilization of TPX2 promotes HCC tumorigenesis (Wang

et al., 2019). Clearly, these studies suggest that TPX2 is an

unfavorable marker for HCC and holds promise as a

therapeutic target for TACE refractoriness. CTSO is a

cysteine protease that has been shown to have both

extracellular and intracellular functions. This class of

proteases mediates intracellular protein catabolism and

selectively activates extracellular protein degradation,

macrophage function and bone resorption (Shi et al., 1995).

The role in cancer therapeutic resistance is an emerging area of

interest.

In our study, different hypoxic patterns present different

biological processes, signaling pathways and immune features.

Based on the parameters of the risk model, we determined that

high-risk patients have a more active immune

microenvironment, and HRGs are potential biomarkers for

TACE-refractory patients. Especially, it may be an

independent prognostic factor for HCC patients. However,

our study has some limitations. Firstly, we should use

advanced artificial intelligence models rather than traditional

machine learning models such as Random Forest (RF) or LASSO

models. However, for clinical applications, machine learning

models with coefficients may be more helpful to clinicians.

The clinician can calculate the survival risk of each patient

from the mRNA expression and coefficient, however, more

advanced deep learning models are a ‘black box’. Moreover,

due to the limitation of laboratory conditions, we have no more

time to conduct in vivo or vitro experiments, and we will validate

the mechanism of four hub genes in TACE-refractory patients in

the future. In conclusion, our study will provide a novel
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immunological perspective for the development of treatment

options for TACE-refractory HCC.
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