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ABSTRACT
Objectives With the objective of bringing clinical
decision support systems to reality, this article reviews
histopathological whole-slide imaging informatics
methods, associated challenges, and future research
opportunities.
Target audience This review targets pathologists and
informaticians who have a limited understanding of the
key aspects of whole-slide image (WSI) analysis and/or a
limited knowledge of state-of-the-art technologies and
analysis methods.
Scope First, we discuss the importance of imaging
informatics in pathology and highlight the challenges
posed by histopathological WSI. Next, we provide a
thorough review of current methods for: quality control
of histopathological images; feature extraction that
captures image properties at the pixel, object, and
semantic levels; predictive modeling that utilizes image
features for diagnostic or prognostic applications; and
data and information visualization that explores WSI for
de novo discovery. In addition, we highlight future
research directions and discuss the impact of large public
repositories of histopathological data, such as the Cancer
Genome Atlas, on the field of pathology informatics.
Following the review, we present a case study to
illustrate a clinical decision support system that begins
with quality control and ends with predictive modeling
for several cancer endpoints. Currently, state-of-the-art
software tools only provide limited image processing
capabilities instead of complete data analysis for clinical
decision-making. We aim to inspire researchers to
conduct more research in pathology imaging informatics
so that clinical decision support can become a reality.

INTRODUCTION
Pathology imaging informatics refers to the analyt-
ical and computational methods for handling, ana-
lyzing, and exploring histopathological images and
their associated clinical data in order to achieve a
medical goal, for example, diagnostic or prognostic
applications.1–6 Histopathological analysis is a
common clinical procedure for diagnosing the pres-
ence, type, and progression of diseases such as
cancer. While diagnosing cancer patients using
biopsy-derived tissue slides, pathologists manually
identify the most progressed regions and examine
nuclear morphology, among other tissue and cellu-
lar properties. However, manual examination and
decision-making using tissue slides that may poten-
tially contain millions of cells can be time-
consuming and subjective. Researchers have thus
proposed clinical decision support systems (CDSS)
and informatics methods that can help in decision-
making by objectively quantifying morphological
properties in histopathological images. Many of

these systems and informatics methods still focus
on images that represent only limited, manually
selected regions of tissue slides rather than on
whole-slide images (WSI).5 By including an element
of manual selection in these CDSS, researchers have
ensured higher quality and disease-relevant input
images while decreasing computational complexity.7

However, manually selected tissue slide regions do
not capture the complete information available to
pathologists during initial microscopic analysis.
Moreover, they are subject to biases related to the
knowledge of the pathologist that selected the image
regions.7 Therefore, we focus on WSI analysis
methods that can potentially maximize the amount
of information extracted from tissue slides for
decision-making and maximize the objectivity and
reproducibility of analysis. In particular, we review
methods for quality control, representation of WSI
using various types of quantitative image features,
predictive modeling, and visualization and explora-
tory analysis (figure 1). This review is by no means a
comprehensive description of WSI informatics.
However, compared to recent reviews on WSI
informatics4 6 8 that highlight general challenges
and applications, we discuss state-of-the-art analyt-
ical methods in the key components of WSI-based
CDSS.
The importance of quantitative and objective

analysis of tissue biopsy WSI has led to several
commercial software tools for WSI analysis includ-
ing GENIE (Aperio, Vista, California, USA), HALO
(Indica Labs, Corrales, New Mexico, USA), AQUA
Analysis (HistoRx, Branford, Connecticut, USA),
and Visiopharm (Hoersholm, Denmark). However,
all of these tools provide limited image processing
capabilities. In most cases, pathologists manually
select the regions of interest (ROI) and make diag-
noses based on feedback from these commercial
tools. Usually, an expert user calibrates these
systems for each laboratory-specific experimental
setup. To the best of our knowledge, none of these
tools provides complete data analysis for clinical
decision-making that includes all of the steps illu-
strated in figure 1.
Patient-level prediction modeling and explora-

tory analysis is important for a number of clinical
applications including diagnostics and therapeu-
tics.9 The importance of accurate image-based
disease diagnosis and the development of novel
pathology informatics techniques has led to the
establishment of databases such as the NCI
Cooperative Prostate Cancer Tissue Resource,10 the
NIH Cancer Genome Atlas (TCGA),11 and the
Human Protein Atlas.12 Such databases provide a
large number of high-quality histopathological
images and associated clinical data, further
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stimulating the development of novel informatics methods.
Some of these databases also provide matched genomic and
proteomic data, enabling multimodal studies that associate ‘–

omic’ data with histopathological image features. We use WSI
from TCGA in a case study to demonstrate a CDSS that identi-
fies and eliminates image artifacts such as tissue folds, extracts
image features using piecewise analysis, identifies biologically
relevant WSI regions, and combines image features from
selected WSI regions to predict several clinical endpoints.

QUALITY CONTROL
The quality of histopathological WSI is usually affected by arti-
facts acquired during image acquisition and batch effects result-
ing from variations in experimental protocol. Both of these
issues can affect the results of downstream clinical applications.
Data quality is especially challenging in collaborative

repositories, such as TCGA, where a large amount of high-
throughput data is collected from multiple institutions.

Image artifacts
Errors in biopsy slide preparation or in microscope parameters
may lead to anomalies, known as image artifacts, in WSI.
Common image artifacts include tissue folds, blurred regions,
pen marks, shadows, and chromatic aberrations.6 8 Image arti-
facts have unpredictable effects on image segmentation and
other quantitative image features. Therefore, it is essential either
to eliminate or correct these artifacts. Tissue-fold artifacts,
caused by layering of non-adherent tissue on the slide, can be
eliminated using methods based on color saturation and inten-
sity.13–15 Figure 2 illustrates some results for eliminating tissue
folds and pen marks in WSI using color properties.13 14 Briefly,
we detect tissue folds by using an unsupervised method to

Figure 2 Eliminating tissue-fold artifacts and pen marks in a whole-slide image of a NIH Cancer Genome Atlas ovarian serous carcinoma biopsy.

Figure 1 An example clinical decision support system for quantitative analysis of whole-slide images (WSI) of tissue biopsy samples. This system
has the following key components: quality control to ensure only high-quality data are processed, image description to convert WSI into quantitative
features, prediction modeling to develop quantitative diagnostic models, and exploratory analysis to interpret the image feature space. We include
two case studies as examples of predictive modeling and exploratory analysis. ROI, region of interest.
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cluster the pixels in an image representing the difference
between saturation and intensity values for every pixel.14

Because of its unsupervised nature, this method has two limita-
tions: it has low sensitivity for an image with different types of
tissue folds and it has low specificity for an image with no tissue
folds. Blurred regions, caused by loss of microscope focus, can
be detected using a supervised model based on texture proper-
ties such as gradient, Laplacian, local grayscale statistics, and
wavelet response.16 However, the success of such models
depends on good quality annotated data for training. Chromatic
aberrations occur when light dispersion through the microscopic
lens varies with colors, leading to ghost colors along the edges
of objects or discontinuities in an image. Wu et al17 suggest a
method that quantifies the amount of color dispersion at the
object edges and realigns color components to correct chromatic
aberration. Although artifact correction and elimination is essen-
tial for robust downstream analysis, literature on the topic is
relatively sparse. Moreover, most proposed methods have only
been tested on a limited set of images as a proof of concept.

Batch effects
Differences in slide preparation, microscope, and digitizing
device between two batches of data may lead to differences in
image properties between the two batches. These differences,
called batch effects, can bias the performance estimates of pre-
dictive models. Histopathological images often suffer from
color and scale batch effects. Color batch effects can be
addressed by normalizing the color of an image to a reference
image18–20 or by converting the image to a color space (eg,
CIELAB) that is not affected by color batch effects.21–23

Figure 3 illustrates results for normalizing the color map of two
ovarian samples (obtained from TCGA) using color-map quantile
normalization.18 Color normalization can be performed either at
the pixel level using a single model for a complete image18 or at
the stain level using a different model for each stain.20 Pixel-level
normalization is affected by differences in morphology between
the reference and test images while stain-level normalization is
affected by the accuracy of stain segmentation. Unlike color batch
effects, which affect only color properties of an image, scale
batch effects can affect a variety of image features such as object
size, topology, and texture. However, scale batch effects may be
difficult to detect or correct because biological factors such as
cancer grade or subtype may induce changes in scale. Such batch
effects may be detected by examining the differences in distribu-
tion of image features between batches. For example, Kothari
et al24 detected and proposed a method for correcting scale
batch effects by examining the distributions of nuclear areas.
Studies suggest that batch effects, if left uncorrected, can severely
reduce the performance of genomic prediction models.25 26 Even
though preliminary investigations suggest that batch effects are
present in histopathological images, most researchers validate
their diagnostic models on a single image dataset collected
during a single experimental set-up. For clinical application of
these systems, it is essential to validate diagnostic models on mul-
tiple datasets and to develop effective batch-effect removal
methods.

QUANTITATIVE IMAGE DESCRIPTION
WSI data may be described by experimental and clinical-level
features (eg, acquisition-related specifications and patient diag-
noses) as well as content-based image properties. Content-based
features, which are informative for quantitative prediction mod-
eling and for exploratory analysis, can be categorized into three
levels—pixel, object, and semantic-level features—based on the

amount of raw data captured by the features and the biological
interpretability of the features (figure 4).27 28

Pixel-level features
Pixel-level image features are in the lowest level of the information
hierarchy because they are the least interpretable in terms of
biology. Pixel-level image features do not focus on any specific set
of pixels in a WSI. Rather, they consider all image pixels and
capture properties such as color and texture. Color features quan-
tify color spread, prominence and co-occurrence using statistics
and frequencies of color histograms in different color spaces
including red-green-blue,29–31 hue-saturation-value,32 CIELUV,33

and CIELAB22 34 (figure 4C). Texture features quantify image
sharpness, contrast, changes in intensity, and discontinuities or
edges by measuring properties derived from gray-level intensity
profiles,30 Haralick gray-level co-occurrence matrix (GLCM) fea-
tures,23 30 35 36 wavelet and multiwavelet submatrices,30 35–37

Gabor filter responses23 30 36 (figure 4D), and fractals.30 36

Despite the lack of biological interpretability, pixel-level fea-
tures are used extensively in data-driven models because they
are simple to extract and are useful (at times sufficient) to
describe the images. For example, features from eight color
spaces were successfully used for skin melanoma classification,38

gray-level multiwavelet features for prostate grading,37 and
color texture (GLCM) properties for follicular lymphoma
grading.39 Figure 4 illustrates some pixel-level features including
red-green-blue color histograms and Gabor filter textures at
various scales.

Object-level features
Object-level features are in a higher level of the information
hierarchy compared to pixel-level features because they describe
properties of the cellular structures—such as nuclei, cytoplasm,
and glands—in a WSI. To extract object-based features, it is
essential first to segment cellular structures. As cellular struc-
tures appear in different colors in a stained histopathological
sample, researchers have proposed color-based methods for seg-
mentation. The literature supports both semi-automatic
methods, with some user interaction,35 40 as well as completely
automatic methods18 41–43 for segmentation. To increase the
accuracy of segmentation, some researchers consider the pixel
neighborhood properties using graph cut,39 object graph,44 and
Markov models.45 The accuracy of image segmentation methods
greatly affects the robustness of downstream analysis. Figure 4E
illustrates a pseudo-colored segmentation mask, in which blue,
pink, and white represent nuclear, cytoplasmic, and no-stain/
gland regions, respectively.18 Object-level features describe the
shape, texture, and spatial distribution of cellular structures in a
WSI.

Shape-based features can be broadly categorized into contour
and region-based features (figure 4E).46 Contour-based features
include the properties of shape boundary such as perimeter,
boundary fractal dimension, and bending energy. They also
include coefficients of parametric shape models such as Fourier
shape descriptors and elliptical models.47 Region-based features
include area, solidity, and Zernike moments.48 Among all shape
features, the properties of elliptical shape models of a nuclear
boundary are most prevalent in pathology informatics because
they are simple to extract and interpret, and informative for
cancer endpoints.39 48–51

Object-level texture features are similar to pixel-level texture
features, except that they capture the texture of only a subset of
image pixels associated with a tissue object.30 Nuclear texture is
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reported to be very informative for separating malignant
regions,51 subtyping cancer,49 and grading cancer.30

Topological or architectural features can capture the spatial dis-
tribution of cellular structures in a tissue sample. Researchers have
found spatial graphs (eg, Deluanay triangulations, Voronoi dia-
grams, and minimum spanning trees), in which graph nodes are
centers of cellular (nuclear or cytoplasmic) structures, to be useful
for extracting topological features (figure 4F). Common topo-
logical features include properties of spatial graphs such as edge
length, connectedness, and compactness. Besides graph-based
properties, topological properties include object density, average
distance between neighbors, and the number of objects within a
given neighborhood. Architectural features are useful for cancer
endpoints such as grading,30 39 classifying tumor versus non-
tumor regions,52 53 classifying low versus high lymphocytic infil-
tration regions,54 and predicting patient prognosis.55 56

In comparison to pixel-level features, object-level descriptors
can be much more computationally expensive to extract due to
their dependence on image segmentation. Therefore, in light of
the diagnostic benefit and biological interpretability of
object-level features, more research is necessary to improve the
computational speed of object-level feature extraction using

methods such as parallel computing and graphical processing
units.

Semantic-level features
Most pixel and object-level features are difficult to interpret bio-
logically and are susceptible to noise. In contrast, semantic-level
features easily capture interpretable high-level concepts such as
the presence or absence of nucleoli, necrosis, and lymphocytes
(figure 4G). A semantic feature is usually a classification or stat-
istical rule based on a subset of low-level features (eg, low-level
properties such as nuclear texture, color, and gray-level distribu-
tion may capture the high-level concept of nucleolus presence in
a nucleus). Because not all low-level features may be useful for
capturing high-level biological concepts, CDSS often use
feature-preprocessing methods to select a subset of the original
or transformed features. Among these preprocessing methods,
the bag-of-features method is the one most commonly used for
semantic features.57–59 As semantic-level features require a large
amount of annotated training data, only a few systems use these
features.60–62 There is thus limited research on semantic-level
descriptors for histopathology. However, with the large amount
of biological variations in WSI because of the heterogeneity of

Figure 3 Normalization of color batch effects in ovarian samples provided by the NIH Cancer Genome Atlas.
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cancer biology, it will be especially beneficial to continue devel-
oping and refining semantic-level image descriptors.

PREDICTIVE MODELING
Predictive modeling is an important part of pathology imaging
informatics because it is applicable to a number of diagnostic clin-
ical endpoints. Three important steps of WSI prediction modeling
include: ROI selection and tile-based WSI representation; inform-
ative feature selection and reduction; and classification. We discuss
ROI selection and tile-based WSI representation in detail in the
following section. As the number of image features is generally
much larger than the number of available samples, predictive mod-
eling in pathology imaging informatics faces similar algorithmic
challenges as that of other informatics fields. As described in the
supplementary methods (available online only), feature selection,
feature reduction, and classification methods address the problem
of robust model building based on high-dimensional data.

ROI selection and tile-based WSI representation
A high-resolution scan of a tissue biopsy slide results in a very
large WSI (eg, up to 40 000×60 000 pixels). Such WSI contain
a large amount of biologically related spatial variation including
regions of high-grade tumor, low-grade tumor, necrosis, and
stroma. When pathologists examine a WSI, they identify regions
that are most important or relevant for the final prognostic deci-
sion (eg, the region with the highest cancer grade). Similarly, an
informatics system aims to identify a ROI in the WSI before
developing a predictive model. Several researchers have

developed supervised models for identifying ROI in WSI, but
these methods require previous annotation for training.13 63–65

Researchers have recently proposed unsupervised knowledge-
based methods for identifying ROI.66 67

Because of limitations in computer memory and processing
time, WSI are often cropped into smaller tiles (eg, 512×512-pixel
tiles), and then features are extracted from each tile in paral-
lel.13 22 65 67–69 Representation of WSI by combining data from
multiple WSI tiles is an emerging area of research with limited
published results, especially in the context of clinical predic-
tion.22 49 After identifying tiles corresponding to ROI, an inform-
atics system can either combine the tiles to represent the WSI in a
prediction model49 or predict the label for individual tiles and
then combine labels to represent the final prediction result of the
WSI.22 In the former method, outlier features might dominate
WSI properties. In the latter method, annotation of individual
tiles, instead of the WSI, might be necessary for training models.
In the case study, we demonstrate a simple method for combining
features from multiple tiles and show that this method yields rea-
sonable clinical prediction results. A related topic to piecewise ana-
lysis of WSI is multiresolution or multiscale analysis, in which a
WSI is processed at various scales/resolutions to achieve different
modeling objectives.22 23 67 70 The basic concept of multiscale ana-
lysis is that a coarse level of prediction—such as tumor and non-
tumor classification—can be achieved at a low resolution, when
WSI are smaller and processing time is shorter. In contrast, for
more complex problems such as grade prediction, WSI need to be
processed at higher resolution.

Figure 4 Representation of a (A) NIH Cancer Genome Atlas whole-slide image (WSI) of a kidney renal clear cell carcinoma biopsy using various
quantitative features extracted from (B) a single image tile. Quantitative features include pixel-level features, ie, (C) color histogram and (D) Gabor
filter response; object-level features, ie, (E) segmented shapes and (F) graph-based topology; and semantic-level features, ie, (G) percentage of
high-level clinical properties.

Kothari S, et al. J Am Med Inform Assoc 2013;20:1099–1108. doi:10.1136/amiajnl-2012-001540 1103

Review



Most WSI are millions of pixels in size and capture a large
amount of biological heterogeneity. It is thus necessary to
develop automatic methods for accurately selecting ROI in WSI.
Without accurate ROI selection, the prediction performance of
decision support systems for WSI may suffer compared to that
for manually selected image portions. In order to achieve auto-
matic ROI selection, we need to develop representation
methods that capture high-level biological heterogeneity in WSI
(ie, regions of high/low-grade cancer or regions of tissue necro-
sis). These methods can be as simple as capturing pathologists’
annotations for biological heterogeneity, then using these anno-
tations to train automatic ROI selection methods. Such models
will not only aid in WSI-based patient prediction modeling but
will also aid in exploratory analysis for discovering factors that
lead to differential clinical outcomes.

VISUALIZATION AND EXPLORATORY ANALYSIS
Pathology imaging informatics has traditionally focused on pre-
dictive modeling. However, the research focus has evolved into
a combination of predictive modeling and exploratory analysis
for two reasons. First, large-scale studies such as TCGA aim to
reveal new insights about aggressive cancer endpoints and to
discover new prognostically different subtypes. Second, predict-
ive modeling with high-dimensional data is very difficult and
requires tools for interpreting the biological relevance of fea-
tures and quantitative models.

Unsupervised clustering and high-dimensional
feature patterns
Patterns in image features can be captured in simple two or
three-dimensional visualizations such as scatter plots, surface
plots, and distribution curves.35 39 51 54 56 71 However, if the
number of descriptors is very large (>50), such visualizations
may be difficult to implement or interpret. Therefore, unsuper-
vised clustering methods are useful for reducing the feature
space before visualization. Common clustering techniques in
pathology imaging informatics include hierarchal clustering, self-
organizing maps, and k-means. Hierarchal clustering is useful
for patient stratification and visualization.49 68 72–74

Self-organizing maps are commonly used for feature interpret-
ation,75 patient stratification76 and segmentation39 77 78 in path-
ology imaging informatics systems. k-Means is mostly used for
color segmentation79 and for image classification and visualiza-
tion as part of the bag-of-features representation.58 80 All of
these methods are useful for visualizing the underlying structure
of high-dimensional representations of histopathological data.

Virtual microscope and spatial patterns
With the availability of large histopathological data repositories
such as TCGA, ‘virtual microscope’ software applications have
emerged that enable the spatial exploration of high-resolution
digital WSI.1 68 81 82 Without such applications, it is a challenge
to share or even to view these images in real time. In addition,
researchers have developed compression methods specifically
for WSI.83 84 The popularity of the Google Maps interface for
exploring satellite images at many different detail levels has
inspired similar tools for exploring whole-slide tissue
images.82 85 86 In addition to viewing a WSI, some systems can
highlight ROI (eg, regions of high-grade cancer or regions with
lymphocyte infiltration).56 64 65 67 70 87 Moreover, some visuali-
zations annotate histopathological images with semantic labels
such as necrosis, glands, and lymphocytes,61 62 or highlight the
spatial distributions of proteins, image features, or biomarker
expression across the histopathological image.13 71

Both spatial and patient-level exploratory analysis of WSI is
an open area of research that requires interdisciplinary colla-
borations among pathologists, biologists, and computer scien-
tists. Such collaboration is necessary to tackle the difficult
problem of discovering and interpreting novel patterns in histo-
pathological data that may lead to improved patient care.
Moreover, it is necessary to develop novel quantitative metrics
for assessing the stability and reproducibility of patterns related
to both spatial and patient-level analysis to ensure that these pat-
terns are biologically relevant. The supplemental case study
illustrates a method for exploring spatial patterns in WSI.

CASE STUDY: TILE-BASED ROI SELECTION FOR WSI
PREDICTION MODELING
In this case study, we examine the effect of WSI ROI selection on
the prediction performance of clinical endpoints. We use 906
WSI of tumor samples from 451 kidney renal clear cell carcin-
oma (KiCa) patients from TCGA.11 As described in supplement
1 (available online only), information extraction from quality-
controlled WSI include the following steps: tile segmentation;
image feature extraction; tumor detection; and patient represen-
tation using tissue (tumor and non-tumor tiles) or tumor tiles.
Using the clinical data from TCGA, we develop WSI-based deci-
sion models for five binary endpoints (table 1). Prediction
models use classifiers based on discriminant analysis—linear,
quadratic, spherical and diagonal—and minimum-redundancy,
maximum-relevance (mRMR) feature selection.88 We optimize
feature size in the range of 1 to 100 and classifier parameters
using five-fold, 10 iterations of nested cross-validation. The opti-
mized models have average feature size in the range of 28 to 74

Table 1 Prediction performance for whole-slide image-based binary endpoints

Class 1 Class 2 AUC for outer cross-validation

Endpoint Description
No. of
patients Description

No. of
patients

Tissue (incl. non-
tumor tiles) Tumor p Value

Histological grade Grade 1 or 2 204 Grade 3 or 4 239 0.66±0.01 0.69±0.01 0.0000
Metastasis No spread to other organs 381 Spread to other organs 68 0.61±0.01 0.64±0.01 0.0001
Stage Stage I or II 267 Stage III or IV 182 0.60±0.02 0.61±0.03 0.0562
Five-year survival <5 years 126 ≥5 years 101 0.54±0.02 0.57±0.02 0.0151
Lymphnode spread No spread to nearby lymph nodes 210 Spread to nearby lymph nodes 17 0.56±0.06 0.54±0.02 0.5148

AUC, area under the curve.
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(table 2). Among all feature subsets, the nuclear shape subset is
statistically overrepresented for most endpoints, which implies
that nuclear shape features are most informative for these end-
points (table 2).30

Figure 5C,D illustrates scatter plots of area under the curve for
inner cross-validation and outer cross-validation performance for
models based on tissue (tumor and non-tumor tiles) and tumor
tiles, respectively. Each point in the scatter plot is an average per-
formance for one cross-validation iteration. We can observe that
the performance in both cases—models based on tumor and tissue
tiles—is close to the diagonal, which indicates that inner cross-
validation can predict the performance of outer cross-validation.
We can also observe that the models based on tumor tiles perform

Table 2 Statistically overrepresented feature subsets in models
based on tumor tiles

Endpoint
Average
feature size

Statistically overrepresented
feature subsets (Fishers test,
p value=0.05)

Histological grade 74 Nuclear shape (0.013)
Metastasis 28 Nuclear shape (0.000)
Stage 54 Nuclear shape (0.013) and

Basophilic-object shape (0.002)
Five year survival 37 Basophilic-region texture (0.000)
Lymph node spread 34 Nuclear shape (0.000)

Figure 5 Role of region of interest (ROI) selection on the performance of whole-slide image (WSI)-based prediction models. (A) An example WSI.
(B) Tiles in the tumor region (ROI) of the WSI highlighted with green boxes. Scatter plots between the prediction performance (area under the curve;
AUC) of inner and outer loop of nested cross-validation for (C) models based on features from tissue tiles, including tumor and non-tumor (normal,
necrosis, and stroma) regions; and for (D) tiles in the tumor region only.
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equivalent to or better than the models based on all tissue tiles. We
report the average and SD of outer cross-validation performance
for all endpoints in table 2. For the histological grade and metasta-
sis prediction models, prediction performances based on tumor
tiles are more than those based on all tissue tiles with statistical sig-
nificance (evaluated using a t test). Although this case study adopts
a robust analytical pipeline, the classification performances are
lower compared to the performances observed in the literature for
manually curated sections. Two causes for low prediction perform-
ance are various quality issues with TCGA data, that is, tissue
folds, pen marks, and out-of-focus regions that are inherent to
WSI, and difficulty in predicting clinical endpoints, that is, patient
survival, which are not normally targeted by pathologists.
Therefore, automatic image quality control, ROI selection in WSI,
and clinically informative feature extraction are still open chal-
lenges in the field of pathology imaging informatics. Despite these
challenges, such CDSS will provide an objective and fast means for
clinical diagnosis with minimal user intervention. Moreover, such
systems can be trained to diagnose rare subtypes of cancer that are
often missed in traditional diagnosis.89 The knowledge extracted
by these systems may also contribute to a holistic diagnostic plat-
form by integration with data from other imaging modalities as
well as with data from genomic and proteomic experiments.90

CONCLUSION
With the emergence of WSI technology, high-resolution scans of
complete tissue biopsy slides are becoming a common clinical
practice. Despite the benefits of WSI for histopathological diag-
nosis, the literature reports that existing CDSS primarily use
only rectangular sections of WSI. Moreover, commercial soft-
ware tools for WSI analysis are also limited because they are
typically trained for only a single experimental set-up and only
focus on segmenting tissue structures and quantifying a limited
set of image descriptors to aid manual histopathological analysis.
Based on these systems, we learned that quantitative image fea-
tures are able to model cancer diagnosis and prognosis.
However, the development of CDSS for WSI has been impeded
by several informatics challenges: quality control; robust and
fast image segmentation; knowledge (semantic-level) models for
WSI; and ROI selection. Researchers have developed methods
to address these challenges (table 3). However, most studies val-
idate their methods on a limited number of samples and cancer
endpoints. To make CDSS for pathology a reality, it is necessary

to develop a generalizable system (such as the system described
in the case study) that can be applied to multiple cancer end-
points and that is validated using large multibatch datasets. With
the availability of large WSI datasets for multiple cancer end-
points in public repositories such as TCGA, the data required to
make the necessary advances in pathology imaging informatics
research have now become more accessible.
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