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Reversible lysine acetylation is one of the most widely distributed post-

translational modifications; it is involved in a variety of biological processes

and can be found in all three domains of life. Acetyltransferases and deacety-

lases work coordinately to control levels of protein acetylation. In this work,

we applied the genetic code expansion strategy to site-specifically incorporate

Ne-thioacetyl-L-lysine (TAcK) as an analog of Ne-acetyl-L-lysine (AcK) into

green fluorescent protein and malate dehydrogenase in Escherichia coli. We

showed that TAcK could serve as an ideal functional mimic for AcK. It

could also resist the bacterial sirtuin-type deacetylase CobB. Thus, genetic

incorporation of TAcK as a non-deacetylatable analog of AcK into proteins

will facilitate in vivo studies of protein acetylation.

The reversible acetylation of lysine residues in proteins

has been recognized as one of the most widely dis-

tributed post-translational modifications in both

eukaryotes and prokaryotes [1–5]. It plays key roles in

regulating a wide range of important biological

processes including gene transcription, stress response,

apoptosis, cellular differentiation and metabolism [6–
13]. Accumulating evidence has shown that protein

acetylation is tightly associated with many human dis-

eases such as cancers, cardiovascular diseases, diabetes
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and neurodegenerative disorders [14–20]. Studies on

protein acetylation have not only deepened our knowl-

edge of its functions and mechanisms but also guided

therapeutic strategies for acetylation-associated dis-

eases [21–24].
Lysine acetylation can take place with or without

acetyltransferases, while the removal of the acetyl group

is mediated by deacetylases [25–33]. Due to the existence

of acetyltransferases and deacetylases as well as non-

enzymatic acetylation in cells, one challenge for studying

lysine acetylation is to synthesize homogeneously acety-

lated proteins at specific sites. To overcome this prob-

lem, the genetic code expansion strategy was applied to

utilize an orthogonal pair of an evolved pyrrolysyl-

tRNA synthetase (PylRS) variant and its cognate tRNA

from Methanosarcinaceae species to cotranslationally

incorporate Ne-acetyl-L-lysine (AcK) in response to a

stop codon at the desired position in target proteins

[34–36]. This approach has already proved to be a

powerful tool to study protein acetylation [37–45].
As a non-hydrolyzable analog of AcK, Ne-thioacetyl-

L-lysine (TAcK) has been used as an inhibitor for a

number of deacetylases in the form of peptide or non-

peptide substrates [46–52]. Recently, S€oll’s group uti-

lized the flexizyme-mediated tRNA aminoacylation and

cell-free translation systems to incorporate TAcK into

histone H3, which was shown to be resistant to SIRT1

deacetylase [53]. However, this approach can only be

used in vitro. In this work, we established an in vivo

system to site-specifically incorporate TAcK into pro-

teins for broader applications by using living cells.

Materials and methods

Thioacetyl-lysine synthesis

The synthesis of TAcK followed a previous protocol with

slight modifications (Fig. 1) [53].

Step 1

A 5% (w/v) aqueous solution of Na2CO3 (25 mL) was

added dropwise to a stirred suspension of Na-Boc-L-lysine

(3.0 g, 12 mmol) in ethanol (25 mL) at 0 °C. Ethyl

dithioacetate (1.5 mL, 13.2 mmol) was then added drop-

wise at 0 °C. After the addition was complete, the reaction

mixture was stirred at room temperature for 4 h before the

addition of a 50% (v/v) solution of ethanol in water

(3 mL). The ethanol was removed under reduced pressure

and the residue was acidified with 6 M HCl to pH ~ 1–2
and extracted with CH2Cl2. The combined organic extracts

were washed with saturated NaCl solution, dried over

anhydrous Na2SO4, filtered and evaporated to dryness,

affording an oily residue. The product was isolated as a

white solid (3.0 g, 68%) after silica gel column chromatog-

raphy (60 : 40 ethyl acetate/hexanes). Spectral data of the

compound match with the previous report [53]: 1H-NMR

(400 MHz, CDCl3) d: 8.61 (s, 1H), 4.16 (m, 1H), 3.49–3.55
(m, 2H), 2.46 (s, 3H), 1.62–1.78 (m, 6H), 1.37 (s, 9H)
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Fig. 1. The Scheme for TAcK synthesis.
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(Fig. S1); 13C-NMR (100 MHz, CDCl3) d: 200.4, 174.5,

156.0, 79.6, 52.9, 46.1, 33.7, 32.7, 28.3, 27.0, 22.8 (Fig. S2).

Step 2

Na-Boc-Ne-thioacetyl-L-lysine (2.75 g, 9 mmol) was dis-

solved in dry CH2Cl2 (25 mL), and trifluoroacetic acid

(15 mL, 0.2 mol, 22 eq) was added dropwise to the reaction

mixture over 20 min. The reaction mixture was stirred at

room temperature for 4 h. The biphasic reaction mixture

was separated, and the organic layer was washed with

CH2Cl2 several times. The product was evaporated to dry-

ness affording a white solid powder (1.65 g, 90%). Spectral

data of the compound: 1H-NMR (400 MHz, D2O) d: 3.96
(m, 1H), 3.51 (m, 2H), 2.39 (s, 3H), 1.78–1.97 (m, 2H),

1.58–1.75 (m, 2H); 1.24–1.51 (m, 2H) (Fig. S3); 13C-NMR

(100 MHz, D2O) d: 202.5, 172.6, 52.8, 45.6, 32.2, 29.3, 26.3,
21.5 (Fig. S4); ESI-FTMS calcd for C8H16N2O4S (M + H) –
205.1005, m/z found 205.1000 (Fig. S5).

General molecular biology

Chemicals in this study were purchased from Sigma-

Aldrich (St Louis, MO, USA). E. coli TOP10 cells (Thermo

Fisher Scientific, Waltham, MA, USA) were used for clon-

ing and expression. Cloning experiments were performed

by PCR and the DNA Assembly Kit (New England Bio-

labs, Ipswich, MA, USA). Point mutations were made by

the QuikChange II mutagenesis kit (Agilent Technologies,

Santa Clara, CA, USA).

Western blotting

Purified proteins were fractionated by SDS/PAGE and

transferred onto a PVDF membrane. The membrane was

incubated at room temperature with gentle shaking in TTBS

(Tris Buffered Saline, with Tween 20, pH 8.0) and 5% BSA

blocking buffer for 60 min. Horseradish peroxidase-conju-

gated acetylated-lysine (Ac-K2-100) rabbit antibody (Cell

Signaling Technology, Beverly, MA, USA) was diluted

1 : 1000 and soaked the membrane overnight at 4 °C. The
membrane was prepared for detection using PierceTM ECL

western blotting substrates (Thermo Fisher Scientific).

The superfolder GFP readthrough assay

The assay follows a previous protocol [54]. Strains harbor-

ing the superfolder GFP (sfGFP) reporter gene in the

pBAD plasmid and the genes of AcKRS and TAcKRS

variants and tRNAPyl in the pTech plasmid were inoculated

into 2 mL LB medium. The overnight culture was diluted

with fresh LB medium to an attenuance of 0.15 at 600 nm,

supplemented with non-canonical amino acids (ncAAs),

100 lg�mL�1 ampicillin and 50 lg�mL�1 chloramphenicol;

1 mM arabinose was added to induce the expression of

sfGFP. Two hundred microliters of culture of each strain

was transferred to a 96-well plate. Cells were shaken for

12 h at 37 °C, with monitoring of fluorescence intensity

(excitation 485 nm, emission 528 nm, bandwidths 20 nm)

and attenuance (D600) by the microplate-reader.

AcKRS variant library construction and selection

for TAcK-specific variants

For variant library construction, three residues (F271, F313

and W382) of AcKRS were randomly mutagenized with

three primers (AcKRS271-QF: GCACCGAACCTGNN

NAATTAT-GCCCGTAAACTG; AcKRS313-QF: CACC

ATGCTGAACTTTNNNCAAATGGGCTCG; and AcK

RS382-QF: GGTATTGACAAACCGNNNATCGGCGC

G, NNN is completely randomization of corresponding

positions) by the QuikChange multisite-directed mutagene-

sis kit (Agilent Technologies). Selections were performed as

described before [35]. For the first round positive selection,

50 ng of pBK-AcKRS (Kmr) library plasmid was intro-

duced into 50 lL of E. coli TOP10 (108 cells) with the posi-

tive selection plasmid pCAT-pylT (Tetr) that has a mutant

cat gene with an amber stop codon at position 112 and

tRNAPyl. The transformants were recovered in 1 mL SOC

(Super Optimal broth with Catabolite repression) at 37 °C
for 2 h, and then cultivated in 100 mL LB-TK (containing

10 lg�mL�1 tetracycline and 25 lg�mL�1 kanamycin) over-

night at 37 °C. Of the overnight culture, 100 lL was inocu-

lated into 5 mL fresh LB-TK-TAcK (LB-TK containing

2 mM TAcK). After growing at 37 °C for 4 h, 200 lL cul-

ture was plated on LB-TK-TAcK-Cm (LB-TK-TAcK con-

taining 350 lg�mL�1 chloramphenicol) plates. Here we

used 350 lg�mL�1 chloramphenicol because cells harboring

the original AcKRS and tRNAPyl as well as the mutant cat

gene could survival at 300 but not 350 lg�mL�1 chloram-

phenicol in the same condition (Fig. S6). The plates were

incubated at 37 °C for 48 h, and all the colonies growing

on the plates were scraped and resuspended in 10 mL LB-

TK-TAcK. After additional incubation for 4 h at 37 °C,
total plasmids were extracted, and the pBK-AcKRS library

plasmids were isolated by agarose gel electrophoresis and

purified by the gel purification kit.

For the negative selection, 10 ng pBK-AcKRS library

plasmids from the positive selection were transformed into

50 lL E. coli TOP10 (108 cells) with negative selection plas-

mid pAraCB2-pylT (Cmr) that has tRNAPyl and a mutant

ccdB gene with two amber stop codons at positions 13 and

44. The transformants were recovered in 2 mL SOC at

37 °C for 2 h, and then 50 lL was plated on LB-CKara

(containing 50 lg�mL�1 chloramphenicol, 25 lg�mL�1

kanamycin and 0.2% arabinose) plates. After incubation at

37 °C overnight, all the colonies were harvested, and pBK-

AcKRS library plasmids were isolated as described above

for the next positive selection. One nanogram of pBK-

AcKRS library plasmids from the negative selection were
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introduced into 50 lL TOP10 (108 cells) with the positive

selection plasmid pCAT-pylT. The transformants were

recovered in 1 mL SOC at 37 °C for 2 h. It was transferred

and cultivated in 50 mL LB-TK overnight at 37 °C. Of the

overnight culture, 100 lL was inoculated into 5 mL fresh

LB-TK-TAcK. To obtain individual positive colonies at

this stage, the cultures were diluted with fresh LB-TK-

TAcK and plated on LB-TK-TAcK-Cm plates. After 48 h

of incubation, 69 colonies were selected, and each clone

was inoculated into 1 mL LB-TK and incubated overnight

at 37 °C. Of the overnight culture, 100 lL was diluted with

fresh 1 mL LB-TK with or without 2 mM TAcK. After

growing at 37 °C for 3 h, cell cultures were spotted on an

LB-TK-TAcK-Cm or LB-TK-Cm plate, separately. Finally,

17 clones were found to grow only on LB-TK-TAcK-Cm

plate. The pBK-TAcKRS plasmid isolated and extracted

from each clone was sent for DNA sequencing.

Protein expression and purification

The procedure has small modifications from previous proto-

cols [54,55]. The genes of target proteins were cloned into the

pBAD plasmid with a C-terminal His6-tag, and transformed

into Top10 cells together with the pTech plasmid harboring

genes of tRNAPyl and TAcKRS for expression. The expres-

sion strain was grown on 400 mL LB medium supplemented

with 100 lg�mL�1 ampicillin and 50 lg�mL�1 chlorampheni-

col at 37 °C to an attenuance of 0.6–0.8 at 600 nm, and pro-

tein expression was induced by the addition of 1 mM

arabinose and supplemented with 5 mM TAcK. Cells were

incubated at 30 °C for an additional 8 h, and harvested by

centrifugation at 5000 g for 10 min at 4 °C. The cell paste

was suspended in 15 mL of lysis buffer (50 mM Tris pH 7.5,

300 mM NaCl, 20 mM imidazole) with the protease inhibitor

cocktail (Roche, Basel, Switzerland), and broken by sonica-

tion. The crude extract was centrifuged at 20 000 g for

25 min at 4 °C. The soluble fraction was filtered with a

0.45 lm filter and loaded onto a column containing 1 mL of

Ni-NTA resin (Qiagen, Hilden, Germany) previously equili-

brated with 20 mL lysis buffer. The column was washed with

20 mL wash buffer (50 mM Tris pH 7.5, 300 mM NaCl,

50 mM imidazole), and eluted with 2 mL elution buffer

(50 mM Tris pH 7.5, 300 mM NaCl, 150 mM imidazole). The

elution fraction was desalted with desalting buffer (50 mM

Tris pH 7.5, 20 mM NaCl) with a PD-10 column (GE

Healthcare Life Sciences, Pittsburgh, PA, USA).

LC-MS/MS analyses

The procedure has small modifications from the previous

protocol [55]. The purified proteins were trypsin digested by

a standard in-gel digestion protocol, and analyzed by LC-

MS/MS on an LTQ Orbitrap XL (Thermo Fisher Scientific)

equipped with a nanoACQUITY UPLC system (Waters,

Milford, MA, USA). A Symmetry C18 trap column

(180 lm 9 20 mm; Waters) and a nanoACQUITY UPLC

column (1.7 lm, 100 lm 9 250 mm, 35 °C) were used for

peptide separation. Trapping was done at 15 lL�min�1, 99%

buffer A (0.1% formic acid) for 1 min. Peptide separation

was performed at 300 nL�min�1 with buffer A and buffer B

(CH3CN containing 0.1% formic acid). The linear gradient

was from 5% buffer B to 50% buffer B at 50 min, and to

85% B at 51 min. MS data were acquired in the Orbitrap

with one microscan, and a maximum inject time of 900 ms

followed by data-dependent MS/MS acquisitions in the ion

trap (through collision-induced dissociation). The MASCOT

search algorithm was used to search for the appropriate non-

canonical substitution (Matrix Science, Boston, MA, USA).

Malate dehydrogenase activity assay

Malate dehydrogenase (MDH) activity assays were per-

formed by following the instructions for the EnzyChromTM

Malate Dehydrogenase Assay Kit (BioAssay Systems,
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Fig. 2. Recognition of TAcK by AcKRS. (A) The structures of AcK
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Hayward, CA, USA). This non-radioactive, colorimetric

MDH assay is based on the reduction of the tetrazolium

salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) in an NADH-coupled enzymatic reaction

to a reduced form of MTT that exhibits an absorption

maximum at 565 nm. The increase in absorbance at

565 nm is proportional to the enzyme activity.

CobB-mediated deacetylation

The reaction was performed in buffer containing 40 mM

HEPES (pH 7.0), 6 mM MgCl2, 1.0 mM NAD+, 1 mM

DTT and 10% glycerol. Ten micrograms of MDH variants,

10 lg CobB and reaction buffer were incubated at 37 °C in

a total volume of 100 lL. The treated proteins were used

directly for western blotting.

Results and Discussion

Recognition of TAcK by acetyllysyl-tRNA

synthetase

Due to structural similarity between AcK and TAcK

(Fig. 2A) as well as the substrate flexibility of PylRS-

derived acetyllysyl-tRNA synthetase (AcKRS) [56,57],
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Fig. 3. TAcKRS engineering. (A) The active site of AcKRS bound to AcK (PDB ID: 4q6 g). Residues F271, F313 and W382 were mutated in

the complete randomization library. (B) The sfGFP readthrough assay for TAcKRS variants. Normalized fluorescence intensities were

calculated from absolute fluorescence intensities read at 12 h normalized by corresponding cell densities. Mean values and standard errors

were calculated from three replicates. (C) Comparison of TAcKRS-1 and AcKRS efficiencies for TAcKRS incorporation at different positions

in sfGFP; 5 mM TAcK was used in assays. The background of normalized fluorescence read from media without TAcK was subtracted for

each reading. Mean values and standard errors were calculated from three replicates. (D) The Coomassie blue-stained SDS/PAGE gel of

purified full-length sfGFP and its TAcK-containing variant. The same volumes of elution fractions were loaded on the SDS/PAGE gel.

Table 1. Sequence comparison of TAcKRSs and AcKRS.

WT PylRS L266 L270 Y271 L274 C313 W382

AcKRS (ref. [37]) M I F A F W

TAcKRS-1 (this work) M I L A C W

TAcKRS-2 (this work) M I L A M W

TAcKRS-3 (this work) M I N A I W
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we firstly tested whether the original AcKRS could

incorporate TAcK into proteins. Here we used the

superfolder green fluorescent protein (sfGFP) as a

reporter. The result showed that the suppression of the

TAG codon at the permissive position 151 of sfGFP

was only about 10% with the TAcK-charged tRNAPyl

that was generated by AcKRS (Fig. 2B). Thus we fur-

ther engineered AcKRS for higher TAcK incorpora-

tion efficiency.

Selection of TAcK-specific aminoacyl-tRNA

synthetase variants

Based on the co-crystal structure of the AcKRS and

AcK (Fig. 3A), three residues of AcKRS (F271, F313

and W382) that are proximate to the oxygen atom of

the acetyl-group in AcK (replaced by a sulfur atom in

TAcK) were selected for optimizing TAcK binding

[56]. A library of AcKRS variants with complete ran-

domization of these three residues was generated and

subjected to a series of chloramphenicol resistance-

based positive selections and a toxin CcdB-based nega-

tive selection. After the second positive selection, we

obtained three unique variants: TAcKRS-1 (F271L

and F313C), TAcKRS-2 (F271L and F313M) and

TAcKRS-3 (F271N and F313I) (Table 1). The pheny-

lalanine residue at position 271 or 313 was replaced by

amino acids with smaller side chains to make a larger

volume for the sulfur atom in TAcK. The tryptophan

residue at position 382 was not changed in all the

three variants, consistent with previous studies that

have indicated that this tryptophan residue is impor-

tant for the recognition of lysine analogs [35,58,59].
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Next, we used the sfGFP readthrough assay men-

tioned above to evaluate the TAcK incorporation effi-

ciencies of these three variants. The best variant is

TAcKRS-1 (Fig. 3B). It is known that the ncAA

incorporation efficiency depends on incorporation

positions [60], and thus we tested the TAcK incorpora-

tion at different positions in sfGFP. The results

showed that the engineered TAcKRS-1 could increase

TAcK incorporation up to 6-fold from the original

AcKRS (Fig. 3C). To lower the near cognate suppres-

sion of the TAG codon with canonical amino acids,

TOP10 cells were used as the expression strain [61].

We purified the TAcK-containing sfGFP with a yield

of 32 mg�L�1 culture (the yield of wild-type sfGFP

was 149 mg�L�1 culture in the same growth condition)

(Fig. 3D), and the TAcK incorporation at the position

151 of sfGFP was confirmed with mass spectrometry

(MS) (Fig. S7). The MS results also did not show any

canonical amino acid incorporation at this position.

Function of TAcK as a mimic of AcK

To validate our system in functional proteins, we

chose malate dehydrogenase (MDH), which plays a

crucial role in the tricarboxylic acid cycle and glyoxy-

late bypass, as the target to characterize the replace-

ment of lysine acetylation with thioacetylation. Our

previous study showed that the acetylation of lysine

residue 140 in MDH could increase the enzyme activ-

ity by 3.4-fold [44,54], and thus we mutated the corre-

sponding position of K140 in the MDH gene to a

TAG stop codon and expressed the MDH variant with

the TAcK incorporation system. The yield of TAcK-

containing MDH was 9 mg�L�1 culture, while the

yield of wide-type MDH was 32 mg�L�1 culture in the

same growth conditions (Fig. 4A). The incorporation

of TAcK in MDH was confirmed by MS (Fig. S8).

Also, MS analysis did not show any canonical amino

acid incorporation at position 140 in MDH. Western

blotting demonstrated that TAcK could also be

detected by the anti-AcK antibody with a similar

intensity of AcK detection (Fig. 4B). The enzyme

assay showed that the MDH-140TAcK variant could

increase the enzyme activity by 3-fold, similar to that

of the MDH-140AcK variant (Fig. 4C). These results

indicated that TAcK could serve as an ideal functional

mimic of AcK.

Deacetylation of TAcK by deacetylase

To test resistance of TAcK-containing proteins against

deacetylases, we chose the CobB protein, which is a

bacterial sirtuin deacetylase with a wide range of

substrates as a representative [62,63]. We have shown

that acetylation of K140 in MDH was sensitive to

CobB [44]. Since TAcK and AcK had a similar inten-

sity against the anti-AcK antibody (Fig. 3B), we per-

formed western blotting to determine the deacetylation

effect. After incubating the TAcK- or AcK-containing

MDH variant at position K140 with CobB individu-

ally, there was significant loss of acetylation of AcK-

containing MDH, while TAcK-containing MDH could

resist CobB deacetylase (Fig. 5).

Conclusions

In summary, we established an in vivo genetic incorpo-

ration system of TAcK, which is both a good func-

tional mimic and a non-deacetylatable analog of AcK,

and this will facilitate studies of protein acetylation in

living bacterial cells. Furthermore, the pair of PylRS–
tRNAPyl and its derivatives are orthogonal in eukary-

otic cells, and previous studies have showed that

AcKRS could incorporate AcK into protein by using

mammalian cells as the hosts [36], so our approach

could be further extended to living eukaryotic cells

for a broader range of medical and pharmaceutical

applications.
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