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Qualification of a biomarker for use in a medical product development program requires a statistical strat-
egy that aligns available evidence with the proposed context of use (COU), identifies any data gaps to be
filled and plans any additional research required to support the qualification. Accumulating, interpreting
and analyzing available data is outlined, step-by-step, illustrated by a qualified enrichment biomarker
example and a safety biomarker in the process of qualification. The detailed steps aid requestors seek-
ing qualification of biomarkers, allowing them to organize the available evidence and identify potential
gaps. This provides a statistical perspective for assessing evidence that parallels clinical considerations and
is intended to guide the overall evaluation of evidentiary criteria to support a specific biomarker COU.
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A biomarker is a defined characteristic that is measured as an indicator of normal biological or pathogenic processes,
or biological response to an exposure or intervention, including therapeutic interventions [1]. Qualification is a
conclusion, based on a formal regulatory process evaluating the scientific merit of the evidence provided, that a
biomarker may be used by any person in drug, or medical product development for the qualified context of use
(COU) [2]. An FDA guidance document provides detailed explanation of the qualification evidentiary framework [3]

that is recommended as prerequisite reading for those unfamiliar with the concept. The evidentiary process for
qualification has been outlined as a five-component process (Figure 1) [4]. Inherent in that process is accumulation,
aggregation, summarization, scientific interpretation and statistical analysis of data to establish whether evidentiary
criteria are met to support the utilization of a specific biomarker in a particular COU to facilitate medical product
development. The focus of this paper is to provide further elaboration from a statistical perspective on the last
component of this process, evidentiary criteria. Insights gained or limitations of data determined by statistical
evaluation may feed back into the first four components, (need statement, COU, benefit, risk) potentially leading
to refinement of the COU, deeper understanding of risk and benefits associated with use of the biomarker, or
modification of the biomarker.

The August 2015 Center of Excellence in Regulatory Science and Innovation (CERSI) meeting ‘Evidentiary
Considerations for Biomarker Qualification’ recognized the integral role of statistical evaluation in the biomarker
qualification process. Therefore, a working group, Biomarker Qualification Statistics Working Group (BQSWG)
was formed to focus on statistical principles and approaches relevant to biomarker qualification efforts [5]. Members
of the working group include representatives from the US FDA; the NIH; the pharmaceutical industry; and
Critical Path Institute’s (C-Path) Predictive Safety Testing Consortium (PSTC) and Critical Path for Alzheimer’s
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Figure 1. The proposed five-component biomarker qualification process.
Reproduced with permission from [4].

Disease (CPAD) Consortium (formerly known as the Coalition Against Major Diseases). The goal of this working
group was to develop a statistical ‘strategy’ that biomarker qualification teams could reference when defining design
elements and considering analysis approaches to support qualification of safety biomarkers or prognostic enrichment
biomarkers for specific COUs (draft guidance: ‘Enrichment Strategies for Clinical Trials to Support Approval of
Human Drugs and Biological Products’). This statistical strategy is intended to serve as an adjunct to the broader
biomarker qualification process and evidentiary criteria assessment map described therein. This paper does not
address the validation of analytical procedures that ensure that the measurement method is reliable and accurate.
This paper presents a statistical strategy proposal resulting from deliberations of the BQSWG, consideration of
public discussion that took place at the FNIH-FDA Biomarker Qualification Workshop: Framework for Defining
Evidentiary Criteria held in April 2016, as well as informal comments received from regulatory scientists. This
paper does not constitute an official consensus or guidance document.

The goal of the BQSWG was to describe a conceptual framework and strategy for development and evaluation
of evidence to support aspects of biomarker qualification from a statistical perspective. The strategy represents a
collection of steps that may be required for qualification and maps statistical methodologies that may be useful
in the evaluation process to these steps. The statistical methodologies serve as examples; they are by no means
exhaustive and alternate statistical methods or approaches could be proposed as the current thinking changes in this
quickly evolving field. Further, it should be understood that statistical analyses alone are insufficient for a biomarker
to achieve qualified status. The qualification process brings to bear medical, biological, analytical and scientific
understanding and evidence. Statistical analyses are then applied to summarize and evaluate the strength of the
evidence. Biomarker qualification is ultimately based on an overall assessment of risk versus benefit of utilization
of a particular biomarker for a given COU in medical product development.

Two examples are used throughout the paper to illustrate key statistical concepts and steps in the qualification
evidentiary process. Details of each example are provided in Supplementary Table 1. The first example is the
qualification of total kidney volume (TKV) as a prognostic biomarker for clinical trial enrichment in autosomal
dominant polycystic kidney disease (ADPKD). As an early indicator of ADPKD, increased TKV generally presents
earlier than other signs and symptoms of renal failure, making it an attractive prognostic biomarker for clinical trial
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enrichment. TKV was successfully qualified with FDA and the European Medicines Agency (EMA) by C-Path’s
Polycystic Kidney Disease Outcomes Consortium (PKDOC) as a prognostic biomarker for the clinically relevant
end point represented by 30% decline in estimated glomerular filtration rate (eGFR) and will be referred to as the
‘enrichment’ biomarker example in this article [67–11]. The second example is an ongoing effort that is sponsored by
the Foundations for the National Institutes of Health Biomarker Consortium (FNIH BC)/PSTC Kidney Safety
Project with the goal of qualifying a panel of urine biomarkers for early detection of acute kidney injury resulting
from exposure to an investigational nephrotoxicant agent in healthy participants in early phase medical product
development studies and will be referred to as the ‘safety’ biomarker example in this article. The safety biomarker
example has not been formally reviewed or endorsed by FDA or EMA; therefore the views and descriptions
herein are considered from a requestor’s perspective and have been presented publicly in various forums, including
CERSI [5] and a C-Path webinar series [12]. A subset of the urine biomarkers in the safety example has been recently
qualified by the FDA for monitoring safety of patient cohorts under a more limited COU that is not described
herein [13].

Each biomarker qualification project may have unique aspects, but it is hoped that the principles and approaches
illustrated through these examples provide a useful introduction and starting point for planning future biomarker
qualification efforts.

Methods
The statistical approaches appropriate for addressing the key elements of the strategy will differ depending on the
type of biomarker measurement(s) and the specific COU. For purposes of discussion, the biomarker qualification
process is presented here in a linear fashion; however, the process may require iteration through some of the
described steps to appropriately align evidence and refine the intended COU.

The overall statistical strategy is proposed as comprising the following steps:

• Step 1: Consider the drug or medical product development need and initial COU statement for the biomarker
to formulate an overall strategy for data accession and statistical evaluation;

• Step 2: Collate existing evidence relating the biomarker to the key clinical outcome(s) in order to assess what
information relevant to the intended COU is currently readily available and identify gaps;

• Step 3: Identify any additional data or specimens available for analysis that can be used to build on existing
evidence and determine what prospective data may need to be generated to fill identified gaps;

• Step 4: Determine appropriate strategies for analyzing existing and newly generated data to support the intended
COU by evaluation of the biomarker–clinical outcome relationship;

• Step 5: Statistically quantify risks and benefits associated with using the biomarker for the intended COU based
on the totality of evidence, demonstrating the practical relevance of the biomarker;

• Step 6: Finalize the COU statement and summarize the supporting evidence.

A biomarker cannot be qualified without a reliable and accurate means of measurement. Implicit in the steps
outlined above is that there is at least one method available to measure the biomarker. Qualification does not
limit measurement of a biomarker to the assay specified in the qualification effort provided the new method has
demonstrated similar performance characteristics [14]. As evidence is gathered during the qualification effort, the
impact of the proposed biomarker measurement methods and their performance must be considered and may be a
factor in the final qualification statement. Inability to identify assays with sufficiently good analytical performance
in measuring a biomarker could preclude qualification of the biomarker [15]. Even for a qualified biomarker,
there could be specific assays deemed to have analytical performance insufficient to support their use under the
qualification context of use. As a qualification effort proceeds, it is important to continually identify factors that
might influence biomarker performance so that these factors can be documented and variation in performance can
be appropriately quantified.

Biomarker measurement methods supporting the final qualification should be analytically validated, including
assessment of reliability, but detailed discussion of these requirements is beyond the scope of this discussion, which
focuses on overall statistical strategy. Rather, researchers are directed to C-Path’s ‘Points to Consider Document:
Scientific and Regulatory Considerations for the Analytical Validation of Assays Used in the Qualification of
Biomarkers in Biological Matrices’ for a comprehensive description of the analytical validation requirements
pertinent to biomarker qualification [16].
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Table 1. Diagram of a context of use statement with eight essential elements identified for the total kidney
volume example.
COU statement for TKV as a prognostic enrichment biomarker (original statement text is split across the rows) Step 1 element

This guidance provides qualification recommendations for the use of TKV, measured at baseline, as a prognostic
enrichment biomarker. . .

Element 1: role of the biomarker

. . . defined as a confirmed 30% decline in the patient’s estimated glomerular filtration rate (eGFR) Element 5: specification of the outcome of
interest

Baseline TKV can be used in combination with the patient’s age and baseline eGFR. . . Element 3: participant characteristics that
may affect the biomarker/outcome
relationship

. . . as an enrichment factor in ADPKD clinical trials to select ADPKD patients at high risk for a progressive decline in
renal function

Element 4: development context for the
drug or other medicinal products
Element 7: decisions and actions based on
the biomarker

Patients with ADPKD should be at least 12 years of age Element 2: population

Various imaging modalities and post-processing methods are available to determine TKV. These modalities have
different levels of precision. For patients with ADPKD at high risk for a confirmed 30% decline in their eGFR, TKV
was qualified based on a collection of data from multiple study sites as well as on results from imaging modalities
(i.e., magnetic resonance imaging [MRI], computed tomography [CT] or ultrasound [US]) and from analysis
methodologies (i.e., stereology and ellipsoid calculations). TKV should be calculated from the left and right
kidneys measured with a validated and standardized image acquisition and analysis protocol within the trial

Element 6: the measurement method and
specific quantification of the biomarker
(including timing of the biomarker
measurement)

Proposed thresholds for decision making were included in the submitter’s application, but not included in the
FDA’s TKV qualification of biomarker guidance

Element 8: thresholds for decision making
on the biomarker

Data taken from [6].

Step 1: Consider the drug or medical product development need & initial COU
Central to qualification of a biomarker(s) (e.g., a single biomarker or a panel comprising two or more biomarkers)
is a COU statement indicating the medical product development use for the biomarker. An initial COU statement
is typically formulated based on the characteristics of existing evidence, but it may undergo refinement as new data
are generated or when extrapolations are supported by other scientific evidence and statistical analyses. Elements
important in defining the COU, which drive what data are needed to support a qualification effort include: role of
the biomarker in medical product development; targeted patient or participant population (e.g., healthy individuals;
individuals with a disease or other medical condition or individuals receiving treatment for an existing medical
condition; adults or children; etc.); patient or participant characteristics that may affect the relationship between
the biomarker and the outcome (e.g., disease subtype; stage or severity; age or sex; risk of developing a disease);
development context for the drug or other medical products; specification of the outcome of interest; specific
quantification of the biomarker (including any processing to be performed on the raw measurements); decisions
and actions based on the biomarker; and thresholds for decision making on the biomarker. Table 1 illustrates these
eight elements for the COU of the TKV example. Each of these elements will be discussed in further detail below.

Role of the biomarker

Biomarkers can have several possible roles in drug or medical product development. The BEST glossary [1] defines
the most common of these roles (see Table 2). Some biomarkers could potentially satisfy additional criteria to
qualify as a validated surrogate clinical trial end point, but the explanation of criteria for surrogacy is beyond
the scope of this discussion and readers are referred elsewhere [17]. Other aspects of the biomarker’s role include
whether it will be used in isolation or in combination with other biomarkers or variables. The biomarker may be
used as: a standalone in a setting where no conventional biomarker or accepted clinical variable exists, a standalone
replacement biomarker in a situation where conventional biomarkers are not considered adequate or an add-on to
conventional biomarkers or variables in settings where conventional biomarkers are considered acceptable but not
optimal. Details on the role of the biomarker within the two examples are provided in Supplementary Table 2.

Population

The population in which the biomarker will be measured and applied to support a medical product development
program should be clearly specified in the COU. Evidence supporting the intended use should include data gathered
in that same population, if possible, or a reasonably similar or generalizable population.
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Table 2. Roles for biomarkers in medical product development from BEST glossary.
Role BEST glossary definition

Susceptibility/risk A biomarker that indicates the potential for developing a disease or medical condition in an individual who does not currently
have clinically apparent disease or the medical condition

Diagnostic A biomarker used to detect or confirm presence of a disease or condition of interest or to identify individuals with a subtype of the
disease

Monitoring A biomarker measured repeatedly for assessing status of a disease or medical condition or for evidence of exposure to (or effect
of) a medical product or an environmental agent

Prognostic A biomarker used to identify likelihood of a clinical event, disease recurrence or progression in patients who have the disease or
medical condition of interest

Predictive A biomarker used to identify individuals who are more likely than similar individuals without the biomarker to experience a
favorable or unfavorable effect from exposure to a medical product or an environmental agent

Pharmacodynamic/response A biomarker used to show that a biological response has occurred in an individual who has been exposed to a medical product or
an environmental agent

Safety A biomarker measured before or after an exposure to a medical product or an environmental agent to indicate the likelihood,
presence or extent of toxicity as an adverse effect

The patient population could be defined in a variety of ways depending on the specific role of the biomarker. For
a safety biomarker, such as the kidney toxicity example, the patient population might include healthy participants
or patients diagnosed with a disease for whom safety must be closely monitored due to participation in a clinical
trial. The population of interest for a prognostic biomarker such as the TKV example might be patients who have
been diagnosed with a specific disease and for whom participation in a clinical trial of a new therapy is being
considered. The prognostic biomarker could be used to enrich the clinical trial population for patients most likely
to benefit from the clinical trial intervention or most likely to progress in disease severity during the course of the
clinical trial resulting in increased statistical power for the trial’s treatment comparison or decreased timeframe for
the trial.

Additional biomarkers with different roles have different population definitions. The population of relevance
for a diagnostic biomarker might be individuals who are suspected of having a particular disease status or subtype.
The population of relevance for a treatment response biomarker may be clinical trial participants receiving different
interventions for the same disease. Details on the role of the biomarker within the two examples are provided in
Supplementary Table 3.

Patient or participant covariates

Patient characteristics such as age, sex, race or co-existing medical conditions (e.g., immune disorders, obesity,
diabetes, cancer) or concurrent treatments for other medical conditions may have an impact on the relationship
between the biomarker and the clinical outcome of interest or on the analytical performance of the biomarker
measurement method (e.g., imaging-based biomarkers might be more difficult to measure in children due to smaller
anatomical features). Covariates should be collected to the extent possible in order to investigate their potential
modifying effects on biomarker utility. Details on participant characteristics that may affect the biomarker – outcome
relationship in the context of the two examples are provided in Supplementary Table 4.

Drug or other medical product development context

For biomarkers being qualified for use as safety biomarkers or prognostic or predictive enrichment biomarkers for
development of a new drug, the drug’s mechanism of action may be an additional critical factor in defining the
biomarker’s COU. Every drug works through one or more biological pathways to have an impact on a disease
process, but could potentially also cause an unintended adverse effect on a patient. A particular biomarker may be
relevant to only one or a few of these pathways. The biomarker is unlikely to be very informative for clinical benefit
or adverse outcome related to a drug if it does not lie in one of the pathways relevant to the drug’s mechanism of
action unless it is a safety biomarker, which could be relevant to the off-target effects of many different mechanisms.
Therefore, extrapolation from one class of drug or other medical product for which a biomarker has been qualified
to a different class would require supporting evidence. Details on the development context for the two illustrative
examples are provided in Supplementary Table 5.
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Table 3. Statistical approaches for quantification of single or multiple biomarkers.
Example quantifications of a single biomarker

Type of calculation Examples of specific calculations

Raw measurement None

Summary statistic over repeated measurements Minimum or maximum
Time until maximum or minimum
Rate of change over time (slope)
Area under the curve (AUC)

Normalized or standardized measurement Relative to laboratory variables or other biomarkers
Relative to amount of biospecimen collected
(urine/blood/cerebral spinal fluid/stools)
Relative to age, education, sex or other clinical and
demographic characteristics

Measurement adjusted for baseline value Relative (fold) change from baseline (post/pre)
Absolute change from baseline (post-pre)
Change from baseline ([post-pre]/pre) (%)
Absolute measurement or change corrected for a
baseline covariate

Examples of statistical methods for developing quantifications involving combinations of multiple biomarkers or biomarkers with clinical variables

Outcome type Biomarker measure type

Categorical At least one quantitative • Receiver operating characteristic (ROC) analyses based on
scores from regression models;
• Other classification methods (including deep learning or
other machine learning)

Quantitative (including time to event) All quantitative • Regression (linear, logistic, ridge, LASSO, partial least
squares, mixed effects);
• Factor-based methods (principal components, tree-based
modeling, other machine-learning approaches);
• Cox regression (for time to event)

Categorical or quantitative Mixed categorical and quantitative or all categorical • Decision trees (which may include confirming one
biomarker result with another);
• Other ad hoc empirical approaches;
• Deep-learning or other machine-learning methods

Specification of outcome of interest

The usefulness of a biomarker in medical product development usually relies on its association with one or more
clinical outcomes (or ‘states’). Careful description of the clinical outcome and justification for the way it is measured
are important components of the qualification process. Considering the example of a prognostic biomarker, clinical
outcomes of interest might include disease-related events such as disease recurrence or progression, or symptom
resolution. Example assessment methods include tumor progression measured by CT scan or cognitive ability as
assessed by the mini mental state examination (MMSE). Additional important aspects might include time window
of observation (e.g., organ failure within 30 days), definition of time zero for time-to-event outcomes, specific events
included in composite outcomes (e.g., tumor progression or death for progression-free survival) and frequency of
assessments. Dichotomous, ordinal and continuous outcomes can be useful and may be considered as appropriate
outcomes.

Some outcomes are not straightforward to assess and may rely on a combination of clinical observations and
subjective assessments; indirect measures of outcomes or states may be needed when direct assessment is not ethical
or feasible. For example, definitive assessment of some neurological conditions would require brain biopsies or
might only be possible upon postmortem examination. Due to the possibility that the relationship between the
biomarker and clinical outcome of interest may be influenced by exactly how the outcome is defined and assessed,
it is important that all of these aspects are carefully considered in qualification efforts. Details on specifying the
outcome of interest for the two illustrative examples are provided in Supplementary Table 6.

Measurement & quantification of the biomarker

A biomarker may potentially be measured or quantified in multiple ways or using various measurement techniques
(Table 3A). For purposes of discussion, the biomarker quantification can be thought of as the key quantity relevant
to the specified context of use. It is important to appreciate that the nature and strength of an association between
a biomarker and a clinical outcome may be influenced by many aspects of the measurement approach, including
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on what specimen or entity it is measured, by what method it is measured, timing of measurements, and how
the measurement is quantified. Although initially it may be helpful to conceptualize the biomarker independently
of the method of measurement, subsequent analyses must establish to what extent the measurement method is
important for the reliable performance of the biomarker in the intended COU (see Step 2) [15].

A biomarker could be quantified in various ways. For example, a single biomarker may be expressed as an
amount, concentration or an intensity. Repeated measures for a biomarker may be summarized across multiple
time points or spatial locations, such as by using a change from baseline, slope or gradient, or by reducing to the
minimum or maximum observed value in a defined time period or space. Raw measurements for biomarkers may
be processed further (e.g., normalization or standardization using internal controls or external calibrators). Multiple
measurements of the same or different biomarkers may be combined, or biomarkers may be combined with clinical
variables, often referred to as covariates. The combination might produce a signature quantified by a composite
score or classifier (Table 3B). Score or classifier development may require statistical parameter estimation to optimize
performance, for example if techniques such as regression modeling are used. Machine-learning methods (including
deep learning) could also be used to develop a classifier.

Some statistical methods that are helpful for deriving a quantification of a biomarker when it is a composite of
different measures are shown in Table 3B. Examples include regression (e.g., linear, logistic, ridge, LASSO, prin-
cipal components regression, partial least squares); receiver operating characteristic (ROC) curve analyses or other
classification tools based on linear combinations of biomarker values; and factor-based methods (e.g., principal
components analysis, tree-based modeling, and other machine-learning approaches). Other ad hoc empirical ap-
proaches may be considered to combine biomarkers of different measurement types (e.g., categorical vs continuous
measurements) or on different scales. Many of these methods assess the composite biomarker’s association with the
clinical outcome at the same time that they develop the biomarker’s quantification.

Some methods for biomarker quantification development explicitly attempt to identify the optimal combination
of measurements in the context of the prediction of the outcome of interest. Details on the specific quantification
of the biomarker for the two illustrative examples are provided in Supplementary Table 7.

Decisions & actions based on the biomarker

A qualified biomarker may be used to inform decisions during drug or medical product development, and those
decisions may trigger certain actions. Every action has associated risks and benefits that could be experienced at an
individual patient level and/or a population level (e.g., dose cohort). A biomarker that identifies patients thought
most likely to respond to an experimental therapeutic agent (positive predictive) or least likely to respond (negative
predictive) would be useful in the development process to define eligibility for clinical trials to appropriately balance
benefits and risks for trial participants and most efficiently identify efficacy, if any. A safety biomarker that could
provide early warning of an impending adverse effect of a drug or medical product on a clinical trial participant
could avert serious or irreversible harms, for example by signaling that an action such as treatment discontinuation
or dose reduction is needed to avoid or reduce the risk of organ damage. Details on the decisions and actions based
on the biomarker for the two illustrative examples are provided in Supplementary Table 8.

Decision thresholds

Risks, benefits and biomarker values might each lie on a continuum. The balance of risks and benefits deemed
acceptable may be context dependent, and thresholds on a biomarker used in medical product development may be
adjustable to achieve the right balance. Typically, greater risks are accepted in studies of new therapies for patients
with very advanced or life-threatening diseases in hope that urgently needed greater benefits might be realized. In
such situations, thresholds of biomarkers potentially indicative of disease subsets most benefiting from the therapy
might be relaxed to gather more evidence of the range of efficacy, whereas thresholds for biomarkers indicative of
adverse effects might be set to tolerate some nonsevere or reversible adverse effects. These risk–benefit considerations
are critical to specification of the qualification COU. Details on the decision thresholds in the context of the two
illustrative examples are provided in Supplementary Table 9.
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Step 2: Collate existing evidence (published & unpublished) relating the biomarker to the key
clinical outcome(s) in order to assess what information relevant to the intended COU, is readily
available & where there are gaps
For many candidate biomarkers, a large and often confusing body of evidence will have already been accumulated
relating the biomarker to various biological characteristics or clinical outcomes. Biomarker measurement methods,
patient populations, disease spectrum, treatment setting (e.g., drugs or other therapeutic interventions) and end
points examined may vary substantially among existing studies. It is essential to carefully review this existing evidence
to determine the level of comparability across these many characteristics, particularly to assess how variations in
these characteristics across studies might affect key associations between the biomarker and clinical outcomes of
interest.

A literature search or formal systematic review conducted according to a protocol may be helpful as a framework
for summarizing a large body of literature. At a minimum, it is helpful to compile a table of the key study
characteristics as described above, relevant study results, and important notes for each study to facilitate integration
of evidence. A meta-analysis to produce summary estimates of measures of a biomarker’s performance or its
association with an outcome might be possible in some situations where the integrated studies are sufficiently
comparable. The assembled information will serve as a foundation to guide additional data collection and analysis
efforts (Step 3).

There are many important considerations in assessing the credibility and relevance of prior claims about a
biomarker and the usefulness of existing data for qualification goals. Claims regarding presence or absence of
associations between the biomarker and clinical outcomes made in prior studies should be critically examined
to determine whether those claims are supported by appropriate statistical analyses, with particular attention to
the possibility of false-positive or -negative findings. False-positive findings are readily generated from extensive
data exploration that does not account for multiple testing. In contrast, small studies not designed to have
sufficient statistical power to detect differences in biomarker values between groups or associations between the
biomarker and the clinical end point(s) of interest, may result in statistically nonsignificant findings that might
be inappropriately interpreted as negative [18]. A claim of a null effect (e.g., no difference, no association) requires
statistical demonstration that the effect size is smaller than some meaningful value with high certainty, and this
typically requires studies with large sample size such as those establishing bioequivalence of two drugs. Observational
data need particular scrutiny to identify possible embedded biases. At the culmination of this evaluation process,
the goal is to have assembled a useful summary of existing evidence from the literature and unpublished studies.

After review of the existing evidence for TKV, it was determined that literature evidence and existing data, when
considered in totality, provided a sufficient evidence base for analysis to firmly establish the relationship between
increased TKV and faster progression in ADPKD and to meet evidentiary criteria to qualify TKV as an enrichment
biomarker. The literature review and assessment of available datasets for the kidney toxicity example indicated
that prospectively collected data was required to support qualification. Details on the collation and evaluation of
existing evidence relating the biomarker to key clinical outcomes in the context of the two illustrative examples are
provided in Supplementary Table 10.

Step 3: Identify data or specimens available for analysis that can be used to build on existing
evidence & determine what additional data may need to be generated to fill identified gaps
Initial review of existing data often uncovers gaps in the evidence needed to support an intended COU statement.
Sometimes additional evidence can be obtained through access to raw, unprocessed data from prior studies that
were not originally intended to assess biomarker associations. With full access to raw data, it may be possible to
select data from specifically defined subsets of participants consistent with a preliminary COU and to reprocess the
data in a uniform way to facilitate pooled data analyses across existing data sets or to apply alternate algorithms for
comparison. For biospecimen-based laboratory biomarkers, availability of biospecimens may permit new analyses
of biomarkers using alternative assay methods. New biomarker data generated from biospecimens may be used to
evaluate the impact of particular assay methods on measured biomarker values and the strength of their associations
with clinical outcomes.

Sometimes the only way to acquire the necessary data to support a biomarker for qualification is to launch a
new, prospective clinical study. Prospective studies are usually time and resource intensive, so if they are necessary,
careful planning is essential to ensure they will yield the proper evidence to permit definitive evaluation of the
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Table 4. Examples of methods for initially establishing a relationship and later validating that relationship between a
specified biomarker and outcome of interest.
Outcome type Biomarker type Example analysis method

Quantitative Quantitative Linear, nonlinear or nonparametric regression methods

Quantitative Categorical T-test, ANOVA, or analogous nonparametric tests

Categorical
(�2 categories)

Quantitative Multinomial logistic regression
Ordinal logistic regression

Categorical (binary) Quantitative Logistic regression
ROC curve

Categorical Categorical Fisher’s exact or chi-squared test

Time to event Quantitative Cox regression or parametric survival analysis modelling

Time to event Categorical Log rank test/Kaplan–Meier curves

qualification COU statement (see Step 4). Details on identifying available data or specimens to fill identified gaps
in the context of the two illustrative examples are provided in Supplementary Table 11.

Step 4: Determine appropriate strategies for analyzing existing & newly generated data to support
the intended COU by evaluation of the relationship between the biomarker & the clinical outcome
By the end of Step 3, sufficient evidence should be available to identify some candidate quantifications of the
biomarker (or biomarker panel) that are likely to have associations with certain clinical outcome measures of
interest. If a single biomarker quantification has already been determined, then Step 4 will be the validation step,
and will only need to be performed once. If some refinement is still required to determine the final quantification,
then iteration within step 4 may be required. By the time step 4 is completed, the biomarker is considered
statistically validated. The words used to describe these components differ by field, and in quality management,
the steps of ‘verification, validation, and evaluation’ correspond approximately to analysis of training, validation
and test datasets. The first of these corresponds to defining the biomarker (parts of our step 1), the second one
corresponds to refinement or further validation (early parts of step 4), and the third one refers to a final independent
validation in a test set (final part of step 4).

A variety of clinical outcomes may be of interest on either an individual or population (e.g., dose cohort),
including injury response, diagnosis, time to diagnosis of medical condition, clinical decline, disease progression
or time to death. In Step 4, it is important to determine appropriate strategies for analyzing existing and newly
generated data by establishing the relationship between the biomarker and the clinical outcome, demonstrating the
relevance of that relationship, selecting thresholds and/or decision rules to assess performance in the specific COU,
and validating the performance of the selected thresholds and decision rules.

Establish relationship

Several statistical approaches are available to establish a relationship between biomarker quantification and clinical
outcome of interest (see examples in Table 4). Often this relationship is expressed in terms of a statistical model
which can be confirmed later in a similar model with a new validation dataset. If a complex model were used to
derive the biomarker, the final outcome of that model would be used as the independent variable for the validation
model shown in Table 4. Because many biomarkers and outcome measures are inherently continuous in nature, it
is preferable to maintain their continuous quantifications when first establishing these relationships and often later
when confirming them. In some situations, it may be sufficient to establish this relationship at the population level
(e.g., for an enrichment biomarker). For clinical decision-making purposes, the association between biomarker and
outcome has to be examined at the individual patient level and is then typically summarized over the population.
Quantitative biomarkers often need to be dichotomized or categorized when used for individual patient decisions,
and performance of such thresholds must be evaluated as part of the qualification process. Several transformations
of variables may be considered and may result in a better characterization of the relationship between the biomarker
and the outcome. Initial iterations through this process could be used to further refine the biomarker, with the final
iteration providing an independent validation of a specific well-defined biomarker.

Sometimes a ‘gold standard’ clinical outcome measure will not be available, in which case one or more accepted
proxy measures might have to be used to represent the clinical outcome of interest. A proxy measure such as
treatment exposure may be useful, particularly for a safety biomarker, if it is known that treatment is associated
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with the outcome of interest. In a degenerative disease, time is often useful as a proxy for disease progression
in a population without a clear gold standard, and biomarkers that maximally distinguish between patients with
two different stages of disease or distinguishing change between treated and untreated at two time points may
allow selection of a more progressive population. Other factors may also change over time, such as aging-related
conditions, and these need to be considered when using this approach. Maximizing the cross-sectional separation
between patients with and without a disease diagnosis may also be useful for selecting or assessing a biomarker,
in which case the diagnosis is considered the gold standard. The combination of these two – maximizing the
progression rate between patients with and without a disease diagnosis – can combine the progressive proxy and
the diagnosis for a better gold standard. After establishing an initial association between the biomarker and clinical
outcome, an iterative process may be required to select the biomarker quantification that associates most strongly
with the clinical outcome.

One risk in this iterative approach is the possibility of generating spurious associations through multiple testing
or overfitting of models. The concept of overfitting refers to situations where complex models may partially fit to
noise in the data and hence not perform well when evaluated on independent data. Judicious use of the available
data – for example, splitting it into training and validation sets or using resampling methods such as k-fold cross-
validation or bootstrapping – can be useful approaches to minimize overfitting of models in earlier iterations of
this step. Ideally, the last iteration of this step should use a completely independent dataset to rigorously validate a
final, fully defined biomarker measure. The standards for full validation of the biomarker should reflect the context
of the biomarker use and the risks and benefits.

Demonstrate relevance

Translation of an initially observed association between a biomarker and a clinical outcome into a biomarker-
based tool that can be qualified for use in medical product development requires a careful characterization of the
biomarker’s performance in the specified COU performance is not adequately characterized by demonstration of a
statistically significant association between the biomarker and clinical outcome. The association must be sufficiently
strong that the biomarker can make meaningful clinical distinctions between subjects. For continuous biomarker
quantifications, one or more thresholds are typically applied to the biomarker to define ranges of the biomarker
values for which different clinical decisions or actions would be appropriate.

Consider the performance metrics of positive and negative predictive value for occurrence of an adverse clinical
event, e.g., experiencing a toxicity, as an illustration of the simplest case of a binary biomarker quantification.
Among those with a biomarker indicating a risk, do a sufficient proportion of participants actually experience a
clinical event? For those with a biomarker indicating no risk, do a sufficient proportion fail to experience an adverse
clinical event?

• Safety example: a single threshold below which participants are considered to have low risk of injury and above
which the likelihood of injury is unacceptable;

• Enrichment example: several thresholds may be relevant in selecting participants for a trial of a new therapy.
Each one should be shown with its corresponding summary statistic of the outcome of interest. Examples of
summary statistics include event rate for a binary outcome, event-free proportion at a given time, or mean and
standard deviation for a continuous outcome (e.g., blood pressure, or rate of kidney function decline).

Implicit in establishing a relationship between the biomarker and clinical outcome that has relevance for a specific
COU is that there is at least one measurement method (e.g., laboratory assay for the biomarker) for which the
relationship holds. If biomarker data generated by several different measurement methods are available, and the
biomarker–outcome relationship is similar regardless of the measurement method or population, then it may
sometimes be acceptable to pool data. A sensitivity analysis comparing the measurement approaches could be
performed to quantify how much the practical performance of the biomarker may change depending on the assay
method, and the conclusion may be that only some assay methods are acceptable. Similarly, a sensitivity analysis
could be used to assess variability in performance across populations. If variation is observed across populations, it
might be necessary to adjust biomarker values for characteristics that define different populations.

Appropriate ways to pool data will depend on the relationship between the biomarker quantifications generated
by different measurement methods or how those measurements are affected by population characteristics. If results
generated by two or more measurement methods are completely exchangeable, it may be reasonable to pool raw
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biomarker data directly. In other situations, adjustments to the biomarker data including location and scale shifts,
quantile normalization or calibration, may be helpful to transform biomarker data to be nearly exchangeable
between measurement methods. Other adjustments to biomarker values might account for different distributions
of biomarkers dependent on population characteristics. If comparability of biomarker values across measurement
methods or populations cannot be achieved, then separate analysis and pooling of summary measures of association
between biomarker and clinical outcome across studies using the different measurement methods can still provide
supporting evidence. However, in this situation, biomarker qualification may require additional evidence specific
to each proposed measurement method or population.

Select thresholds &/or decision rules & assess or validate their performance

Once a relationship between a biomarker and a clinical outcome of interest has been established, decision rules to be
applied to the biomarker quantifications usually have to be more precisely defined and characterized (e.g., identifying
particular thresholds for decision making in medical product development). This finer characterization of the
biomarker test is necessary to establish that the test meets suitably rigorous performance standards necessary to
qualify it as fit-for-purpose for the specific COU.

A variety of statistical criteria are commonly used to establish presence of associations and effects. Examples
include two-sided p-values <0.05, likelihood ratios above 5 or below 0.2, and AUCs above 0.8. Although these
criteria are helpful guidelines, the specific criteria for decision making may differ by specific context and should be
carefully considered.

It is important to understand how this step goes beyond the mere confirmation of a statistical association
between a biomarker quantification and a clinical outcome. As an illustration, consider a continuous biomarker
and its association with a binary outcome (e.g., toxicity event). One way to establish an initial association would
be to construct ROC curves displaying the sensitivity and 1-specificity pairs for detection of the binary outcome
corresponding to the range of possible thresholds applied to the continuous biomarker values. If the area under that
ROC curve is statistically greater than the null value of 0.5, one could say that an association has been established
between the biomarker and the binary outcome. However, establishing that a biomarker is fit for purpose for
use as a tool in medical product development, would require that an appropriate decision point exists that has
acceptable risk benefit for the specific intended use. This requires more stringent standards be met compared with
validating sensitivity at a specified threshold or simply confirming an association between biomarker and outcome.
The demands of qualification process must be intimately tied to the COU and are best evaluated in collaboration
with regulatory authorities.

Performance of the final precisely defined biomarker test may require validation on a new independent dataset.
For biomarkers already in use for other COUs, sometimes it might be possible to transfer existing decision rules
or thresholds if they achieve an acceptable balance of risks and benefits for the new COU; otherwise, new rules
or thresholds may need to be derived. A range of thresholds may be considered. For instance, a strict cutoff for
a prognostic marker might be desired to select a very severe disease population. However, a less stringent cutoff
might be appropriate for selecting a broader population with severe and moderate disease. It may be appropriate
to characterize or calibrate the biomarker by defining several cutoffs across the range of the biomarker and then
evaluating the performance for each of those cutoffs. The performance of the biomarker could be evaluated against
a gold standard of performance.

Selecting at least one appropriate threshold might involve combining categories of discrete biomarker values
or applying thresholds to continuous biomarker quantifications to define ranges of biomarker values to indicate
certain clinical decisions or actions (e.g., eligible for a trial, reduce dose, halt therapy). The qualification needs to
support the decisions intended to be made with that specific biomarker and threshold.

When biomarker thresholds or decision rules are selected using a specific dataset, it is important to remember
that the observed performance on that same data will be better than that expected if those thresholds are applied
to completely independent data. This results from the same phenomenon mentioned earlier in the context of
overfitting multivariable models. For this reason, thresholds or decision rules that are selected based on available
data typically require validation on independent data or by using techniques such as k-fold cross-validation or
bootstrapping.

Similar to Table 4, which referred to establishing preliminary biomarker-clinical outcome associations, the
method of analysis for definitive clinical performance assessment will depend on whether the clinical outcome
variable is binary, time-to-event or continuous. Table 5 presents statistical analysis approaches that may be helpful
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Table 5. Analyses to assess clinical performance of biomarker thresholds and decision rules.
Type of outcome Analysis† – performance assessment at specific thresholds

Binary (e.g. organ failure) • Proportion with event at different thresholds (corresponds to different points on the ROC curve);
• Sensitivity/specificity;
• Positive predictive value/negative predictive value

Time to event outcome • Cox regression – outcome is time to ‘gold standard’ event, covariates are included, specific decision points are assessed for
clinical performance;
• Kaplan–Meier curves – simple, but do not accommodate covariates;
• Many different parametric curves;
• Cure models, not assuming proportional hazards

Quantitative/continuous outcome • Mean (SD) decline in biomarker positive group compared with negative group (and total group) with CIs;
• Proportion above a critical threshold

†Specific analyses may depend on the proposed COU.

in performance assessment, but these analyses must then be supported by an assessment of clinical relevance to
establish the utility of specific decision points for clinical decision making.

It is important to appreciate that performance of selected thresholds or decision rules, may depend on population
characteristics and specific patient covariates. For example, sensitivity and specificity of biomarkers to detect disease
often depend on population characteristics such as disease spectrum or individual-level covariates such as age,
gender, disease stage or severity, co-morbidities or medication use. Influence of these factors can be addressed
either by demonstration of biomarker performance separately by subgroups or by use of biomarker decision tools
(e.g., models or risk scores) that incorporate these factors in addition to the biomarker values. If this relationship
is complex, it may make sense to use a computer supported look up table or simulation tool instead of a printed
table.

Qualification requires that at least one threshold or decision rule be shown fit for purpose in the specified COU.
Thresholds or decision rules used to support a particular qualification are not automatically considered acceptable in
all contexts. If several thresholds or decision rules are shown to be relevant in the qualification documentation, then
sponsors have more flexibility in the selection to meet their specific needs. If sponsors wish to select thresholds or
decision rules different than those in a qualified biomarker then they should discuss with the presiding FDA clinical
division to determine whether their choice is suitable for a specific development program or deemed similar enough
to one in the initial qualification to be acceptable. A specific threshold or decision rule may require additional
supporting evidence if it is not already included in the qualification, particularly if it is out of the range of those
previously evaluated.

As described previously, overfitting can occur when the model mean-squared error (MSE) is evaluated using the
same data that was used to fit the statistical model. One way to address this issue is by validating the model fit using
an independent set of data (i.e., a set of data that was not used to fit the statistical model). Prospective data can be
expensive to obtain, and it can be challenging to obtain an independent set of data that has been drawn from the
same underlying population. Another approach to model validation is by using k-fold cross-validation, described in
the table below, but validation on an independent dataset when available is considered a more objective reflection
of model performance and stronger evidence if supported.

Details on determining the appropriate analytic strategy to support the intended COU, including evaluation
of the relationship between the biomarker and clinical outcome, demonstrating the relevance of that relationship,
selecting thresholds and decision rules and validating such rules are provided in Table 6 (also Supplementary Table
12) in the context of the two illustrative examples.

Step 5: Quantify risks & benefits associated with using the biomarker in the intended COU based
on the totality of evidence
Evaluation of risk–benefit balance should be based on the totality of evidence and may extend beyond examination
of a single clinical end point or single biomarker. As an illustration, early phase clinical trials of new anti-cancer
therapies usually enroll patients with advanced disease who have progressed on standard therapies. While those
investigational therapies might have substantial toxicities, biomarkers used to enrich the study population for
patients most likely to benefit from the medical product or used to monitor for early signs of toxicity can help tip
the balance of potential risks and benefits toward an overall more favorable outcome.
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Table 6. Determining the appropriate analytic strategy to support the intended context of use for the two
illustrative examples.

Step 4: determine appropriate analytic strategy to support intended COU

Enrichment example (total kidney volume) Safety example (kidney toxicity)

Together with the nonlinear mixed effects model for TKV dynamics, the
requestor used multivariate Cox regression to investigate the relationship
between the covariates and TKV with the outcome of time to 30% worsening
of eGFR. Three predictors – age, baseline eGFR and log-transformed baseline
TKV – were each associated with the time to 30% decline in eGFR. The ROC
curves at the 1-year and 5-year time points resulted in area under the curve
of 0.75 and 0.70 at years 1 and 5, respectively, in the model that includes age,
baseline eGFR, log (baseline TKV), and all two-way interactions
Performance of the enrichment was assessed for groups less than 40 years of
age vs at least 40 years of age, and eGFR of at least 50 ml/min vs less than
50 ml/min for those with TKV �1 l and those with TKV of at least 1 l. The
results differed within these groups, demonstrating that quantitative terms
in a model may need to be assessed at specific decision points to support
research and clinical decision making. Cox models demonstrated the added
value of including TKV (along with age and eGFR) in the final biomarker
algorithm, as compared with using age and eGFR without including TKV
The FDA used the AIC to compare the best fit models with and without TKV,
and observed a substantial improvement of 86 in AIC for the model with log
(TKV) over the model without TKV, supporting qualification of the use of
age, eGFR, and baseline TKV for enriching patient populations for clinical
trials
Multiple thresholds, representing different levels of enrichment, were
identified as useful for clinical decision-making. An electronic simulation tool
was provided in relation to the final biomarker qualification submission. In
addition, the FDA assessed the findings regarding TKV’s added clinical utility
on a confirmed 30% decline in eGFR by analyzing an independent dataset
during the statistical review
The following excerpt from the Qualification Executive Summary section of
the FDA’s Biomarker Qualification Review for Total Kidney Volume describes
the processes of cross-validation and validation, which were done by FDA for
the enrichment example: “Including TKV in the model provides a seemingly
modest improvement over the best model using age and eGFR alone in terms
of predictive performance on event risk based on estimation of a time to
event concordance measure that is free of study-specific censoring
distributions. This was observed internally (by k-fold cross validation) using
the submitter’s dataset. FDA performed an independent validation using a
separate dataset available internally that further supported the predictive
performance and the draft qualification of the prognostic biomarker.”
Further details about the FDA’s assessment of the model are provided in the
FDA’s Biomarker Qualification Review for Total Kidney Volume

The selected reference end point was change in serum creatinine
concentrations, which was an imperfect and insensitive indicator of the
unverifiable definitive clinical end point of interest (kidney tubular injury)
The relationship between urine biomarkers and the gold-standard of kidney
histopathology in rodents had previously been established. Many of these
biomarkers were expected to be translatable and relevant to humans and
were tested in a learning dataset of normal healthy volunteers and
mesothelioma patients exposed to cisplatin, a known nephrotoxicant. The
majority of the statistical methods discussed above were applied to these
learning datasets in an exploratory fashion, and in the end, thresholds were
established for individual biomarkers using ROC analyses that best separated
the populations of normal healthy volunteers from patients exposed to
cisplatin who had evidence of AKI based on serum creatinine
The biomarkers that showed trends of interest were further evaluated as
candidates for clinical validation, where final selection was based on
statistical results and other factors such as practical implications (e.g., assay
cost) and biological understanding of relevance to toxicity (e.g., anatomical
association)
A simple biomarker algorithm was developed to identify patients exposed to
a nephrotoxicant, where the algorithm specified a positive result when two
or more biomarkers exceeded their individual normal range thresholds,
which was established from the normal healthy volunteers in the learning
dataset. This decision rule showed acceptable specificity and improved
sensitivity of identifying exposure to a nephrotoxicant relative to the
standard marker serum creatinine
The biomarker panel algorithm was then pre-specified for use in two
prospective studies of patients exposed to known nephrotoxicants and
controls. In the prospective studies, pre-specified hypotheses will be tested to
assess the question of whether the biomarker panel can detect exposure to
known nephrotoxicants with improved sensitivity and acceptable levels of
specificity relative to the conventional measure of serum creatinine. The
prospectively planned statistical analyses to support these hypotheses were
detailed in a statistical analysis plan that was reviewed and accepted by the
FDA and EMA

Data taken from [19,20].

Performance of selected thresholds or decision rules must be assessed to demonstrate acceptable risk–benefit
balance when using the biomarker in the prescribed manner. For illustration of risk–benefit balance, consider a
single biomarker measured as a continuous value at time of diagnosis that is prognostic for a clinical outcome. There
are many possible thresholds that could be applied to that biomarker if it were used for enrichment of a clinical
trial population, but the most appropriate choice of threshold would be dependent on the COU. If the clinical
trial involved a randomization of patients to evaluate a more aggressive therapy compared with a standard therapy,
enrichment based on the biomarker might be of interest to identify patients most likely to have poor outcome on
standard therapy and most likely to benefit if the new therapy is more effective. The biomarker threshold would
be set to identify a particularly high-risk subgroup of patients. In contrast, if the goal of the trial was to determine
whether a medical product with less toxic side effects (or perhaps a lower dose) would result in similar survival,
the biomarker threshold might be set to identify a subgroup of patients with a particularly favorable outcome on
standard therapy.

The risk–benefit assessment must take into consideration a variety of factors including feasibility of performing
the biomarker assays in a timely fashion so as not to unacceptably slow enrollment times. The overarching goal of
biomarker qualification is to make medical product development faster, more efficient and less costly. Details on the
qualitative considerations of risks and benefits associated with use of the biomarker are provided in Supplementary
Table 13 in the context of the two illustrative examples.
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Step 6: finalize the COU statement & summarize the supporting evidence
The COU statement and the level of evidence necessary to support it will differ depending on whether the biomarker
is intended to stand alone, replace an existing biomarker, or be used in conjunction with an existing biomarker. The
biomarker qualification process is meant to be an iterative and collaborative process of proposing, and refining the
supporting data and documentation, with a goal to qualify the biomarker. The summary and current status of the
qualification process is given below in Supplementary Table 14 for the enrichment and safety biomarker examples.

Discussion & conclusion
The BEST glossary provides a basis for the categorization of biomarker applications, but such categories do not,
by themselves, constitute fully defined COU statements. The COU statement requires the definition of a target
population for use, and a specific description of how the biomarker will be used in medical product development (for
which types of trials, and for which types of decisions). Once a COU has been identified, biomarker qualification
requires several different types of statistical analyses to support the biomarker for that specified COU and these
are detailed in a statistical analysis plan submitted at the letter of intent phase of the submission. The conceptual
framework described here for the development and evaluation of evidence to support the use of a biomarker in
medical product development can be used as a reference for teams to consider when defining design elements and
statistical analysis considerations to support biomarker qualification efforts. Although the proposed framework
involves a stepwise process and was presented in linear fashion, in practice it may require iteration to appropriately
align evidence and refine the intended COU.

The framework provided here applies to clinical safety biomarkers as well as biomarkers for prognostic enrich-
ment for various COUs as illustrated by the kidney safety biomarker panel and total kidney volume examples.
With appropriate adaptations, the framework can be extended to qualification of biomarkers for other uses in
medical product development. Clearly, the statistical aspects of the qualification process must be considered in
combination with other clinical and biological factors. Discussion of the broader aspects of qualification can be
found elsewhere [3,21]. The examples described in this article represent biomarker qualification decisions by the
FDA before the 21st Century Cures Act legislation [22]. As such, it is important to keep in mind that these examples
should not be viewed as precedent for ongoing or future biomarker qualification reviews under the new procedures
associated with this legislation.

Because the biomarker qualification process entails assembly of evidence to support use of a biomarker in
diverse clinical development programs, the evidentiary standards for qualification will generally be higher than the
standards for validating a biomarker in the context of an individual clinical development program as explained
in FDA guidance [20]. Yet, standards for qualification do not necessarily meet those for routine clinical use of a
biomarker-based test as explained on the CDER biomarker qualification website [21] emphasizing that “qualification
of a biomarker does not imply that a specific test device used in the qualification process for the biomarker has been reviewed
by FDA and cleared or approved for use in patient care.” Sponsors may choose which biomarker development pathway
is most suitable for their needs including the Fit for Purpose Initiative which “provides a pathway for regulatory
acceptance of dynamic tools in medical product development programs” [22]. Groups initiating a biomarker qualification
process are strongly urged to communicate early with FDA and EMA and work collaboratively with the regulatory
authorities to achieve their goals most efficiently.

Future perspective
Some of the steps outlined here may be helpful for validation of individual biomarkers or development and
validation of complex biomarkers. As new biomarkers are developed and as they become more commonly used,
the biomarker qualification process may be relevant for improving the efficiency of clinical programs that use these
biomarkers. As more biomarkers are qualified, it will be important to assess the real-world performance of these
biomarkers. It will be of interest to track how often they are used as medical product development tools and whether
they have achieved the goal of making medical product development faster, more efficient and less costly.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:

www.futuremedicine.com/doi/suppl/10.2217/bmm-2020-0523
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Executive summary

• Qualification of a biomarker for a specific context of use requires a statistical strategy to align available evidence
with the proposed context of use, identify any gaps to be filled and plan any additional research required to
support the qualification. Accumulating, interpreting and analyzing available data is outlined in the following
steps.
• Step 1: consider the drug or medical product development need and initial COU statement for the biomarker

to formulate an overall strategy for data accession and statistical evaluation;
• Step 2: collate existing evidence relating the biomarker to the key clinical outcome(s) in order to assess what

information relevant to the intended COU is currently readily available and identify gaps;
• Step 3: identify any additional data or specimens available for analysis that can be used to build on existing

evidence and determine what prospective data may need to be generated to fill identified gaps;
• Step 4: determine appropriate strategies for analyzing existing and newly generated data to support the

intended COU by evaluation of the biomarker–clinical outcome relationship;
• Step 5: statistically quantify risks and benefits associated with using the biomarker for the intended COU based

on the totality of evidence, demonstrating the practical relevance of the biomarker;
• Step 6: finalize the COU statement and summarize the supporting evidence.

• The specific level of evidence required differs depending on the COU and the risk and benefit of the proposed
use.

• The biomarker qualification process is meant to be an iterative and collaborative process involving the statistical
steps outlined above integrated with clinical considerations. These steps aid researchers in organizing and
evaluating available evidence to support the qualification of a biomarker.
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