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One of the major reasons of mortality in human beings is cancer, and there is an absolute necessity for doctors to identify and treat
a person suffering from it. Leukemia is a group of blood cancers that usually originates in the bone marrow and results in very
high number of abnormal cells. For the diagnosis of cancer, microarray data serves as an important clinical application and
serves as a great aid to the entire medical community. The dimensionality of the microarray data is too high, and so selection
of suitable genes is quite an important step for the improvement of data classification. Therefore, for the prediction and
diagnosis of cancer, there is an utmost necessity to select the most informative genes. In this work, Minimum Redundancy
Maximum Relevance (MRMR), Signal to Noise Ratio (SNR), Multivariate Error Weight Uncorrelated Shrunken Centroid
(EWUSC), and multivariate correlation-based feature selection (CFS) are chosen as initial feature selection techniques. Then, to
select the most informative genes, five different kinds of evolutionary optimization techniques too are incorporated here such
as African Buffalo Optimization (ABO), Artificial Bee Colony Optimization (ABCO), Cockroach Swarm Optimization (CSO),
Imperialist Competitive Optimization (ICO), and Social Spider Optimization (SSO). Finally, the optimized values are fed
through classification process and the best results are obtained when multivariate CFS with SSO is utilized and classified with
Probabilistic Neural Network (PNN), and a high classification accuracy of 95.70% is obtained.

1. Introduction

One of the worst diseases which causes a lot of deaths in
humans is cancer [1]. There are various types of cancer,
and it causes the cells to divide in an uncontrollable manner,
resulting in tumors, complete breakdown to the immune
system, and impairments of vital organs [2]. Some kinds of
cancer cause a rapid cell growth while others cause cells to
grow at a slow rate. Some forms of cancer result in visual
growths named tumors while others such as leukemia do
not. One of the three different blood cancer forms is leuke-
mia while lymphoma and myeloma are the other two forms
of blood cancer [3]. An abnormal number of immature
white blood cells is produced by leukemia which collapses
the bone marrow and prevents the promotion of healthy
important blood cells required for developing a balanced
immune system [4]. The onset of acute leukemia is rapid
and progresses very fastly, and therefore, urgent treatment

has to be provided to them. Thus, leukemia belongs to a
broad array of cancer disease and is commonly termed as
hematological malignancies. There are two types here such
as Acute Myeloid Leukemia (AML) and Acute Lymphoblas-
tic Leukemia (ALL) [5].

AML: This kind of leukemia is the most prevalent type in
older people but can affect younger people too. Due to the
excess accumulation of immature hematopoietic cells in
the blood and bone marrow, the malignancy occurs. Various
genetic factors are responsible for such conditions.

ALL: This kind of disease is prevalent in children who
are suffering from leukemia. When immature lymphoid cells
excessively accumulate in the bone marrow and peripheral
blood, this disease occurs.

Based on their morphological appearance, the categori-
zation of the leukemia cells has been done traditionally. To
identify the innate differences between tumor cells, there is
an absolute necessity for highly skilled technological
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resources [6]. Such a process can be very expensive, highly
time consuming, and tedious to handle. In a morphological
manner, the cells can appear as similar, but each cell can
respond quite differently to appropriate drugs and therapy
[7]. Therefore, traditional techniques have huge limitations,
and therefore, it leads to a necessity to identify other param-
eters so that cell categorization can be well framed [8]. High
amount of useful information is provided by the gene
expression data for subclassification studies. For managing
gene expression data of thousands of genes simultaneously,
microarrays have played quite an important role in it [9].
In the previous decade, microarray technology has been
the most commonly used gene quantification method and
is still in use due to the cheap and inexpensive nature of this
technology [10]. Thus, using microarray techniques, the
expression levels for tens of thousands of genes can be mea-
sured easily so that a functional relationship information is
provided to the scientists between the physiological and cel-
lular process of the biological organisms and genes [11]. As
the microarray data is so huge to process owing to its large
amount of noise and other disturbances, the curse of dimen-
sionality problem is present and so gene selection is impor-
tant so that the best genes are selected and provided for
classification [12]. Some of the most important works done
in leukemia microarray-based cancer classification are as
follows:

For the diagnosis of chronic lymphocytic leukemia, Arti-
ficial Neural Network (ANN) was implemented by Aghama-
leki et al. [13]. A novel prognostic classification of chronic
lymphocytic leukemia derived from a multivariate survival
analysis was done by Binet et al. [14]. ANN was utilized
for recognizing and predicting leukemia by Afshar et al.
[15]. Utilizing momentum back propagation and genetic
algorithms as a feature selection technique, microarray-
based leukemia classification was performed by Wisesty
et al. [16]. The Leukemia diagnosis using transfer learning
in Convolutional Neural Networks (CNNs) for classification
was performed by Vogado et al. [17]. An effective Map
Reduce-based KNN classifier was utilized for the analysis of
microarray leukemia data by Kumar et al. [18]. An ensemble
machine learning for leukemia cancer diagnosis based on
microarray datasets was done by Alrefai [19]. A framework
to detect and discriminate ALL and AML using microarray
gene expression profiles utilizing supervised machine learning
was done by Dwivedi [20]. To classify gene expression profiles
of acute leukemia, various features and classifiers were
explored by Cho [21]. An enhanced leukemia cancer classifier
algorithm was done by Nasser et al. [22]. The application of
Probabilistic Neural Network (PNN) to the class prediction
of leukemia was done by Huang et al. [23]. Utilizing Partial
Least Squares (PLS) method, the classification of acute leuke-
mia based on DNA microarray gene expression was done by
Nguyen et al. [24]. A SNR approach to discriminate AMLwith
ALL was done by Goloub et al. [25]. Gene expression-based
leukemia subclassification using committee neural network
was found by Sewak et al. [26]. A leukemia multiclass assess-
ment and classification from microarray and RNA-
sequencing technologies integration at gene expression level
was performed by Castiollo et al. [27].

Optimization algorithms have played a major role in
gene selection procedure. An optimization-based tumor
classification from microarray gene expression data was
done by Dagliyan et al. [28], random cuckoo search for
autism gene selection [29], and stellar mass black hole for
engineering optimization etc [30]. Optimization models for
cancer classification extracting gene interaction information
from microarray expression was performed by Antonov
et al. [31]. Other optimizations for cancer gene selection
included a modified genetic algorithms with Levy flight
[32], simplified swarm optimizations [33], chronological
grasshopper optimization algorithms [34], Hybrid optimiza-
tion algorithms [35], adaptive ant colony optimization [36],
biogeography-based optimization [37], nondominated sort-
ing GA [38], filter-based optimization [39], Particle Swarm
Optimization (PSO) [40], Grey Wolf optimization [41],
and hybrid of Grey Wolf and Crow search algorithm [42]
have been reported in literature. In this work, the two-level
feature selection employing statistical tests and then optimi-
zation techniques are done and then classified with suitable
classifiers. The organization of the work is as follows. The
experimental procedure is discussed in Section 2 along with
the suitable gene/feature selection techniques. Section 3 gives
the details about the different optimization techniques, and
Section 4 gives the classification techniques’ details. The
results and discussion are done in Section 5, and the paper
is concluded in Section 6.

2. Materials and Methods

For the leukemia classification, a dataset was used which is
publicly available online [25]. There are two types of leuke-
mia, where 25 samples of acute myeloblastic leukemia
(AML) and 47 samples of acute lymphoblastic leukemia
(ALL) are found. The details of the dataset are tabulated in
Table 1.

The illustration of the work is shown in Figure 1.

2.1. Techniques to Select the Genes. The gene selection tech-
niques utilized in this paper are as follows. The intention of
this procedure is to shortlist the best 2000 genes from 7129
genes.

2.1.1. Minimum Redundancy–Maximum Relevance
(MRMR). By means of minimizing redundancy, the features
are selected with a maximum minimizing relevance [43]. To
measure and assess the relevance for discrete datasets, a
mutual information criterion is utilized by MRMR.

For a feature Y j, the F-test value is expressed by

F Y j, S
� �

=
∑knk μjk − μj

� �
m − 1ð Þ

h i
σ2

, ð1Þ

where S = fSkg is the class set k = 1, 2,⋯,m, μj repre-
sents the mean of Y j, μjk expresses the mean of Y j for class

Sk, and σ2 = ½Σkðnk − 1Þσ2k�/ðn − 1Þ represents the pooled
variance for given size nk and variance σ2

k of class Sk. For fea-
ture subset T , the maximum relevance criterion is expressed
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t

1
Tj j〠j∈T

F Y j, S
� �" #

: ð2Þ

The selection of the first method is done by this method,
and utilizing the linear incremental search algorithm based
on optimization function, the rest of the features are
selected. However, for continuous variables, the two popular
linear search schemes are MRMR-FDM and MRMR-FSQ
schemes (F test distance multiplicative) and (F test similarity
quotient).

For MRMR-FDM, the optimization condition is
expressed as

max
j∈Y−T

F Y j, S
� �

:
1
T
〠
q∈T

d Y j, Yq

� �" #
, ð3Þ

where dðY j, YqÞ is the Euclidean distance between fea-
ture Y j and Yq.

For MRMR- FSQ optimization,

max
j∈Y−T

F Y j, S
� �

1/ Tj j∑q∈T1/d Y j, Yq

� �� �
" #

: ð4Þ

2.1.2. Signal to Noise Ratio. Pearson Correlation Coefficient
(PCC) is quite an important measure utilized to find the
gene significance. It is changed to specify the importance
of SNR in using a gene as a predictor [44]. For a particular
gene, to find the predictor strength, this predictor is utilized.

For a gene ′g′, the calculation of SNR is done as

SNR gð Þ = y1 − y2
sd1 − sd2

: ð5Þ

The mean of the normal samples is expressed by y1, and
the mean of the tumor sample is expressed by y2. sd1 and sd2
are the standard deviations of normal and tumor samples,
respectively. The primary difference between the classes with
respect to the standard deviation in between the classes is
used by this value. Between the class distinction and the gene
expression, a strong correlation is indicated if the values of
SNRðgÞ are larger. If the values of SNRðgÞ are either positive
or negative, then it corresponds to the gene being highly
expressed in either class 1 or class 2. The genes which have
a very large SNR value are quite informative, and so it is
selected for cancer classification.

2.1.3. Multivariate Error-Weighted Uncorrelated Shrunken
Centroid (EWUSC). Based on Shrunken Centroid (SC) and
Uncorrelated Shrunken Centroid (USC), this technique
was developed [45]. When the average gene expression for
each gene in every class is divided by the standard deviation
for that gene in the same class, then the Shrunken Centroid
is found. Genes where expression is similar among the vari-
ous samples of the same class, then higher weight is assigned
to it. Using squared distance, to the label with the nearest
average pattern, the assignment of new samples is done.
From tracing the genes that are highly correlated in the set
of genes found by SC, the redundant features are removed
by USC approach. Both of these steps are used by EWUSC
in addition to the error weights addition so that the redun-
dant genes are removed, and the noisy genes are
downgraded.

2.1.4. Multivariate Correlation-Based Feature Selection
(CFS). When features are highly correlated with the class
but uncorrelated with each other, then it forms a good fea-
ture subset [46]. By analyzing the predictive ability of every
feature individually along with the degree of redundancy,
the evaluation of a subset by CFS method is done. The main
advantage of this technique is that a “heuristic merit” is pro-
vided for a feature subset instead of individual features. So, it
implies that for a particular heuristic or function, the algo-
rithm can decide on its progress by selecting the best options
so that the output function is maximized.

3. Optimization Techniques

The shortlisted 2000 genes will undergo again a secondary
feature selection methodology by means of utilization opti-
mization techniques so that the best 50, 100, and 200 genes
are finally considered and that is mentioned as a dual level
analysis in this work. The feature selection is done using
the five optimization algorithms as follows.

3.1. African Buffalo Optimization Algorithm. To get the best
solution in the search space, ABO is utilized [47]. Within the
herd population, the initialization of the buffaloes is done.

Table 1: Dataset details.

Dataset
Number of

genes
Class 1
(ALL)

Class 2
(AML)

Total
samples

Leukemia:
AML-ALL

7129 47 25 72

Microarray data

Statistical tests for top ranked gene selection

Suitable classifiers for classification

Optimization techniques for best gene/feature selection

Class 1 Class 2

Figure 1: Illustration of the work.
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Then, by updating their locations, the global optimum is
searched for as they tend to follow the current best buffalo
bz max in the herd. In the problem space, the buffaloes make
sure it keeps track of its coordinates to achieve the best fit-
ness value. The ideal location of the specific buffalo which
is considered as the best with respect to the optimal solution
is termed as bq max:h. Progressing towards bq max:h and
bz max, the dynamic location of every buffalo is traced
depending on where the importance is specified and kept
at a particular location. The learning parameters has a great
effect on the speed of each animal.

The ABO algorithm steps are explained as follows:

(1) Initialization: the buffaloes are randomly placed to
the different nodes of the solution space

(2) Buffalo fitness value updation: the fitness value is
updated as

f :h + 1 = f :h + lq1 bz max − v:hð Þ + lq2 bq max:h − v:hð Þ
ð6Þ

where v:h and f :h indicate the exploration and exploita-
tion moves of the hth buffalo ðh = 1, 2,⋯,NÞ, lq1 and lq2 are
learning factors, bz max is the best fitness of the herd, and
bq max:h denotes the h best found location of the individual
buffalo.

(3) The location of the buffalo h is updated utilizing the
following formula as

v:h + 1 = v:h + f :hð Þ
±0:5 ð7Þ

(4) If the updation of bz max is done, then proceed to
step (5) or else go to (2) of this algorithm

(5) Check for the meeting of the stopping criteria. If
met, go back to algorithm step (3) or else go to (6)

(6) The best solution is taken as the output

The updation equation (6) of the buffalo has 3 sections.
The memory of the past location of the buffaloes is repre-
sented by f :h; a good memory ability is present for the buf-
falo which helps it to mention the places it has been before.
This particular ability of the buffalo is important as it helps
to search for best solutions by avoiding the areas that gave
negative or poor results. As an alternative for the present
local maximum location, a list of solutions is provided by
the memory of each buffalo. The second part lq1ðbz max −
v:hÞ represents the cooperative nature of buffaloes and indi-
cates the social nature of the buffaloes such as guarding each
other, information sharing, and danger sensing. The third
part lq2ðbq max:h − v:hÞ mentions the intelligent abilities
of the buffaloes. Therefore, the memory, socialization, and

intelligent qualities of a buffalo are together represented in
equation (6). Equation (7) helps the buffaloes in search of
a better environment as the present environment has been
fully explored and exploited or due to some unfavorable
conditions.

The main highlights of the ABO algorithm are that to
ensure a very fast convergence rate, and only a few parame-
ters are used. In each iteration, the best buffalo bz max can
be easily found out. To track the location and phase of the
best buffalo ðbz maxÞ, adequate exploration is ensured. By
exploiting other buffalo’s area too, a good exploration is
achieved.

3.1.1. Initialization and Updation of Speed and Location. In
the solution space, by placing the hth buffalo randomly, ini-
tialization phase is done. For the algorithm to converge in a
smaller number of iterations, the previous knowledge of the
problem can be helpful. Based on the previous maximum
location ðbq maxÞ and source data gathered from the
exploits of the other neighboring buffaloes, the updation of
the location of every buffalo is done in each iteration. With
such a modelling, the algorithm can track the buffalo move-
ment to achieve an optimal solution.

3.2. Artificial Bee Colony Algorithm. In a multidimensional
space, based on the bee’s foraging activity for nectar, this
global cum local search-based optimization procedure was
utilized and the steps are explained in Algorithm 1 [48]. In
this entire variable space, the food sources are spanning
throughout, and in this variable space, the food source is
assumed as the point in the variable space. For that particu-
lar point in the variable space, the objective function is max-
imized by this ABC method similar to the location tracing of
the food source by the bee which has the highest nectar con-
tent. The objective function f ðyÞ should find the optimal
solution in this ABC optimization problem where in an arti-
ficial multidimensional space, and the artificial bees will
wander to trace the highest producing nectar source. The
search task is achieved by utilizing the basic concept of food
foraging procedure by the bee colony and is simulated in an
artificial computer surrounding. In the entire variable space,
a random population of initial food sources is denoted as
yðmÞðm = 1, 2,⋯,NÞ, where N indicates the colony size is
expressed as

y mð Þ
i = y Hð Þ

i + vi y Vð Þ
i − y Hð Þ

i

� �
, ð8Þ

where vi is a random number in the range of [0,1]. Three
different types of tasks are assured where each does a differ-
ent task. A food source from their respective memories is
considered by the employed bees and then seek a new food
source wf in its neighbourhood. For this purpose, any neigh-
bourhood operator can be utilized. A food source which is
uniformly distributed within ±z of the present memory loca-
tion yn is utilized as

wf ,i = yn,i + ϕi yn,i − y mð Þ
i

� �
, ð9Þ
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where the randomly selected food source is expressed as
yðmÞ, and ϕi is a random number in ½−zi, zi�. The food source
wf which is newly created is then compared with yn. and the
food source which is better is placed in the memory of the
employed bee. Here in our experiment, the total number of
employed bees is set as 60% of the total food sources ðSÞ.
The food source information stored in their memories is
shared by the employed bees with the onlooker bees who is
present in the bee hive observing the foraging act of the
employed bees. The food source location wf traced by an
employed bee is chosen by the onlooker bee in a probabilis-
tic manner proportion to the total nectar content in the food
source wf . The probability of choosing the food source is
higher if the nectar content is high. Modification of a
selected food source to trace w0 in its neighbourhood is done
by using a similar methodology with the selected wf as
shown in equation (9). The memory of the onlooker bee
selects and keep only the better of the two food sources.
The number of onlooker bees is generally set as half of the
food sources. Finally, the scout bees are the third kind of
bees which chooses a food source location randomly utiliz-
ing equation (8) and act like global overseers. Though a pre-
defined number of trials, if the memory location cannot be
improved by the employed bees, then it booms as a mount
bee. Once it becomes a scout bee, then in the variable space,
the memory located is reinitialized randomly. The number
of scout bees is assumed to be 1 in our experiment, and
the algorithm runs for a maximum number of G genera-
tions. Only with an employed or an onlooker bee alone, each
food source is associated, so that a single food source is asso-
ciated in each of them. It is therefore used in other types of
optimization too such as combinatorial optimization, multi-
objective optimization, and to solve integer programming.

3.3. Cockroach Swarm Optimization Algorithm. Inspired by
the nature of the cockroaches searching for food such as pro-
gressing in swarms, escape mechanisms, or scattering mech-
anism from light, CSO was developed [49]. The collective
cockroach behaviour is modelled by a set of rules in the
CSO algorithm. The focus of this algorithm is to create a
set of feasible solutions in its initial step. In the search space,
the random generation of the initial solutions are done. For
solving various optimization problems, the CSO algorithm
includes 3 procedures such as (i) chase swarming, (ii) dis-
persing, and (iii) ruthless behaviour.

3.3.1. Chase-Swarming Phase. In this phase, the local best
solutions Si are carried by the strongest cockroaches and
then together it forms a small swarm. After the swarm for-
mation, it is progressed towards the global optimum So. In
this procedure, within the range of its visibility, each individ-
ual Ai progresses towards its local optimum. During the
movement of the cockroaches in small groups, a particular
approach can become the strongest by means of finding a
better solution. Within its own visibility scope, a lonely
cockroach has its local optimum and it progresses towards
the global best solution.

3.3.2. Dispersion of Individual Phase. To preserve the diver-
sity of cockroaches, it is performed from time to time. In this
phase, a random step is taken by the cockroach in the search
space.

3.3.3. Ruthless Behaviour Phase. Here, the currently best
individuals replace the random individual. If the food avail-
ability is inadequate, then creating the weaker cockroaches
becomes the procedure and so it is termed as ruthless
behaviour.

The steps are as follows:

(Step 1) A population of ′q′ individuals is generated,
and the algorithm parameters are initialized
(step, D-space dimension, visual scope, and
stopping criterion)

(Step 2) Within the visual scope of the jth individual, Sj
and So is searched for

(Step 3) Chase swarming behaviour is implemented,
and finally So is updated at the end. If a cock-
roach Aj is local optimum, then it progresses
to So based on Aj = Aj + step:rand:ðSo − AjÞ,
where rand is a random number within [0,1].
Or else the cockroach Aj progresses to Sj
through the formula represented as

Aj = Aj + step:rand: Sj − Aj

� � ð10Þ

and it is present within its own visibility range

(Step 4) Dispersing procedure is implemented, and So is
updated

(Step 5) Ruthless procedure is implemented ðAy = SoÞ or
ðAy = 0Þ, where y = 1,⋯, q

(Step 6) Until a termination criterion is satisfied, the
steps 2-5 are repeated and then output the final
results. The stopping criteria includes the com-
putation time, obtaining a minimum solution
error and maximum number of iterations etc

3.4. Imperialist Competitive Algorithm. One of the famously
used population-based metaheuristic is ICA. In a popula-
tion, each individual represents a country, and in the initial-
ization process, some best countries are selected as
imperialists [50]. The imperialist and colonies help to build
the initial empire, and the generation of the new solutions
is done by the colony assimilation and revolution, competi-
tion among the imperialists, and the exchange of
imperialists.

The procedure is as follows:

(1) Initialization: An initial population P is generated

(2) Initial empire construction: The cost ti is computed
for every individual; for all the solutions, the sorting
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of ti in descending order is done. The selection of
Mim best solutions from P as imperialists is done.
The remaining countries Mcol is assigned to the
imperialists

(3) The assimilation of colonies is executed for every
empire, and then the revolution of some colonies is
performed. If possible, position of colony and impe-
rialist is exchanged

(4) The imperialist competition is achieved

(5) Without any countries, the empire is eliminated

(6) If the meeting of termination criteria is not done,
then it goes back to step (3)

(7) If the termination criteria are done, then the search
is stopped

Based on the objective function, the calculation of the
cost of a country is done. The cost is less if a solution is bet-
ter. Mim best solutions with the least cost are considered as
imperialists. The colonies are formed by the rest of the coun-
tries. There are totally Mcol colonies represented as Mcol =
M −Mim.

By the assignment of colonies to imperialists, the forma-
tion of initial empires is done based on the imperialist power
and is considered as

Pq =
Zq

∑Mim
w=1Zw

�����
�����, ð11Þ

where Pq denotes the power of imperialist q and Zw =
maxqftqg − tw denotes the normalized cost, and here, tq
specifies the imperialist cost of q. The calculation of the
number of initial colonies managed by imperialist q is
expressed as roundfPq ×Mcolg, where round is the nearest

integer of a fractional number and is expressed by the func-
tion round.

The total number of colonies of imperialist q is expressed
by Sq. A colony in each empire progresses ε along the ′d′
direction towards the imperialist in the process of assimila-
tion. ε is the moving distance and is a random number rep-
resented by random distribution in the interval ½0, c × d�,
where c ∈ ð1, 2Þ and the distance among imperialist and col-
ony is expressed by d. The colony progresses towards the
direction of the imperialist if c > 1. However, the colonies
cannot be absorbed by the imperialist in direct movement
thereby a deviation from the direct line prevails. The repre-
sentation of deviation is done by θ which follows uniform
distribution in ½−φ, φ�, where φ is just an arbitrary parame-
ter. Change in position of some colonies causes revolution,
and it is because of unexpected changes in the characteris-
tics. For instance, the change in characteristic would lead
to the change in position, and it can be influence by chang-
ing the language or religion of a particular colony. Similar to
the process of mutation in competitive algorithm, the revo-
lution in ICA is carried out so that exploration is increased
and the early convergence to local optima is prevented. Once
the assimilation and revolution is done in an empire, the
comparison of the cost of each colony with that of the impe-
rialist is done. Therefore, if the colony has a very less cost in
comparison to the imperialist, then the swapping of colony
can be done. Depending on the total empire power, the
determination of imperialist competition is done. Assume
ATq is the total cost of the empire q, therefore for each
empire q, ATq is initially calculated as

ATq = tq + ζ ×mean cost colors of empireð Þf g, ð12Þ

where ζ represents a positive number between 0 and 1,
and it is close to 0. For the empire q, the normalized cut cost

Requirement: S,H
1. Iteration set counter g = 0
2. S/2 employer bees is initialized to S/2 food sources
3. Repeat

A. Evaluate solutions yn to find nectar content at employee bee locations
B. Employer bee movement to a new food source with the help of equation (9)
C. Evaluate solutions wf to find nectar content at the novel employee bee locations
D. Bees with lower nectar content at wf are returned to yn and recorded
E. S/2 onlooker bees recruitment with proportion to their nectar content
F. Movement of each onlooker bee to a novel food source in its neighbourhood
G. Evaluate solutions w0 nectar content tracing at novel onlooker bee locations
H. Movement of the employees bee to the best location done by onlooker bees
I. Best food sources recording among all yn, wf and w0
J. Employer bees conversion into scout bees as they cannot find better food sources in H trials.
K. Scout bees initialization using equation (8)
L. g⟵ g + 1

4. Until termination is satisfied
5. Best found source declaration (near optimal solution)

Algorithm 1
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and the power is computed as

NormalizedATq =max
s

ATsf g − ATq, ð13Þ

EPq =
MATq

∑Mim
w=1MATw

�����
�����, ð14Þ

After a vector ½EP1 − c1, EP2 − c2,⋯, EPMim
− cMim

� is
defined, the assignment of the weakest colony from the
weakest expires to the empire having largest index is done
where ci represents the random number with uniform distri-
bution in the range of [0,1].

3.5. Social Spider Optimization Algorithm. One of the recent
meta heuristic algorithm which attracted a good attention is
SSO [51]. In this algorithm, the search space is assumed as a
communal spider web. For each population, the candidate
solutions represent a spider. A weight is received from each
spider based on its fitness value. The simulation of the vari-
ous cooperation behaviour in the colony is approached by
two different search sets of evolutionary operators. To solve
a nonlinear global optimum problem, the algorithm is
designed with box constraint as follows:

Minimize: f ðyÞ, y = ðy1, y2,⋯, ydÞ ∈Rd

Subject to y ∈ Y
where f : Rd ⟶R is a nonlinear function, and Y = f

y ∈Rdjl j ≤ y ≤ uj, j = 1,:⋯ , dg is a feasible space reduced
by limiting the lower ðl jÞ and upper ðujÞ limits. To solve this
optimization problem, population A of N candidate solu-
tions is utilized by SSO. A spider position is represented by
each solution whereas the search space Y is represented by
the general web. In this methodology, the population A is
divided into two search agents. ðMaÞ represent male and ð
FaÞ represent female. The real spider colony is aimed to be
simulated and therefore the number of females (represented
as Nf ) is selected randomly in the range of 60-70% of the
entire population A, where the rest is considered as the male
individuals ðNm = A −Nf Þ. Under this constraint, a set of
female individuals is formed by the group Fa as ðFa = f a1,
f a2,⋯, f aN f

Þ, and the male individuals ðMa =ma1,ma2,⋯,
maNm

Þ. Each spider ′c′ has a weight wc based on solution fit-
ness and it is calculated as

wc =
f itc −worst
best −worst

, ð15Þ

where f itc represents the fitness value of the cth spider
solution, c ∈ 1,⋯,N , best indicates best fitness value, and
worst indicate worst fitness value of the whole population
A. The main mechanism of SSO is the information exchange
in the optimization process. Only through the vibration
present in the website it can be simulated. The modelling
of a vibration received from a spider b to spider c is

expressed as follows

Vc,b =wbe
d2c,b , ð16Þ

where the weight of the bth spider is wb, and the distance
between the 2 spiders is ′d′. Three types of vibrations can be
perceived by each spider ′c′ and vc,n, vc,h and vc,f :vc,n. The

vibration produced by the nearest spider ′n′ with a very
high weight is expressed by vc,n. vc,f is produced by the clos-
est female spider, and their vibrations applied only if c is a
male spider. In the population A, the best spider is produced
by vc,h. At an initial stage s = 0, a population N of the total
spider is operated to assess the total number of iterations ð
s = iterationsÞ. Various sets of evolutionary operators are
assigned to each individual based on its gender.

In the context of female spiders, the novel position f as+1c
is obtained by the modification of the current position of
spider f asc. A probability factor P is used to randomly con-
trol the modification, and the movement is produced with
respect to other spiders and throughout the search space,
and the transmission of vibrations is done as

f as+1c =
f asc + α:Vc,n: an − f ascð Þ + β:Vc,n: ah − f ascð Þ + δ: rand − 1

2

	 

,

f asc − α:Vc,n: an − f ascð Þ − β:Vc,h: ah − f ascð Þ + δ: rand − 1
2

	 

,

8>>><
>>>:

ð17Þ

with probability P and 1 − P, where α, β, δ, rand are ran-
dom numbers between the range [0,1] and s denotes the iter-
ation number. an and ah are the nearest spider and best
spider, respectively. The classification of male spiders in 2
types is done as dominant ðUÞ and nondominant ðWÞ. Only
between the dominant male mu and female individuals, the
mating is carried out with a specific range r, and so a new
individual anew is defined by the weight of each spider. The
new individual anew can be influenced easily by the heavier
element which has more probability. Once the generation
of the new spider is done, it is then compared to the rest
of the population. If a new spider has a good fitness value
than the worst spider member, then the worst spider is
replaced by anew, or else discarding anew is done.

4. Classification Procedures

The optimized values are then classified with the following
classifiers.

4.1. NBC. The main assumption of NB classifier is that each
characteristic is pretty independent to the rest of the charac-
teristics [52]. Therefore, the optimized genes contribute in
an independent manner to the probability of being a part
of a specific class. For estimating the essential parameters
for classification, a smaller number of training samples is
required by these types of classifiers. For supervised learning
problem, it is a fast and efficient classifier.
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4.2. SVM. The main intention of SVM lies in the hyperplane
selection that is equidistant from every class so that for the
separation of the classes, a maximum margin is achieved
[53]. The training support vector samples are the ones which
fall into the frontier when the hyperplane is defined. The
classifier greatly tolerates the classification errors which is
controlled by the hyperparameters so that generalization
capability of the model is controlled. Depending on the side
of hyperplane to which the sample belongs, the classification
of a new sample will be done for a biclass classification. This
method usually changes for a multiclass classification
because SVM builds ðN − 1Þ ∗N/2 classifiers where the
number of classes is denoted by N . Then, a voting system
is also established among them mentioning the most voted
class for the new samples.

4.3. RF. A forest of classification trees is built by the RF algo-
rithm as it grows many single classification vectors (trees)
[54]. A vector is assigned as an input to be classified in this
classification model for each tree of the forest. Once the clas-
sification is done by that individual tree, the class having the
largest number of votes over all the trees is decided by the
standard voting system among the trees.

4.4. PNN. This classifier is an implementation of a statistical
algorithm called kernel discriminate analysis. The operations
are usually organized into a multilayered feed forward net-
work [55]. Only one epoch of training is needed in PNN.
The main drawback of using this is that for storing the train-
ing samples, it assumes a lot of memory and so the recall
process computation slows down gradually.

5. Results and Discussion

It is classified with a 10-fold cross validation method, and
the performance of it is shown in tables below. The mathe-
matical formulae for computing the Performance Index
(PI), Sensitivity, Specificity, and Accuracy are mentioned in
literature, and using the same, the values are computed
and exhibited. PC is Perfect Classification, MC is Missed
Classification, and FA is False Alarm in the expressions
below.

The sensitivity is expressed as

Sensitivity = PC
PC + FA × 100 ð18Þ

Specificity is expressed as

Specificity = PC
PC +MC × 100 ð19Þ

Accuracy is expressed as

Accuracy = Sensitivity + Specificity
2 ð20Þ

Performance Index (PI) is expressed as

PI = PC‐MC‐FA
PC

	 

× 100 ð21Þ

Table 2 shows the average performance analysis of clas-
sifiers in terms of classification accuracies with ABO for dif-
ferent gene selection techniques using 50–200 selected genes.
As depicted in Table 2, the PNN classifier with 50 genes at
SNR features and PNN classifier with 200 genes selected in
the multivariate EWUSC attained higher accuracy of
92.97%. In the case of SVM classifier with 100 genes for
the multivariate, CFS reached a low accuracy value of
75.96%. This low accuracy is due to the high false alarm rate
in the SVM classifier.

Table 3 demonstrates the average performance analysis
of classifiers in terms of classification accuracies with ABCO
for different gene selection techniques using 50–200 selected
genes. As shown in Table 3, the PNN classifier with 200
genes at SNR feature exhibits higher accuracy of 91.47%.
The SVM classifier with 200 genes for the multivariate
EWUSC feature is ebbed at the low accuracy of 75.7581%.

Table 4 reveals the average performance analysis of clas-
sifiers in terms of classification accuracies with CSO for dif-
ferent gene selection techniques using 50–200 selected genes.
As identified in Table 4, the NBC classifier with 50 genes at
SNR feature demonstrates the higher accuracy of 92.19%.
The PNN classifier with 50 genes for the multivariate
EWUSC feature is achieved at the low accuracy of 75.75%.

Table 5 exposes the average performance analysis of clas-
sifiers in terms of classification accuracies with ICO for dif-
ferent gene selection techniques using 50–200 selected
genes. The Table 5 reports that RF classifier with 50 genes
at multivariate CFS attained the higher accuracy of 92.45%.
The PNN classifier with 50 genes for the multivariate
EWUSC feature is achieved at the low accuracy of 75.625%.

Table 6 expresses the average performance analysis of
classifiers in terms of classification accuracies with SSO for
different gene selection techniques using 50–200 selected
genes. Table 6 exposes that PNN classifier with 200 genes
at multivariate CFS attained the highest accuracy of
95.705%. The RF Classifier with 50 genes for the multivariate
CFS feature achieved the lower accuracy of 75.875%.

Figure 2 shows the performance of Performance Index
(PI) parameter for four classifiers averaged in five different
optimization methods. As exhibited in Figure 2, the NBC
classifier with 50 gene selection at CSO optimization
attained higher PI of 56.94%. As in the case of NBC classifier
with 100 genes for ABO algorithm, the higher PI is reached
at 59.03%. NBC classifier with 200 genes selection for ABO
algorithm peaked with the highest PI of 74.33%. For SVM
classifier with 50 gene selection ABCO algorithm edged at
high PI of 56.33% and SVM with 100 genes depicted the
PI of 55.93% for the CSO algorithm. In SVM classifier with
200 genes selection case, SSO algorithm reports high PI of
63.64%. RF classifiers with 50 genes selection procedure
attained high PI of 54.68% at ABCO algorithms. As in the
case of RF classifiers with 100 gene selection method, ABO
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algorithm provides higher PI of 51.56%. In the RF classifier
with 200 genes selection method, SSO algorithm exhibits
high PI value of 57.41%. In PNN classifier with 50 gene
selection procedure, ABO algorithm arrived at high PI of
51.68%. For the PNN classifier with 100 genes selection
method also, ABO specialized at higher PI of 69.32%. For
PNN classifier with 200 genes selection cases good PI of
57.32% is reached for ABCO algorithm. Due to the averag-
ing effect across the four features, the classifier reveals better
and smooth PI values. ISO algorithms demonstrate the
smoothening effect across the classifiers.

6. Conclusion and Future Work

For the diagnosis, analysis, and treatment of cancer,
microarray-based classification of this disease is very useful.
To determine the most informative genes that can cause
cancer, a great impact and utility was provided by the
microarray technique in recent years. The curse of dimen-
sionality problem is a huge drawback in microarray data
analysis which destabilizes the computational instability
and prevents the usefulness of a certain information from
a dataset. Thus, in analyzing the cancer microarray data-
sets, an imperative task lies in the selection and extraction
of relevant features so that effective classification is
achieved. In this work, four types of initial feature selec-
tion techniques were performed and then it was further
optimized with five optimization techniques before pro-
ceeding into classification. The best results are obtained
when multivariate CFS feature selection with SSO is uti-
lized and classified with Probabilistic Neural Network
(PNN), and a high classification accuracy of 95.70% is
obtained. Future work is to analyze with a plethora of
other optimization and machine learning techniques for
a better analysis of microarray-based leukemia
classification.
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