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Simple Summary: The APOBEC3 family (apolipoprotein B mRNA editing enzyme catalytic
polypeptide-like) was shown to induce tumor mutations through an aberrant DNA editing mech-
anism. In this study, we found that APOBEC genes were widely and significantly differentially
expressed between normal and cancer samples in 16 cancer types, and their expression levels were
significantly correlated with the prognostic value in 17 cancer types. Further analysis of the APOBEC
family revealed extensive regulatory mechanisms by which they affect the tumor microenvironment,
the process of tumor oncogenesis and development, and their association with patient prognosis
in pan-cancer.

Abstract: The accumulating evidence demonstrates that the apolipoprotein B mRNA editing enzyme
catalytic polypeptide-like (APOBEC), DNA-editing protein plays an important role in the molecular
pathogenesis of cancer. In particular, the APOBEC3 family was shown to induce tumor mutations
by an aberrant DNA editing mechanism. However, knowledge regarding the reconstitution of
the APOBEC family genes across cancer types is still lacking. Here, we systematically analyzed
the molecular alterations, immuno-oncological features, and clinical relevance of the APOBEC
family in pan-cancer. We found that APOBEC genes were widely and significantly differentially
expressed between normal and cancer samples in 16 cancer types, and that their expression levels
are significantly correlated with the prognostic value in 17 cancer types. Moreover, two patterns of
APOBEC-mediated stratification with distinct immune characteristics were identified in different
cancer types, respectively. In ACC, for example, the first pattern of APOBEC-mediated stratification
was closely correlated with the phenotype of immune activation, which was characterized by a
high immune score, increased infiltration of CD8 T cells, and higher survival. The other pattern of
APOBEC-mediated stratification was closely correlated with the low-infiltration immune phenotype,
which was characterized by a low immune score, lack of effective immune infiltration, and poorer
survival. Further, we found the APOBEC-mediated pattern with low-infiltration immune was also
highly associated with the advanced tumor subtype and the CIMP-high tumor subtype (CpG island
hypermethylation). Patients with the APOBEC-mediated pattern with immune activation were more
likely to have therapeutic advantages in ICB (immunological checkpoint blockade) treatment. Overall,
our results provide a valuable resource that will be useful in guiding oncologic and therapeutic
analyses of the role of APOBEC family in cancer.

Keywords: APOBEC; pan-cancer; genetic alterations; tumor microenvironment; survival; immunotherapy;
clinical relevance

1. Introduction

APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) genes
are cytidine deaminases that deaminate cytidine to uridine in DNA and RNA [1,2]. In the
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normal repair process of APOBEC deamination, cytosine residue in the DNA sequences is
restored again by the removal of uracil by DNA glycosylase and by replacing the cytosine
in the abasic site, however, the abasic site is occasionally replaced with thymine or guanine.
This single base substitution will result in a mutation in the genome [3–6]. It was reported
that the intrinsic DNA editing capability of APOBEC enzymes is correlated with diverse
vital biological processes, including immunity, antigen presentation, metabolism, regulation
of gene expression, and maturation of host immune receptors [7,8]. Since the specific
recognition of cytosine on single-stranded DNA depends on its adjacent base sequence
during the process of APOBEC deamination, APOBEC-mediated DNA mutation has to
leave a unique APOBEC mutation signature, and each member of the APOBEC family has
its own specific mutation signature [9–12]. Moreover, the APOBEC mutation signature
is the most universal pathological mutagenesis mechanism, and the APOBEC mutation
signature was detected in at least 22 different tumor types and is enriched in bladder, head
and neck, cervical, and breast cancers [13,14]. In particular, more than half (16/30) of
cancer types have APOBEC3B-mediated mutation signatures [1]. In addition, increasing
evidence demonstrated that APOBEC genes are often deregulated in cancers, and the DNA
damage caused by the aberrant activity of the APOBEC enzyme was the major driving
force behind iterative somatic mutation across many cancer types [3,15]. Therefore, the
APOBEC family plays a crucial role in driving cancer genome instability [8], promoting
intratumor heterogeneity and promoting the divergence in the genome, which often results
in many subclones evolving with drug resistance and immune-escape capacity [16].

A total of 11 APOBEC genes are present in the human genome. AICDA and APOBEC1
are on chromosome 12, APOBEC4 is on chromosome 1, and APOBEC2 is on chromo-
some 6. APOBEC3 gene cluster, comprising of seven members (APOBEC3A, APOBEC3B,
APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H), reside at chromo-
some 22. Among them, four APOBEC genes were considered to participate in biological
functions for cancer, such as in the Cosmic database [17], the CancerMine database [18],
and the TSGene database [19]; APOBEC3A was annotated as oncogenes, APOBEC3B was
annotated as oncogenes and TSG (tumor suppressor gene), APOBEC3G was annotated as
driver genes, and AICDA was annotated as oncogenes and driver genes. However, the
relevant functional information of the other genes is lacking.

Immunotherapy was applied to cancer treatment and achieved better clinical outcomes,
such as the immunological checkpoint blockade (ICB), however, it generally shows a low
response rate. Numerous studies have shown that the tumor microenvironment (TME),
on which tumor cells depend for growth and survival, plays a crucial role in the tumor
progression immune escape, and its effect on response to immunotherapy. It is known that
neoantigens (or neoepitopes) arise from missense somatic mutations in cancer cells [20].
Neoantigens that presented on the cell surface in the context of a major histocompatibility
complex (MHC) of tumor tissues could be recognized by T cells as foreign antigens [21].
In a tumor microenvironment, a significant proportion of tumor-infiltrating lymphocytes
that are comprised of immune cells, primarily from CD8+ cytotoxic T cells, was observed
in many cancer types [22]. Thus, the APOBEC family may affect cancer immunogenicity
by arousing neoantigens, and eventually affecting the therapeutic effect of ICB treatment.
Recently, several studies revealed that the regulation of APOBEC3B in cancer can induce T
cell responses by affecting neoepitopes [23–25], and is associated with a greater likelihood
of response to immunotherapy response in non-small cell lung cancer [26], head and neck
cancer, bladder cancer [27], breast cancer [25,28], and melanomas [23]. Nevertheless, the
related research on other family members is relatively lacking. In addition, the anti-tumor
effect is characterized by numerous tumor suppressor factors that interact in a highly
coordinated manner, and the alteration of only one or two genes could not fully explain the
complexity of the process. Thus, a comprehensive understanding of the genetic alterations
and the perturbations in expression underlying cancer cell heterogeneity is necessary to
elucidate the APOBEC regulation-based therapeutic targets.
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In this study, we aimed to systematically characterize the molecular alterations,
immuno-oncology features, and clinical relevance of the APOBEC family at the pan-cancer
level. We found that the APOBEC family showed a relatively higher mutation rate in UCEC
(uterine corpus endometrial carcinoma), and a relatively higher copy number variation of
deletion frequency in MESO (mesothelioma) and OV (ovarian serous cystadenocarcinoma).
Interestingly, there are extensively significant differences in the expression of APOBEC
family between normal and cancer samples across cancer types (|log2FC| > 1, p < 0.05), and
their expression levels are significantly correlated with the prognostic value (p < 0.05). Fur-
thermore, we revealed two patterns of APOBEC-mediated stratification (AMS) with distinct
TME infiltration characteristics, based on the 11 APOBEC gene expression profiles across
cancer types, respectively. In ACC, for example, the first AMS pattern (namely, Cluster-A)
was closely correlated with the phenotype of immune activation, which was characterized
by a high immune score, increased infiltration of CD8 T cell, and better survival. The
other AMS pattern (namely, Cluster-B) was closely correlated with the low-infiltration
immune phenotype, which was characterized by a low immune score, lack of effective
immune infiltration, and poorer survival. Further, we found that the pattern of AMS, with
a low-infiltration immune phenotype, was also highly associated with the advanced tumor
subtype and the CIMP-high tumor subtype (CpG island hypermethylation). Meanwhile,
patients with the AMS pattern tumors with immune activation were more likely to have
therapeutic advantages in ICB (immunological checkpoint blockade) treatment. Our anal-
ysis highlights the importance of the APOBEC family in cancer development and TME
infiltration, and lays a foundation for the development of therapeutic strategies based on
APOBEC regulation.

2. Materials and Methods
2.1. Genome-Wide Omics Data and Clinical Data across 33 Cancer Types

The somatic mutations (MAF file), copy number variation, RNA-seq data (counts and
fragments per kilobase per million (FPKM) value), and clinical information for patients
of 33 cancer types were downloaded from the TCGA project (http://cancergenome.nih.
gov/ (accessed on 5 May 2021)) via the R package, TCGAbiolinks (version = 2.22.4) [29].
GISTIC2.0 [30] was used to identify the genomic regions that are significantly gained or
lost. The FPKM values were transformed into transcripts per kilobase million (TPM) values.
Clinical data downloaded by the R package TCGAbiolinks include the survival status,
survival time, stages, histology subtype, gender, and race. Other clinical data, including
tumor purity, TMB, and subtype information defined by previous studies, were collected
from Bagaev et al. [31].

We analyzed 33 different TCGA cancer types in total, including ACC, adrenocortical
carcinoma; BRCA, breast cancer; SKCM, skin cutaneous melanoma; KIRC, kidney renal
clear cell carcinoma; LUSC, lung squamous cell carcinoma; KIRP, kidney renal papillary
cell carcinoma; UCEC, uterine corpus endometrial carcinoma; KICH, kidney chromophobe;
PRAD, prostate adenocarcinoma; BLCA, bladder urothelial carcinoma; STAD, stomach
adenocarcinoma; COAD, colon adenocarcinoma; LUAD, lung adenocarcinoma; UVM,
uveal melanoma; HNSC, head and neck squamous carcinoma; THCA, thyroid carcinoma;
CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; LIHC, liver
hepatocellular carcinoma; LGG, brain lower grade glioma; TGCT, testicular germ cell
tumors; THYM, thymoma; GBM, glioblastoma multiforme; SARC, sarcoma; READ, rectum
adenocarcinoma; UCS, uterine carcinosarcoma; PCPG, pheochromocytoma and paragan-
glioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; ESCA,
esophageal carcinoma; MESO, mesothelioma; DLBC, lymphoid neoplasm diffuse large
b-cell lymphoma; LAML, acute myeloid leukemia; CHOL, cholangiocarcinoma.

Data were analyzed with the R (version 4.1) and R Bioconductor packages.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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2.2. Identification of Differentially Expressed Genes (DEGs)

To explore the expression perturbations of the APOBEC family across cancer types,
respectively, we performed differential expression analysis between TCGA normal and
TCGA cancer samples across the 16 cancer types with at least 10 normal controls. The R
package DESeq2 (version = 1.34.0) [32] was applied to determine differentially expressed
genes (DEGs). The significance criteria for determining DEGs were set as |log2FC| > 1
and p < 0.05.

2.3. Unsupervised Clustering for 11 APOBEC Genes

The unsupervised clustering algorithm was applied to identify patients with qualita-
tively different patterns of APOBEC-mediated stratification based on the global expression
pattern of 11 APOBEC genes across cancer types for further analysis. Each cancer type
from TCGA was analyzed individually. The number of clusters and their stability were
determined by the consensus clustering algorithm. We used the R package Consensus-
ClusterPlus (version = 1.58.0) to perform the above steps, with 1000 times repetitions to
guarantee the stability of classification [33].

2.4. Estimation of TME Cell Infiltration

The ESTIMATE algorithm [34] was applied to the normalized expression matrix for
estimating the immune scores for each cancer sample from TCGA by using R package
estimate (version = 1.0.13). The abundance of 22 TME infiltrating immune cells was
quantified in TCGA 33 cancer types, respectively, by using the CIBERSORT algorithm
(https://cibersort.stanford.edu/ (accessed on 19 June 2021), a deconvolution algorithm that
uses support vector regression to determine the type of immune cell type in tumors [35].
The parameters were as follows: the input mixture matrix was our normalized gene
expression matrix, the input of gene signature reference for 22 immune cell types from
Newman et al. [35], 100 times for the permutation test, and non-quantile normalization.

2.5. DEGs between Distinct Clusters and Functional Enrichment Analysis

To identify the two AMS patterns-related genes, we classified patients into two AMS
patterns, based on the global expression of 11 APOBEC genes. R package DESeq2 (ver-
sion = 1.34.0) [32] was applied, to determine the differentially expressed genes (DEGs)
between different AMS patterns; the significance criteria for determining DEGs were set as
|log2FC| > 1 and the FDR (discovery rate) < 0.05.

To further understand the pathways of different AMS patterns, gene ontology (GO)
analysis of DEGs were performed by the R package clusterProfiler [36] (version = 4.2.2).
Gene set enrichment analysis (GSEA) was utilized to analyze the functions related to AMS
patterns, according to the comprehensive gene expression profiles [37]. Gene sets with
p < 0.05 and FDR < 0.25 were considered significantly enriched.

2.6. Statistical Analysis

Correlation coefficients were computed by Pearson correlation analysis. One-way
ANOVA tests were used to conduct difference comparisons of two groups [38]. The uni-
variate and multivariate Cox analyses were performed to determine the independent risk
characteristics. Hazard ratios (HRs) and 95% confidence intervals of these variables were es-
timated to quantify the strength of these associations. R package forestplot (version = 2.0.1,
https://github.com/gforge/forestplot (accessed on 4 February 2022)) was employed to
visualize the results of the multivariate prognostic analysis. The survival curves were
generated via the Kaplan–Meier method and log-rank tests were utilized to identify the
significance of differences by using the R package survival (version = 3.3.1). p < 0.05 were
considered as significant.

https://cibersort.stanford.edu/
https://github.com/gforge/forestplot
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3. Results and Discussion
3.1. The Landscape of Genetic Alteration of APOBEC Family across Cancer Types

To determine the genetic alterations in the APOBEC family in cancer, we first summa-
rized the incidence of somatic mutations across 33 cancer types (Table S1, Supplementary
Materials). The overall average mutation frequency of the APOBEC family was low across
cancer types, the highest mutation rate was only 4.16%, which was the frequency of
APOBEC3F in UCEC (Figure 1A). Cancer types with a higher global mutation burden
among the 33 cancer types, such as UCEC, also showed a relatively higher mutation rate
in the APOBEC family (Figure 1A,B). No mutation of APOBEC genes was observed in
several cancer types, such as ACC, PCPG, UVM, TGCT, MESO, and LAML (Figure 1A). We
then examined the copy number variations (CNVs) of the APOBEC family across cancer
types and found that the incidence of CNV alteration of the APOBEC family in cancer was
relatively low (Figure 1C and Table S1, Supplementary Materials). In most tumor types,
the CNV alteration frequency of the APOBEC family was less than 50%, while MESO and
OV showed a higher CNV variation frequency of deletion, which was more than 70%. The
seven members of the APOBEC3 gene cluster shared similar amplifications and deletions,
which may be attributed to their location in the genome (Figure 1C). The results suggested
that the APOBEC family is relatively stable in the genome of cancer.

To further explore the expression perturbations of the APOBEC family across cancer
types, we performed differential expression analysis between normal and cancer samples
across the 16 cancer types with at least 10 normal controls. Interestingly, there are exten-
sively significant differences in the expression of the APOBEC family between normal
and cancer samples across cancer types (|log2FC| > 1, p < 0.05, Figure 1D and Table S1,
Figure S1, Supplementary Materials). In KIRP, KIRC, ESCA, HNSC, and BRCA, the ex-
pression of most of the APOBEC genes showed significant upregulation in cancer tissues
when compared to normal samples, while in PRAD, the expression of the APOBEC genes
was significantly downregulated in cancer tissues (|log2FC| > 1, p < 0.05, Figure 1D). As
consistent with previous studies, we also demonstrated that the APOBEC genes are often
deregulated in cancers [3], especially APOBEC3B gene. As shown in Figure 1E, the expres-
sion of APOBEC3B was generally significantly upregulation in cancer tissues compared to
normal samples across cancer types, such as BRCA, BLCA, ESCA, LUAD, and STAD. In
addition, the deletion frequency of APOBEC3B in the CNV alteration was relatively higher
in these cancer types (Figure 1C–E). Previous studies have confirmed that the CNV is a
partial but not unique factor to regulate mRNA expression [39]. Other features, including
RNA methylation and transcription factors, can regulate gene expression [40,41]. Our
results also indicate that the genomic alteration (including mutation and copy number vari-
ation) may not be the only regulatory mechanism leading to the perturbation of APOBEC
expression in cancers. Notably, we found most tumor samples can be distinguished from
normal samples based on the global expression of the APOBEC family across cancer types,
especially in KIRC, PRAD, LUSC, READ, KICH, KIRP, and BRCA (Figures 1F,G and S2,
Supplementary Materials). These results indicated that the occurrence and progression of
tumors are closely associated with the expression profiles of the APOBEC family.
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Figure 1. Pan-cancer genetic and expression alterations of APOBEC family. (A) The mutation
frequency of 11 APOBEC genes across 33 cancer types; (B) The mutation frequency of 11 APOBEC
genes in 529 UCEC samples. Each column represents individual samples. The upper bar graph shows
TMB; the number on the right indicates the mutation frequency in each APOBEC gene. The right bar
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graph shows the proportion of each variant type; (C) The CNV alteration frequency of 11 APOBEC
genes across cancer types, Amp: amplification; Del: deletion; (D) The gene expression alterations of
11 APOBEC genes in 16 cancer types. The heat map shows the fold changes, with red representing
upregulated genes, and blue representing downregulated genes, *** |log2FC| > 1, p < 0.005. (E) Box
plots showing the expression distribution of APOBEC3B across tumor and normal samples in 16 cancer
types. (F,G) Principal component analysis for the global expression profiles of 11 APOBEC genes to
distinguish tumors from normal samples in KIRC and PRAD, respectively. Two subgroups without
intersection were identified, indicating that the tumors and normal samples were well distinguished,
based on the expression profiles of APOBEC genes. Tumors were marked with red and normal
samples were marked with blue.

Using the univariate Cox regression model, we further investigated the association
between the expression of the APOBEC family and the survival of tumor patients in
25 cancer types for which overall survival information (including survival status and
survival time) was available. As shown in Figure 2A and Figure S1 (Supplementary
Materials), the expression levels of the APOBEC genes were significantly associated with
prognostic value in 17 cancer types (p < 0.05). In 10 of these 17 cancer types, APOBEC genes
expression were significantly different between cancer and normal samples (including
KIRC, COAD, KIRP, ESCA, KICH, BLCA, BRCA, LUAD, UCEC, and HNSC, |log2FC| > 1,
p < 0.05, Figure 1D), and in the other 7 cancer types (including UVM, ACC, PCPG, CHOL,
OV, CESC, and SKCM), there were lack of sufficient normal samples (n < 10) for differential
expression analysis. On the other hand, APOBEC expression in six cancer types (including
LUSC, STAD, LIHC, THCA, READ, and PRAD) did not showed a significant prognostic
association (p > 0.05), although its expression was significantly different from that of normal
samples (Figures 1D and 2A). Overall, of the 16 cancer types in which APOBEC showed
differential expression between cancer and paraneoplasia, only 10 showed a significant
prognostic association. Still, of the 17 cancer types with survival differences, 10 had
significant transcriptional differences, and it is unknown whether transcriptional differences
occurred in the other 7 cancer types due to the differential expression analysis of these 7
cancer types was not performed. These results suggest that when APOBEC is associated
with prognosis in a specific cancer type, its expression level tends to differ significantly
between cancer and paracancer. In general, differences in protein levels due to differential
expression or translation errors caused by DNA or other modifications may trigger survival
differences. For the other 7 cancer types, we found that APOBEC showed relatively high
mutation frequencies in SKCM and CESC, and extensive CNVs variants in ACC, OV, CHOL,
PCPG and UVM (Figure 1A,C). And as shown in Figure S3 (Supplementary Materials),
SKCM patients with APOBEC3B mutations presented a particularly prominent survival
advantage compared to SKCM patients with APOBEC3B non-mutations (log-rank p < 0.05).
Whereas CNV variants in APOBEC3H were significantly associated with survival in ACC
patients, CNV variants in APOBEC2 were significantly associated with survival in UVM
patients (p < 0.05). Therefore, we speculated that the survival differences in these 7 cancer
types lacking paraneoplastic samples may also be caused by mutations or gene copy
number variants in addition to transcriptional differences. In addition, we observed that in
SKCM, many of the APOBEC genes showed beneficial effects, which higher expression of
genes was significantly associated with better survival (p < 0.05, Figure 2A,B). In contrast,
in KIRC, most of the APOBEC genes showed a deleterious effect, which higher expression
of genes was associated with worse survival (p < 0.05, Figure 2A,C). However, in ACC,
the APOBEC genes that were significantly associated with the survival of patients were
half-deleterious and half-beneficial (p < 0.05, Figure 2A,D). These results show that whether
the expression of the APOBEC family has a significant impact on the survival of patients
mainly depends on the type of cancer. In addition, we also noted that APOBEC3F and
APOBEC3H were significantly associated with the survival of patients with more cancer
types, compared to other family genes (Figure 2A). The above results reveal a highly
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heterogeneous genetic and expression alteration landscape of the APOBEC family across
cancer types, indicating that the expression imbalance is of great significance to tumor
development and progression in different cancer contexts, and significantly affects the
survival prognosis of patients.
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Figure 2. Prognostic value of APOBEC genes across cancer types. (A) Summary of the correlation
between the expression of APOBEC genes and patient survival across cancer types. Red represents a
higher expression of APOBEC gene associated with worse survival, and blue represents an association
with better survival. Only p < 0.05 are shown; (B–D) Forest plots show the prognostic value (overall
survival) for the 11 APOBEC genes in SKCM, KIRC, and ACC using a univariate Cox regression
model, respectively. Hazard ratio > 1 represented risk factors for survival and hazard ratio < 1
represented protective factors for survival.
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3.2. Two Patterns Mediated by APOBEC Family Were Significantly Correlated with Survival

To gain a comprehensive understanding of the expression pattern of the APOBEC
family at pan-cancer level, a total of >10,000 tumor samples from TCGA 33 cancer types that
contained clinical information were selected for further analysis. Each cancer type was ana-
lyzed individually. The pairwise correlations between the expression of 11 APOBEC genes
showed that the positive correlations were more frequent among APOBEC3C, APOBEC3D,
APOBEC3F, and APOBEC3H, which means that these genes were co-expressed across cancer
types, such as in ACC, SKCM and BRCA cancer samples (p < 0.05, Figures 3A and S4A,B,
Supplementary Materials). These results suggest that the cross-talk among the APOBEC
genes may be important for the generation of different patterns between individual tumors.

Next, using the R package of ConsensusClusterPlus [33], and based on the global
expression pattern of the APOBEC family, two patterns of APOBEC-mediated stratifi-
cation (AMS) in tumor samples were identified across cancer types, respectively. In
ACC, for example, the first AMS pattern showed a higher expression of APOBEC3C,
APOBEC3D, APOBEC3F, and APOBEC3G (namely, Cluster-A), and the remaining tumor
samples were characterized by a lower expression of APOBEC3C, APOBEC3D, APOBEC3F,
and APOBEC3G (namely, Cluster-B) (p < 0.05, Figure 3B). The expression level of APOBEC1,
AICDA and APOBEC4 was generally too low in the tumor samples (e.g., APOBEC1 in
ACC, Figure 3C), so we think that these genes have little contribution to the stratification.
Subsequently, principal component analysis was performed to elucidate the difference in
transcriptional profiles between the Cluster-A and Cluster-B subgroups (Figure 3D). The
results indicated that there was a clear distinction between the two AMS patterns. Notably,
we found that the two AMS patterns were significantly correlated with the survival of
patients. As shown in Figure 3E, the Cluster-A pattern presented a particularly prominent
survival advantage for patients compared to the Cluster-B pattern (log-rank p < 0.005).
Moreover, by multivariate Cox regression model analysis, which included the factors of
patients’ age, gender, and tumor stage status, the results confirmed that the AMS pattern
can be a robust and independent prognostic biomarker for evaluating patient outcomes
(p < 0.05) (Figure 3F).

As consistent with ACC, we also identified the two AMS patterns from other cancer
types, respectively, such as in SKCM and BRCA. As shown in Figure S4C,D (Supplemen-
tary Materials), the expression regulation of APOBEC3C, APOBEC3D, APOBEC3F, and
APOBEC3G genes were distinct between the Cluster-A and Cluster-B patterns. More-
over, in these cancer types, the Cluster-A pattern was also proved to have a significant
survival advantage for patients compared to the Cluster-B pattern (Figure S5, Supplemen-
tary Materials; p < 0.05). The results confirmed that, at pan-cancer level, the regulation
of APOBEC-mediated stratification can divide tumor samples into two clear distinction
patterns, and that the regulation of APOBEC-mediated stratification was significantly
correlated with patient survival. In addition, APOBEC3B was more widely explored than
the other APOBEC genes in the current research. Our results showed that the regulation
of APOBEC3B in the two AMS patterns for different cancer types was different. In the
ACC Cluster-A tumors, the expression of APOBEC3B was downregulated, compared to
Cluster-B (Figure 3B,C), while in SKCM and BRCA Cluster-A tumors, APOBEC3B showed
a higher expression (Figure S4C,D, Supplementary Materials). This indicates that, due to
the heterogeneity of tumors, the contribution of APOBEC3B to the stratification of different
cancer types was different.
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Figure 3. Patterns of APOBEC-mediated stratification and prognosis characteristics of each pattern in
ACC. (A) Correlations between the expression of 11 APOBEC genes in ACC. A positive correlation is
indicated in orange, and a negative correlation is indicated in purple. The color intensity and size of
the circle are proportional to the correlation coefficient; (B) Unsupervised clustering of 11 APOBEC
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genes in ACC. The clustering, patient gender, the molecular subtypes, the clinical histological type,
tumor stage, and age (old, >65 years old) were used as patient annotations. Each column represented
patients and each row represented an APOBEC gene. Red represented high expression of the APOBEC
gene and blue represented low expression; (C) Box plots showing the expression distribution of
APOBEC genes between the two patterns of APOBEC-mediated stratification in ACC; (D) Principal
component analysis for the transcriptome profiles of the two APOBEC-mediated patterns in ACC,
showing a remarkable difference in the transcriptome between different patterns; (E) Survival curves
of the two patterns of APOBEC-mediated stratification in ACC. Kaplan–Meier plot of overall survival
for the two APOBEC-mediated patterns in ACC with prognosis information. The horizontal axis
represents the survival time (months), and the vertical axis is the probability of survival. The log-rank
test was used to assess the statistical significance of the differences in prognosis between the two
pattern tumors; (F) Multivariate Cox regression analysis for APOBEC-mediated patterns in ACC is
shown by the forest plot. * p < 0.05.

3.3. Distinct TME Infiltration Characteristics in the Two AMS Patterns

A large number of studies have documented the association between TME infiltrat-
ing the immune cells and antigens arising from somatic mutations in cancer cells, and
the APOBEC family was shown to induce tumor mutations by an aberrant DNA editing
mechanism. Therefore, we attempted to comprehensively reveal the integrated role of
11 APOBEC genes in TME infiltration characteristics in pan-cancer. As in ACC, by using
the ESTIMATE algorithm [34] to quantify the overall infiltration of immune cells, we found
that the Cluster-A pattern exhibited significantly increased immune scores compared with
Cluster-B (Figure 4A). By collecting TCGA tumor purity data from previous studies [31],
we also observed that the Cluster-A pattern showed remarkably lower tumor purity (cellu-
larity) compared to Cluster-B (Figure 4B). This result indicated that in the Cluster-A pattern
tumors, there were more immune cell infiltrations and fewer tumor cells in TME than in
the Cluster-B pattern. For a comprehensive assessment of immune cell infiltration, we
used CIBERSORT deconvolution [35] to quantify various immune populations using gene
expression. As shown in Figure 4C, we found that, compared to the Cluster-A pattern, the
infiltration of several immune cell populations was significantly increased in the TME of
the Cluster-B pattern, including the T cells CD4 naive, NK cells resting, dendritic cells acti-
vated, and eosinophils. There were only three cell populations that showed a significantly
higher infiltration in the TME of the Cluster-A pattern compared to the Cluster-B pattern,
including T cells CD8, Macrophages M1, and T cells regulatory (Tregs) (p < 0.05, Figure 4C).
It suggested that the APOBEC-mediated regulation affected only a small part of the TME
infiltrating cell types for tumors. Significantly, the higher infiltration of the CD8 T cells in
the Cluster-A pattern, which are the cytotoxic T cells with well-recognized significance in
anti-tumor immunity, might explain why the Cluster-A patterns have better survival out-
comes than Cluster-B, that is, the APOBEC-mediated induction and activation of cytotoxic
CD8 T cells in TME, and the consequent intra-tumoral anti-tumor immune response.
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Figure 4. TME cell infiltration characteristics and transcriptome traits in the two patterns of APOBEC-
mediated stratification in ACC. Evaluation of immune scores (A) and tumor purity (B) between the
two patterns of APOBEC-mediated stratification in ACC; (C) Box plots show the abundance of each
TME infiltrating cell in the two APOBEC-mediated patterns in ACC. The asterisks represented the
statistical p value (* p < 0.05; ** p < 0.01); (D) Functional annotation for DEGs of the two APOBEC-
mediated patterns of ACC using GO enrichment analysis. The upper bar plots graph shows the top
10 GO terms results of upregulated genes in Cluster-A pattern tumors in ACC. The lower bar plots
graph shows the top 10 GO terms results of downregulated genes in Cluster-A pattern tumors in
ACC; (E) Gene set enrichment analysis (GSEA) of three immune activation-related pathways enriched
in Cluster-A.
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For further investigation of the potential biological processes and pathways involved
in the molecular heterogeneity between the Cluster-A and Cluster-B patterns, we identified
2574 differential expression genes (DEGs, |log2FC| > 1, FDR < 0.05) between the Cluster-A
and Cluster-B subgroups in ACC. Of these, 1714 (log2FC > 1, FDR < 0.05) were upregulated
in Cluster-A tumors, and 860 were downregulated in Cluster-A tumors (log2FC < −1 and
FDR < 0.05). By GO enrichment analysis for these DEGs, the top 10 GO terms indicated that
the upregulated genes were enriched in immune activation-related processes, including T
cell activation, positive regulation of cell activation, leukocyte-mediated immunity, and
so on; and the downregulated genes were enriched in the cell division-related processes,
including nuclear division, chromosome segregation, metaphase/anaphase transition of
mitotic cell cycle, and so on (Figure 4D). In addition, the results from the GSEA analysis
(Gene set enrichment analysis) also revealed that the Cluster-A pattern was significantly
associated with immune activation-related pathways, including antigen processing and
presentation, leukocyte trans-endothelial migration, and the T cell receptor signaling path-
way (Figure 4E). These results testified that there was a clear distinction in TME infiltration
characteristics between the two patterns of APOBEC-mediated stratification in ACC. The
Cluster-A pattern was classified as the phenotype of immune activation, characterized by a
high immune score, increased infiltration of CD8 T cell, and better survival; the Cluster-B
pattern was classified as the low-infiltration immune phenotype, characterized by a low
immune score, lack of effective immune infiltration, and poorer survival.

Similar to ACC, the Cluster-A pattern in other cancer types also exhibited significantly
increased immune scores and remarkably lower tumor purity compared with the Cluster-B
pattern, such as in BRCA, SKCM, PRAD, and KIRC (p < 0.05, Figure S6A,B, Supplementary
Materials). In particular, the higher infiltration of the CD8 T cells in the Cluster-A pattern
was also observed in these cancer types (p < 0.05, Figure S6C, Supplementary Materials).
Therefore, we speculated that there are two APOBEC-mediated regulation patterns with
distinct TME cell infiltration characteristics in pan-cancer. To our surprise, by GO enrich-
ment analysis for the DEGs between the Cluster-A and Cluster-B subgroups in other cancer
types, such as in BRCA, we also demonstrated that the upregulated genes, which were
higher expressed in the Cluster-A pattern compared to the Cluster-B pattern, were enriched
in immunity activation-related processes. The top 10 GO terms included positive regula-
tion of leukocyte activation, leukocyte-mediated immunity, immune response-activating
cell surface receptor signaling pathway, and so on (Figure S6D, Supplementary Materi-
als). These results were highly consistent with those in ACC, and confirmed again that
the APOBEC family played a non-negligible role in the immune regulation in the tumor
microenvironment at pan-cancer level.

3.4. Clinical Relevance and Immunotherapy Sensitivity Association of AMS Pattern

Observed connections between the AMS pattern and TME features prompted us to
explore the clinical significance of these distinct phenotypes. Current staging schemes
broadly divide tumors into four stages (or five stages), from stage I to IV (or X). Stage I and
II tumors are characterized by being potentially curable by complete resection. Stage III
and stage IV (and stage X) tumors are characterized by high invasiveness or metastasis
and lower survival [42,43]. Interestingly, when we examined the distribution of APOBEC-
mediated stratification in different tumor staging, we found that the Cluster-B tumors were
more enriched with the advanced tumors, and the Cluster-A tumors were more enriched in
the early tumors. In ACC, for example, the proportion of patients with Cluster-B patterns
in stage I—stage IV was 18.2%, 38.9%, 60.0%, and 66.7%, respectively (Figure 5A). In BRCA,
the proportion of patients with Cluster-B pattern in stage I to stage X tumors were 59.2%,
57.8%, 61.7%, 75%, and 81.8%, respectively (Figure S7A, Supplementary Materials). It
is suggested that the high-stage subtypes were characterized by the APOBEC-mediated
pattern with low-infiltration immune. From the above results, we also note that Cluster-B
tumors have significantly increased tumor cells in TME compared with Cluster-A tumors
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(Figure 4B, and Figure S6B, Supplementary Materials). These results confirmed that the
APOBEC family plays a crucial role in tumor progression and differentiation.
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patterns in ACC. (A,B) The proportion of the two APOBEC-mediated patterns in tumor staging and
molecular subtypes in ACC. CIMP-high, CpG island hypermethylation; (C,D) Heatmaps comparing
expression profiles of HLA and antigen presenting genes and immune checkpoints molecules between
two the APOBEC-mediated patterns.

Recent studies also identified an ACC subtype of CIMP-high (CpG island hypermethy-
lation), which is characterized by rapid recurrent, invasive cancer, and poor survival [44].
Surprisingly, in our study, 88.9% of the CIMP-high tumors were Cluster-B pattern tumors in
ACC, while 87.1% of the CIMP-low tumors were Cluster-A pattern tumors (Figure 5B). In
addition, previous studies from The Cancer Genome Atlas Network divided SKCM tumors
into four genomic subtypes, designated BRAF, RAS (N/H/K), NF1, and Triple-WT [45].
Among these genomic subtypes, SKCM NRAS subtypes were found in the CIMP-high
(CpG island hypermethylation) cluster. Similar to ACC, we also found that the RAS sub-
type contained more SKCM Cluster-B pattern tumors (59.3%), while most BRAF subtype
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tumors were SKCM Cluster-A pattern tumors (64.2%, Figure S7B, Supplementary Materi-
als). These results indicated that the Cluster-B pattern tumors may have the characteristics
of hypermethylation. Moreover, previous studies have revealed that there is a strong
correlation between CIMP-high and IDH1 mutation, and the level of genome-wide DNA
hypermethylation is significantly increased in IDH1 subtype tumors. In the project of
The Cancer Genome Atlas Network, the PRAD tumors were divided into seven molec-
ular subtypes including four subtypes, characterized by cancer-driving gene fusions, or
new genes formed by two previously separate genes (ERG, ETV1/4, and FLI1); three of
the subtypes are characterized by cancer-driving genetic mutations (SPOP, FOXA1, and
IDH1) [46]. Similar to the above results, we also found that the PRAD Cluster-B pattern
tumors accounted for 66.7% of IDH1 subtype (Figure S7C, Supplementary Materials). This
result confirmed that the APOBEC-mediated pattern with low-infiltration immune was
also highly associated with the CIMP-high tumor subtype (CpG island hypermethylation).

The clinical trials and preclinical researches revealed the mechanisms of ICB resistance,
including low expression of human leukocyte antigens (HLAs) and immune checkpoints.
Considering that the regulation of APOBEC-mediated stratification appears to be asso-
ciated with the immune microenvironment of the tumor, we explored the sensitivity to
immunotherapy between these AMS patterns. As shown in Figure 5C and Figure S7D
(Supplementary Materials), the genes encoding HLAs and other antigen-presenting ma-
chinery (gene list from George et al. [47]) were expressed at higher levels in the Cluster-A
pattern tumors, such as in the ACC and BRCA tumors. Likewise, in these cancer types, we
also found that the Cluster-A pattern tumors have a higher expression of many immune
checkpoint molecules, including PD-1 (programmed cell death protein-1), TIGIT (T cell
immunoreceptor with Ig and ITIM domain), CD80, and CD86, which encode the ligands
for cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and CTLA-4 itself, and so on
(Figures 5D and S7E, Supplementary Materials). These results indicated a potential re-
sponse to treatment with ICB therapy in these patients with the APOBEC-mediated pattern
with immune activation.

4. Conclusions

In conclusion, we demonstrated the prevalent expression alterations of the APOBEC
family across cancer types. Integrated analysis of the APOBEC family revealed an extensive
regulatory mechanism by which they affect the tumor microenvironment and the process
of tumor oncogenesis and development, and their relationship with patient prognosis in
pan-cancer. This systematic analysis of the landscape of molecular alterations, immuno-
oncology features, and clinical relevance in the APOBEC family lays a critical foundation
for understanding the dysregulation of the APOBEC family. It will also provide insights
into the development of related therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122827/s1, Additional file 1: Supplementary Table S1.
APOBEC family genetic and expression alterations across cancer types. Additional file 2: Supplemen-
tary Figures S1–S7.
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TME tumor microenvironment
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