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Multiple imputation and maximum likelihood estimation (via the
expectation-maximization algorithm) are two well-known methods read-
ily used for analyzing data with missing values. While these two methods
are often considered as being distinct from one another, multiple imputa-
tion (when using improper imputation) is actually equivalent to a stochastic
expectation-maximization approximation to the likelihood. In this article, we
exploit this key result to show that familiar likelihood-based approaches to
model selection, such as Akaike’s information criterion (AIC) and the Bayesian
information criterion (BIC), can be used to choose the imputation model that
best fits the observed data. Poor choice of imputation model is known to bias
inference, and while sensitivity analysis has often been used to explore the
implications of different imputation models, we show that the data can be used
to choose an appropriate imputation model via conventional model selection
tools. We show that BIC can be consistent for selecting the correct imputa-
tion model in the presence of missing data. We verify these results empirically
through simulation studies, and demonstrate their practicality on two classical
missing data examples. An interesting result we saw in simulations was that not
only can parameter estimates be biased by misspecifying the imputation model,
but also by overfitting the imputation model. This emphasizes the importance
of using model selection not just to choose the appropriate type of imputa-
tion model, but also to decide on the appropriate level of imputation model
complexity.
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1 INTRODUCTION

Missing data commonly arise in many health research datasets, for example, in clinical trials,1,2 in biomarker data,3,4 in
covariates when fitting Cox models,5,6 or in longitudinal studies.7 Multiple imputation (MI)8 and maximum likelihood
estimation (MLE) via the expectation-maximization (EM) algorithm9 are two well-known methods used to account for
missing values in partially observed datasets. MI is a Monte Carlo approach where missing values are imputed to create
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a complete dataset, whereas the EM algorithm is an iterative method developed for finding the MLE in the presence
of missing data. Stochastic versions of EM, in particular Monte Carlo EM (MCEM)10 and stochastic EM (StEM)11-13 are
numerical approaches of EM to compute a Monte Carlo approximation to MLE.

A little-appreciated idea is that MI and MLE are closely connected, with some exceptions in comparing their perfor-
mances in numerical results, for example, see Honaker and King.14 Specifically, StEM can be understood as a type of
multiple imputation where data are imputed from a model that fixes parameter estimates at the maximizer of the impu-
tation model likelihood (a type of “improper MI,” see Rubin8). This result has been referred to in Reference 15 and 16,
and importantly, it permits us to think of the multiple imputation procedure in a likelihood framework, motivating the
application of standard likelihood machinery in multiple imputation. While this opportunity offers considerable poten-
tial, little work along these lines has been done to date. In particular, the literature on imputation model selection within
the MI framework is surprisingly sparse given its potential application range. With the exception of some pragmatic sug-
gestions for model selection,17-19 no overall and general valid framework has been provided for either model selection or
for imputation model selection when using MI. In this article, we focus on the question of selecting an imputation model
to use to impute missing values with MI, and show that standard likelihood-based model selection tools are applicable to
this problem. We leave the development of a valid framework for model selection for predictors with MI for future work.

When using MI, careful consideration of which imputation model to select is needed, because using the wrong impu-
tation model can result in incorrect inferences and misleading conclusions.19-21 There are guidelines for specification
of the imputation model that tend to be ad hoc and based on heuristic arguments22-24 rather than providing an over-
all valid theoretical framework for imputation model selection. Other methods include assessing the sensitivity of MI
results using a weighting approach25 or the pattern-mixture approach,26,27 and using variable selection procedures to
select the best imputation model based on the fraction of missing information when estimated from an appropriate Proxy
pattern-mixture model.28 A key focus of the current study is to provide a flexible, data-driven approach for choosing the
imputation model.

In this article, we exploit the equivalence between MI and MLE, to propose imputation model selection using
likelihood-based information criteria. In principle, any likelihood-based information criterion with desirable properties
could be used, and we focus in particular on the Akaike information criterion (AIC) and Bayesian information criterion
(BIC), computed using the observed data likelihood. We show that BIC preserves its usual property of consistency in
model selection, when selecting an imputation model, and illustrate this via simulation.

In Sections 2.1 and 2.2, we give an overview of the connection between MI and StEM methods. In Section 3, we develop
AIC and BIC for choosing the best imputation model and study some of their properties. Three simulation studies are
given in Section 4 and we present some real-data examples in health research in Section 5. Finally, we provide a summary
discussion in Section 6.

2 MISSING DATA ANALYSIS METHODS

Suppose y is the observed data, z is the missing data, and r is the missingness indicator vector where its components are
set as ri = 0 if the ith data point is missing and ri = 1 if the ith data point is observed. Note that y can contain the vector of
observed response variables, denoted Y , as well as the vector of observed predictors X1, X2, … . Also, denote 𝜃 as a vector
of unknown model parameters. For now we assume that these data are missing not at random (MNAR) but note that
the methods presented below are also applicable for missing at random (MAR) data, the special case of MNAR where
missingness is ignorable. These data are considered to be MAR when ∀𝜃, r, y, z, z∗ we have p(r|y, z, 𝜃) = p(r|y, z∗, 𝜃), and
MNAR when ∃𝜃, r, y, z ≠ z∗ such that we have p(r|y, z, 𝜃) ≠ p(r|y, z∗, 𝜃). For more details on the definitions of MAR and
MNAR, see Seaman et al,29 Mealli et al,30 and Doretti et al.31

To estimate 𝜃, we maximize the observed data likelihood, p(y, r|𝜃), which, in the presence of missing data, is obtained
by integrating out the missing data from the complete-data likelihood, p(y, z, r|𝜃):

L(𝜃; y, r) = p(y, r|𝜃) = ∫ p(y, z, r|𝜃)dz. (1)

When data are MAR and missingness is ignorable, then the missingness mechanism does not depend on the missing
data, that is, p(r|y, z, 𝜃) = p(r|y, 𝜃). Therefore, the observed likelihood ignoring the missingness mechanism is defined to
be L(𝜃; y, r) ∝ L(𝜃; y) = p(y|𝜃) = ∫ p(y, z|𝜃)dz, which does not involve the model for r.27
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Likelihood (1) can be difficult to solve for complex models or when the data are of high dimension. In the missing data
context, a common approach is to impute (fill-in) missing data, z, with some plausible values that are a good summary of z,
to which we obtain a (pseudo-) complete dataset. Two well-known methods that use imputation procedures are multiple
imputation (MI) and stochastic EM (StEM). These two methods turn out to have a close resemblance, although they
were developed to serve different purposes. MI was primarily developed in the context of missing data analysis to reflect
uncertainty in the imputed values.8 Stochastic EM was developed more broadly as a computational device when using
an EM algorithm. Specifically, StEM was designed to overcome computational difficulties, or intractable E-steps.10,12,32,33

The objective of both methods is to achieve valid statistical inferences, rather than optimal predictions of the missing
data.34 First, we give a brief overview of both methods, then show their equivalence.

2.1 Multiple imputation

Multiple imputation is a Monte Carlo method originally proposed by Rubin8,35 where every missing observation in the
dataset is imputed with a simulated value to create a complete dataset. The imputation step is repeated M ≥ 2 times, such
that M-completed datasets are generated. That is, we impute z with a set of plausible values, z* = (z(1), z(2), … , z(M)), for
some M ≥ 2. Each (pseudo-) complete dataset is then separately analyzed by standard complete-data analysis methods.
In order to achieve asymptotically valid statistical inference, the resulting estimates from each M-completed dataset need
to be pooled according to Rubin’s rule,8 see Appendix B for further details.

MI is sometimes performed in an iterative manner to approximate the observed posterior of 𝜃, as summarized in
Box 1 (left). Consider a complete data model p(y, z, r|𝜃), and the imputation model p(z|y, r, 𝜃). Multiple imputations
are repeated random draws from the posterior predictive distribution of missing data given the observed data and
the current estimates of 𝜃. The Monte Carlo average of the current multiple imputed datasets gives a current approx-
imation to the observed posterior, p(𝜃|y, r) = ∫ p(𝜃|y, z, r)p(z|y, r)dz ≃ M−1 ∑M

j=1 p(𝜃|y, z(j), r). Since we have p(z|y, r) =
∫ p(z|y, r, 𝜃)p(𝜃|y, r)d𝜃, these two steps of imputation (I-step) and posterior re-estimation (P-step) are iterated a large num-
ber of times to eventually produce a draw of (z, 𝜃) from their joint observed posterior. Finally, the next M imputations are
implemented as multiple imputations in Rubin’s combination rules to make inference about the dataset.

The algorithm in Box 1 (left) imputes missing values from an imputation model whose parameters were sampled from
the posterior distribution for 𝜃. This is referred to by Rubin8 as “proper MI.” Other methods of updating 𝜃 are possible,
but unless they satisfy Rubin’s rules8 they are labeled “improper” and their statistical properties are less well studied.

Assuming that a correct model is specified for imputation, Rubin8 provided rules on how to do parameter estimation,
construct confidence intervals, calculate P-values and carry out hypothesis testing based on Wald’s method when using
MI. We extend this list by developing imputation model selection criteria with the MI framework, see Section 3.

2.2 MLE via stochastic EM

The EM algorithm9 was designed to find MLE estimates of parameters of a parametric model in an iterative manner
when the observed data are incomplete. This procedure makes use of Fisher’s identity, where the maximization of the
unknown observed log-likelihood is replaced with the maximization of the conditional expectation of an associated
complete log-likelihood:

𝜕l(𝜃; y, r)
𝜕𝜃

= E𝜃

{
𝜕l(𝜃; y, z, r)

𝜕𝜃
||| y, r

}
.

An EM iteration 𝜃(t) → 𝜃(t+1) consists of two steps. The E-step computes the expectation of conditional complete-data
log-likelihood given the observed data (with respect to the imputation model at the current estimate of parameters),

Q(𝜃|𝜃(t)) = ∫ log {p(y, z, r|𝜃)} p(z|y, r, 𝜃(t))dz.

The M-step updates the estimates of parameters by maximization of the expectation function computed in the E-step,

𝜃(t+1) = arg max
𝜃∈Θ

Q(𝜃|𝜃(t)).
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In situations where Q(𝜃|𝜃(t)) is either analytically intractable36 or computationally intensive,37 it is possible to replace
analytical computation of Q(𝜃|𝜃(t)) by a suitable approximation to this function, commonly via simulation methods such
as MCMC. In this paradigm, stochastic versions of the EM algorithm were designed to numerically compute Q(𝜃|𝜃(t)) by
Monte Carlo approximation. As such, the E-step in the EM algorithm simplifies to the computation of the imputation
model, p(z|y, r, 𝜃(t)), and simulation of the missing data z(t). In other words, the E-step turns into an imputation step
(I-step) where

z(j) ∼ p(z|y, r, 𝜃(t)), j = 1, … ,M,

to approximate Q(𝜃|𝜃(t)) as a Monte Carlo average,

Q(𝜃|𝜃(t)) ≃ 1
M

M∑
j=1

log p(y, r, z(j)|𝜃).
A special case of the EM algorithm is the stochastic EM (StEM)11-13 summarized in Box 1 (right). StEM, without
aiming to produce any approximate computation of Q(𝜃|𝜃(t)), imputes the missing data only once in the I-step until
the algorithm converges to its stationary distribution, whose mean is close to the MLE.33 The random sequence
of {𝜃(t)} generated by the StEM does not converge pointwise to the MLE, but, under mild conditions, does con-
verge in distribution.32 After the algorithm converges, multiple imputations are generated by running extra M iter-
ations to sample from the stationary distribution, and the sample mean gives an approximate MLE of the observed
likelihood.

The StEM estimator is shown to be an asymptotically normal, unbiased, and consistent estimator of 𝜃 when consider-
ing models from the exponential family.32 Asymptotic properties of the StEM estimator are given in Wang and Robins15

and Nielsen.38

2.3 MI as stochastic EM

Studying Box 1, it is evident that the MI and StEM algorithms described above are almost identical—both iter-
ate between imputation from the current model (“I step”) and updating the imputation model (“P step”), then
following convergence, both involve averaging estimates obtained from a set of M ensuing iterations. The only
difference between the two algorithms is in how 𝜃 is updated at Step 2—using random draws from the cur-
rent posterior, or using the maximizer of the current estimate of the likelihood function. While the former is a
proper MI,8 the latter is not since (B2, see Appendix B), and therefore (B1, see Appendix B), will no longer be
satisfied.

Box 1. MI (proper) and StEM (improper) algorithms, note that they only differ at step 2

MI (“proper”): StEM (“improper”):

0. Fix 𝜃(0) in Θ 0. Fix 𝜃(0) in Θ

1. z(t+1) ∼ p(z|y, r, 𝜃(t)) 1. z(t+1) ∼ p(z|y, r, 𝜃(t))

2. 𝜃(t+1) ∼ p(𝜃|y, r, z(t+1)) 2. 𝜃(t+1) = arg max p(y, r, z(t+1)|𝜃)
3. Repeat steps 1 and 2 until convergence (at t =T) 3. Repeat steps 1 and 2 until convergence (at t =T)

4. Repeat steps 1 and 2 for t =T + 1, … , T +M 4. Repeat steps 1 and 2 for t =T + 1, … , T +M

5. �̂� = 1
M

∑T+M
i=T+1 𝜃

(i) 5. �̂� = 1
M

∑T+M
i=T+1 𝜃

(i)

MI views 𝜃 as random (with a prior distribution) and samples values from the observed posterior. These samples
from the posterior are used to impute the missing values z, and are eventually averaged to approximate the mean of the
posterior distribution of 𝜃. StEM views 𝜃 as fixed, and at each step uses an estimate of it in the model that imputes missing
values z, and eventually averages these for a final estimate of 𝜃. From the MI point of view, this can be understood as
approximating the mode of the posterior distribution with flat priors, rather than the mean. However, both algorithms
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assume their estimators are asymptotically normal,8,32 which would imply that the mean and mode would converge
asymptotically.

While Rubin’s combination rule8 enables calculation of approximate standard errors when using proper MI, these are
not available in the improper case. StEM nevertheless comes with recommended approaches to estimate standard errors
via Louis’ method, which interestingly, can be shown to have a similar form as Rubin’s rule (see Appendix B).

3 IMPUTATION MODEL SELECTION USING INFORMATION CRITERIA

The equivalence between StEM and improper MI allows standard likelihood machinery to be used to improve MI’s per-
formance. This connection changes our view of MI and provides the possibility of accessing a range of likelihood-based
tools in situations where MI’s performance could be improved in a likelihood-based framework.

One important gain, for example, is when a maximum likelihood framework can provide the analyst with model
selection tools for choosing the best imputation model, and can enable further insights into the consequences of imputa-
tion model misspecification. In the MI literature, there are no diagnostic criteria for how to choose between imputation
models. In a heuristic manner, it is recommended to either specify a multivariate normal distribution as a joint model for
missing data22 or specify a univariate conditional imputation model for each missing variable.24 Also, it is recommended
to add as many variables in the imputation model as possible, with at least as many variables as presented in the substan-
tive analysis model of interest.34,39 Furthermore, it is not clear how to choose between different missing data mechanisms.
These are often considered untestable assumptions, which need to be determined from prior knowledge.40 Literature sug-
gests performing a sensitivity analysis to explore the impact of the different assumptions for missingness mechanism.25,41

In this article, we show that available and well-known information-based criteria in the maximum likelihood literature,
which enjoy good statistical properties, can be used to select an imputation model among a set of candidate imputation
models.

For illustration, we will use AIC and BIC for imputation model selection, study their properties by simula-
tion, and apply them to two real-data examples. Denote |𝜃| as the number of model parameters. We write AIC =
−2 sup𝜃 log p(y, r|𝜃) + 2|𝜃|, and BIC = −2 sup𝜃 log p(y, r|𝜃) + log(n) × |𝜃|. BIC has been shown to be consistent under a
broad range of settings, and we add multiple imputation models to that list in Theorem 1 below.

The equivalence of StEM and MI could in principle be used to motivate the application of any likelihood-based infor-
mation criterion to imputation model selection. For example, a small-sample correction to AIC developed by Hurvich
and Tsai42 could also be applied. Cavanaugh and Shumway43 and Ibrahim44 developed AIC-type criteria based on the
expected complete likelihood (Q(𝜃)), which would be straightforward to approximate from imputed data. However, note
that Q(𝜃) differs from the observed likelihood by an entropy term. In mixture models, it has been shown that if competing
models differ in their entropies, complete likelihood criteria can have undesirable properties, which follow from omis-
sion of entropy from their criteria.45 A similar problem might arise in missing data analysis, when comparing imputation
models of differing complexity.

For the formulation of the next theorem, we need the notion of the most parsimonious correct model. We note that
in many situations, there may be multiple correct imputation models, denoted Mp∗, for example, when dealing with a
sequence of nested models that includes the true model.46 In these situations, there exist multiple correct imputation
models with different levels of complexity. Some of these correct imputation models may be too complex, including addi-
tional parameters with zero effect, and we define as the most parsimonious correct model Mp such that |𝜃Mp | ≤ |𝜃Mp∗ |
for every correct Mp∗ model. Mp is typically unique but in the below we do not require it to be. In Appendix A, we give a
proof of the following theorem, which shows that BIC is consistent for imputation model selection:

Theorem 1. Suppose M0 is the imputation model chosen by BIC and Mp is a finite set of the most parsimonious correct
models. If Assumptions 1 to 4 (see Appendix A) are satisfied, then

Pr(M0 ∈ M
p) → 1 as n → ∞.

We can explain how the observed log-likelihood is informative about the imputation model using an approximation
technique that, interestingly, is equivalent to that used in variational approximation of likelihood functions.47 Variational
approximation is a (trade-off) method for optimizing a log-likelihood function while enhancing its tractability, hence,
making approximate inference for parameters of a model. In the missing data context, an incorrect imputation model
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can be understood as a variational approximation to the observed log-likelihood. The approximations are indicated by the
Kullback-Leibler divergence48 of the specified imputation model from the true imputation model.

Suppose q(z|y, r, 𝜃) is a specified imputation model and p(z|y, r, 𝜃) is the true imputation model. Misspecification of
the imputation model implies that q(z|y, r, 𝜃) diverges from p(z|y, r, 𝜃). The divergence of q(z|y, r, 𝜃) from p(z|y, r, 𝜃) is
assessed by the Kullback-Leibler divergence, denoted by KL(q||p), and is always nonnegative. A zero value would only
occur when the imputation model is not misspecified, whereas a positive value would imply that the imputation model
is misspecified, and the further q(z|y, r, 𝜃) is from p(z|y, r, 𝜃), the larger this divergence is, that is, the greater is KL(q||p).

Following a similar approach as given in Ormerod and Wand,47 we have

log p(y, r|𝜃) = log p(y, r|𝜃)∫ q(z|y, r, 𝜃)dz

= ∫ q(z|y, r, 𝜃) log p(y, r|𝜃)dz

= ∫ q(z|y, r, 𝜃) log
(

p(y, z, r|𝜃)
q(z|y, r, 𝜃)

q(z|y, r, 𝜃)
p(z|y, r, 𝜃)

)
dz

= ∫ q(z|y, r, 𝜃) log
(

p(y, z, r|𝜃)
q(z|y, r, 𝜃)

)
dz − ∫ q(z|y, r, 𝜃) log

(
p(z|y, r, 𝜃)
q(z|y, r, 𝜃)

)
dz

= ∫ q(z|y, r, 𝜃) log
(

p(y, z, r|𝜃)
q(z|y, r, 𝜃)

)
dz + ∫ q(z|y, r, 𝜃) log

(
q(z|y, r, 𝜃)
p(z|y, r, 𝜃)

)
dz

= ∫ q(z|y, r, 𝜃) log
(

p(y, z, r|𝜃)
q(z|y, r, 𝜃)

)
dz + KL(q||p)

≥ ∫ q(z|y, r, 𝜃) log
(

p(y, z, r|𝜃)
q(z|y, r, 𝜃)

)
dz.

The maximum value of the lower bound in (2) over q is obtained when q(z|y, r, 𝜃) = p(z|y, r, 𝜃) (that is, when
the Kullback-Leibler divergence of q from p is at a minimum, or KL(q||p)= 0), since ∫ q(z|y, r, 𝜃) log

(
p(y,z,r|𝜃)
q(z|y,r,𝜃)

)
dz =

∫ p(z|y, r, 𝜃) log
(

p(y,z,r|𝜃)
p(z|y,r,𝜃)

)
dz = log p(y, r|𝜃). Therefore, the better the specified imputation model, the lower KL(q||p), and

hence, the higher ∫ q(z|y, r, 𝜃) log
(

p(y,z,r|𝜃)
q(z|y,r,𝜃)

)
dz. Thus, AIC and BIC based on observed log-likelihoods would be able to

reflect the goodness-of-fit of the chosen imputation model.

4 SIMULATION STUDY

We present two categories of simulation studies to investigate the performance of AIC and BIC as imputation model
selection criteria where we have: (I) a univariate missing variable and (II) multivariate missing variables.

4.1 Univariate missing variable

We consider two simulation scenarios with a univariate missing variable. In scenario (a), we fit a linear regression model
with missing values in the predictor variable; and in scenario (b), we fit a log-linear (Poisson) generalized linear model
(GLM) with missing values in the (count) response variable. We present scenario (b) in Appendix C2.

4.1.1 Univariate missing predictor

We assume the linear regression model, Yi = 1 + X1i + X2i + 𝜖i, where Y i, i= 1, … , n, is the response variable and
the errors are 𝜖i

i.i.d.∼ N(0, 1). Suppose that both predictors are independent and standard normal, but X1i is partially
observed. We imposed missingness on X1i as a regression function of X2i. Specifically, suppose that ri is the miss-
ingness indicator of X1i where ri = 0 if X1i is missing and ri = 1 if X1i is observed. Let pi be the probability of ri = 1
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satisfying

log
(

pi

1 − pi

)
= 𝜙0 + 𝜙1X2i.

Also, to investigate the consequences of overfitting an imputation model, suppose there are eight fully observed and
independent auxiliary variables Xki ∼N(0, 1) for k= 3, … , 10.

We imposed 10%, 25% and 40% missingness in X1 with 𝜙 = (2.5, 1)⊺, 𝜙 = (1.5, 1.2)⊺ and 𝜙 = (1, 2)⊺, respectively, where
𝜙 is the vector𝜙 = (𝜙0, 𝜙1)⊺. Because the missingness in X1 only depends on X2 the data is MAR, and thus, the missingness
mechanism is ignorable.

We ran 500 simulations. We used the squared distance of parameters between the (t + 1)th and the tth iterations as
a convergence criterion for the StEM algorithm, and set the convergence threshold to 10−3. Furthermore, the number
of multiple imputations was set to M = 100. To investigate the performance of information criteria for imputation model
selection, missing values Xmis, 1 were imputed under two overparametrized models with one and eight extra predictors,
respectively, as well as under the correct model and two wrong models (misspecified mean/distribution) as the following:

The overparametrized model (strong):

Xmis,1i ∼ N(𝜇1i, 𝜎
2) , 𝜇1i = 𝛾0 + 𝛾1Yi + 𝛾2X2i +

10∑
k=3

𝛾kXki

The overparametrized model (mild):

Xmis,1i ∼ N(𝜇1i, 𝜎
2) , 𝜇1i = 𝛾0 + 𝛾1Yi + 𝛾2X2i + 𝛾3X3i

The correct model:

Xmis,1i ∼ N(𝜇1i, 𝜎
2) , 𝜇1i = 𝛾0 + 𝛾1Yi + 𝛾2X2i

The misspecified-mean model:

Xmis,1i ∼ N(𝜇1i, 𝜎
2) , 𝜇1i = 𝛾0 + 𝛾1Yi + 𝛾4X3i

The misspecified-distribution model:

log(Xmis,1i) ∼ N(𝜇1i, 𝜎
2) , 𝜇1i = 𝛾0 + 𝛾1Yi + 𝛾2X2i.

Note that while X1 and X2 are independent, X1 is actually conditionally dependent on X2 (given Y ) because Y is a
function of X1 and X2. Therefore, the correct imputation model for X1 is a linear function of X2 as well as Y .

We used these five models to look at the ability of AIC and BIC to identify over-fitted imputation models as well as
imputation models misspecified in two different ways: underfitted or incorrect distributional assumption.

Results in Table 1 show the proportion of times the corresponding model is chosen based on each information
criterion for various sample sizes of n= {50, 100, 1000} and missing proportions of 10%, 25%, and 40%. These results
indicated that for even a small sample size of 50 and 40% missingness, both AIC and BIC are able to choose the cor-
rect model at least 86% of the time, with misspecified models selected rarely, and selected at a rate that went to zero
as sample size increased. The mild overparametrized model (Overpar. mild) was chosen by AIC 2% to 5% of the time
in total, irrespective of sample size. For BIC, the rate at which the correct model was chosen by BIC converged to one
as the sample size increased, as expected from Theorem 1. These results align with classical results for complete data
cases, where several studies have shown that AIC overfits (asymptotically)42,49,50 while in contrast, BIC can be consis-
tent for model selection.51,52 A possible strategy to correct for negative bias in small sample sizes when using AIC is to
use a corrected version as given in Hurvich and Tsai42 but that would not alter the overfitting property of AIC in large
samples.
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T A B L E 1 Proportion of times (%) the information criterion chooses the fitted imputation model for different sample sizes in
500 simulated datasets

10% 25% 40%

n: 50 100 1000 50 100 1000 50 100 1000

Correct AIC 94 95 96 93 95 96 86 94 96

BIC 96 100 100 95 99 100 87 96 100

Overpar. mild AIC 3 5 4 2 5 4 2 4 4

BIC 0 0 0 0 0 0 0 0 0

Overpar. strong AIC 0 0 0 0 0 0 0 0 0

BIC 0 0 0 0 0 0 0 0 0

Missp. mean AIC 3 0 0 5 0 0 12 2 0

BIC 4 0 0 5 1 0 12 4 0

Missp. dist. AIC 0 0 0 0 0 0 0 0 0

BIC 0 0 0 0 0 0 0 0 0

Note: The correct model (in bold) was selected most of the time in each simulation. Note that the proportion of times this model was chosen by BIC
converged to one as sample size increased, as expected under Theorem 1.

The importance of choosing the correct imputation model in practice is perhaps better demonstrated by investigating
its impact on post-selection inference from data. We therefore compared all methods based on the magnitude of bias and
root mean square error (RMSE) for 𝛽’s.

Figure 1 shows parallel boxplots of the relative bias of 𝛽1, defined here as 100 × (𝛽1 − 𝛽1)∕𝛽1, obtained from each
fitted model against increasing missing proportions and increasing sample size. Unsurprisingly, this figure showed
that the misspecified models underperformed in comparison to the correct model in terms of bias as the missing
proportion increased (top to bottom) and as the sample size increased (left to right). In some cases, the relative bias was
as large as 40% for wrong imputation models. More interestingly, strongly overparameterized models were also down-
ward biased (Figure 1), when missingness rate was not small (40%) and sample size was not large (n< 100). When sample
size is small, a strongly overparameterized imputation model can lead to overfitting, and when missingness rate is large,
this can have appreciable consequences in terms of bias. This result is interesting as we expected no bias but high vari-
ance from overfitting due to the commonly known bias-variance tradeoff.53 A possible explanation for this bias comes
from the measurement error modeling literature54—we postulate that overfitting an imputation model introduces extra
variability into the imputed predictor, which can be understood as a form of measurement error. But when there is
measurement error in a predictor that is not accounted for, linear model parameter estimates tend to be biased. In our sim-
ulation, this would bias estimates of 𝛽1 toward zero, an effect known as regression attenuation.54 This was observed in our
simulations.

Table 2 shows the root mean square error (RMSE) of 𝛽1 of the comparing models across 500 simulations. As
before, there was poor performance not only for misspecified imputation models but also for the strongly overparam-
eterized model, when the missingness rate was not small and sample size not large (Table 2, fourth row). The mildly
overparameterized model showed no detectable loss of performance.

Estimation of other regression parameters, 𝛽0 and 𝛽2 (Appendix C1), showed a similar cost of imputation model
misspecification, but little impact of overfitting. We also looked at coverage probability and found that this was generally
at or close to nominal levels, except in cases where the estimator was biased due to misspecification (cf. Figure 1).

We investigated how well we can avoid these issues using information criteria. We examined the impact on
post-selection inference of choosing the imputation model using AIC/BIC. If making inferences about 𝛽1 after imputa-
tion model selection using AIC and BIC, we found negligible bias (Figure 1) and low RMSE (Table 2) in all scenarios,
hence providing some protection against issues due to misspecification or overfitting of the imputation models.

Finally, while we used purpose-written StEM code to fit these models, we would expect similar results from any
available multiple imputation software that was used to fit the same imputation models. To confirm this, we repeated sim-
ulations using the Amelia55 and mice56 R-packages and compared results to those seen here. Amelia is a bootstrapped
version of the EM algorithm that assumes data are multivariate normal, and imputes the missing data by drawing from
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F I G U R E 1 Boxplot of the relative bias of 𝛽1 for different methods. Each method is compared with the original dataset (Complete)
based on the accuracy of their estimators as the missing proportion and the sample size increase from the top-left corner to the bottom-right.
Note that AIC/BIC refer to the model chosen by AIC/BIC, respectively, among the comparing imputation models [Colour figure can be
viewed at wileyonlinelibrary.com]

their posterior distribution given the estimated parameters. The mice package with the mice.impute.norm.nob()
function was used to impute X1 using improper imputation by linear regression (MICE). We saw similar patterns for
Amelia and MICE to those presented here (see Appendix C1).

4.2 Multivariate missing variable

Next, we investigated the case where missingness was of multiple dimension, and the response was non-normal (here we
considered binary data). The purpose of this simulation study is to investigate the performance of information criteria for
choosing between MAR and MNAR models with MI. Following example 4.1.2 from Ibrahim,57 we now suppose that the
response variables Y i, i= 1, … , n, are independent fully observed Bernoulli random variables and we are interested in
the analysis of a logistic regression (GLM) model E(Yi|X1i,X2i, 𝛽) = exp(Xi𝛽)∕{1 + exp(Xi𝛽)} where 𝛽 = (𝛽0, 𝛽1, 𝛽2)⊺ and

http://wileyonlinelibrary.com
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T A B L E 2 RMSE (×1000) of 𝛽1 for different imputation methods across 500 simulations, compared with the original dataset
(Complete)

10% 25% 40%

n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

Complete 146 103 32 146 103 32 146 103 32

Correct 152 107 32 159 111 34 171 115 36

Overpar. mild 152 106 32 159 111 34 171 115 36

Overpar. strong 152 108 33 168 114 34 195 122 36

Missp. mean 152 114 50 174 135 81 195 153 98

Missp. dist. 202 172 136 305 268 248 373 339 310

AIC 152 107 32 161 111 34 174 115 36

BIC 152 107 32 161 111 34 174 115 36

Note: The true value of the slope coefficient is 1.

Xi = [1 X1i X2i]. Suppose that the predictors, Xi = (X1i, X2i), i= 1, … , n, are partially observed variables from a bivariate
normal distribution N2(𝜇,Σ) with

𝜇 =

(
0.5
−0.5

)
and Σ =

(
0.25 0.125
0.125 0.25

)
.

Also, suppose that ri = (ri1, r2i) is the missingness indicator vector of (X1i, X2i)—for example, ri = (0, 0) if X1i and X2i
are both missing and ri = (0, 1) if X1i is missing and X2i is observed. Let p1 and p2 be the probabilities of r1i = 1
and r2i = 1, respectively, which satisfy logit(p1) ≡ log(p1∕(1 − p1)) = 𝜙10 + 𝜙11X1i + 𝜙12X2i + 𝜙13Yi and logit(p2) = 𝜙20 +
𝜙21X1i + 𝜙22X2i + 𝜙23Yi + 𝜙24r1i.

We are interested in the comparison of the following two imputation models:

Model 1: p(Xmis, i | Xobs, i, Y i, ri) and
Model 2: p(Xmis, i | Xobs, i, Y i),

where Model 1 assumes that the data are MNAR and missingness is nonignorable whereas Model 2 assumes that data
are MAR and ignores the missingness.

We ran 500 simulations with n= 250, 𝛽 = (1, 1,−1)⊺, 𝜙1 = (1,−1, 1, 1)⊺ and 𝜙2 = (1,−1, 1, 1,−0.5)⊺ where on average
we obtained about 19% missing data in X1, 25% in X2 and 6% in both. Also, to draw imputations at the ith iteration of
StEM, we used Metropolis Hastings within a Gibbs sampler58 to generate a sample from

p(Xmis,i|Xobs,i,Yi, ri, 𝛾
(t)
1 ) ∝ p(ri|Yi,Xmis,i,Xobs,i, 𝜙

(t))p(Yi|Xmis,i,Xobs,i, 𝛽
(t))p(Xmis,i,Xobs,i|𝛼(t))

for Model 1, and a sample from

p(Xmis,i|Xobs,i,Yi, 𝛾
(t)
2 ) ∝ p(Yi|Xmis,i,Xobs,i, 𝛽

(t))p(Xmis,i,Xobs,i|𝛼(t))

for Model 2 where 𝛼 = (𝜇,Σ), 𝛾1 = (𝜙, 𝛽, 𝛼) and 𝛾2 = (𝛽, 𝛼).
Once again, we used the squared distance of the parameters between the (t + 1)th and tth iterations as the convergence

criterion and set the convergence threshold to 10−4 with the number of multiple imputations set to M = 100.
Table 3 shows the proportion of times each model was chosen based on the corresponding information criterion. This

table shows that AIC and BIC were able to choose the correct model (Model 1) 99.4% and 95.2% of the times, respectively.
These results are consistent with the previous simulation results (cf. Section 4.1.1) as well as with our theoretical result
(cf. Section 3), indicating that in situations where AIC and BIC are applicable, they perform satisfactory for imputation
model selection.
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T A B L E 3 Proportion of times (%) the information criterion chooses the corresponding
model across 500 simulated datasets

Model 1 Model 2

AIC 99.4 0.6

BIC 95.2 4.8

Note: Data were generated under Model 1,
which assumes MNAR, whereas Model 2
assumed data were MAR. Note that both
approaches were able to recover the correct
model with high probability.

T A B L E 4 𝛽 j and mean square error (in parenthesis) for
different imputation models across 500 simulations

𝜷0 = 1 𝜷1 = 1 𝜷2 = −1

Model 1 1.008 (0.027) 1.014 (0.083) −1.018 (0.084)

Model 2 1.521 (0.342) 1.288 (0.177) −1.295 (0.186)

One again, we investigate the impact of imputation model selection, here between MNAR and MAR mod-
els, on post-selection inference from data. Table 4 shows the sample average of estimates of 𝛽j, denoted as
𝛽 j, j= 0, 1, 2, for the corresponding imputation model averaged over 500 simulations and its mean square error,
MSEj = (𝛽 j − 𝛽j)2 + s2

j , where sj is the simulated standard error of 𝛽 j. This table shows that parameter esti-
mates can be heavily biased if the wrong imputation model is used (Model 2), with much larger mean squared
errors.

5 EXAMPLES

We give two real-data examples in health research studies where missing values arise. The aim in both examples is to
select the most appropriate imputation model, using the tools presented in Section 3.

5.1 Survival of infants

The following example is taken from example 9.8 of Little and Rubin27 where a 23 contingency table on the survival
of infants is analysed in the presence of missing data. Suppose we have three dichotomous variables of Prenatal care
(i= {Less, More}), Survival (j= {Died, Survived}), and Clinic (k= {A, B}).

Let nijk denote the total count of the ijkth cell, and n =
∑

i
∑

j
∑

k nijk be the total sample size. Table 5 is (arti-
ficially) partially classified for about 26% of the data (255 cases out of 970) where we observed only nij. instead of
nijk. The remainder of the data (715 cases out of 970) are completely observed. Also, let 𝜋ijk denote classification
probability for the ijkth cell. The response variable is the cell counts, nijk. Subject to missingness, these cell counts
can be modeled by assuming different associations between the three predictors: Survival (S), Prenatal care (P), and
Clinic (C).

Assuming that these data are MAR and the missingness is ignorable, Little and Rubin27 applied the EM algorithm
to fit various models, such as {SC, SP, PC}, {SP, SC}, and {SC, PC} where, for example, {SC} denotes a model with all the
main effects of Survival, Prenatal, and Clinic and the interaction effect between Survival and Clinic. The goodness-of-fit
using likelihood-ratio tests was then assessed for each candidate model. Meng and Rubin59 applied Bayesian MI with a
full (saturated) model where they tested the null models {SC, PC} and {S, P, C} (a main effects only model) against the
full model using their proposed pooled likelihood-ratio test developed for MI. Both approaches concluded that Survival
is related to Clinic, but conditional on Clinic, Survival, and Prenatal care are independent indicating that {SC, PC} is the
best parsimonious fitted model.

This example can also be viewed as a problem of imputation model selection, where the response variable is the
missing variable. Thus, the model that we choose to fit to the data can be used as the imputation model in the MI algorithm.
As such, we will have imputation model candidates {SC, SP, PC}, {SP, SC}, {SC, PC}, and so on.

We fitted five competing imputation models as follows:
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Survival (S)

Clinic (C) Prenatal care (P) Died Survived

A Less 3 176

More 4 293

B Less 17 197

More 2 23 complete = 715

? Less 10 150

More 5 90 partial = 255

T A B L E 5 Survival of infants
taken directly from example 9.8 of
Little and Rubin27

Model 1 Model 2 Model 3 Model 4 Model 5

AIC 27.02 25.12 33.29 156.71 168.28

BIC 63.60 57.13 65.30 188.71 191.14

Note: Both AIC and BIC favored Model 2, {SC, PC}, in line with previous analyses.27,59

T A B L E 6 Information criteria for each
candidate imputation model for the survival of
infants example

Model 1: {SC, SP, PC},
Model 2: {SC, PC},
Model 3: {SP, PC},
Model 4: {SP, SC},
Model 5: {S, P, C}.

To demonstrate the model fitting procedure, the StEM/improper MI algorithm can be applied to this problem by the
following iterative steps:

1. Estimate initial value �̂�(0)
ijk based on the observed counts.

2. For tth iteration, t = 1, … , T,

• Simulate n̂(t)
ijk from Bin(nij., �̂�

(t−1)
ijk ).

• Re-estimate 𝜋ijk as �̂�(t)
ijk = arg max 𝓁(𝜋), where 𝓁(𝜋) =

∑
i
∑

j
∑

k nijk log 𝜋ijk is the complete log-likelihood of a multi-
nomial model. For instance, under Model 2, imputations for the partially classified counts of the ij1th cell are drawn
from n̂ij1 ∼ Bin(nij., �̂�ij1) where �̂�ij1 = �̂�ij1∕(�̂�ij1 + �̂�ij2) and n̂ij2 = nij. − n̂ij1.

3. Calculate the AIC/BIC for the fitted model using criteria presented in Section 3.

Table 6 shows the AIC and BIC for the above-mentioned imputation models based on M = 100 multiple imputations.
Also, the convergence threshold for the algorithm was set to 10−4. AIC and BIC both favored Model 2, in line with the
results of Little and Rubin27 and Meng and Rubin.59

Table 7 shows the estimated cell probabilities for the above-mentioned imputation models. These estimates differ
under each imputation model. For example, the percentage of infants dying with less prenatal care in clinic A, 𝜋111 × 100,
is estimated at 0.45 and 0.49 under the correct imputation model and under the overfitted imputation model, respectively.
However, this percentage is estimated to be much higher under Model 3 (at �̂�111 × 100 = 0.82), and even higher under
Model 4 (at �̂�111 × 100 = 1.41) and under Model 5 (at �̂�111 × 100 = 1.60). This result shows that the cell probabilities are
estimated more similarly by the correct model {SC, PC} and under the overfitted model {SC, SP, PC}. However, there is
clear a difference between �̂�ijks under Model 3, Model 4, and Model 5 and �̂�ijk under the correct imputation model {SC, PC}.
The estimated cell probabilities in Table 7 can be compared with their ML estimates via the EM algorithm obtained in
Little and Rubin,27 table 9.9.
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T A B L E 7 Estimated cell
probabilities �̂�ijk × 100 for
candidate imputation models
in Survival of infants data

Survival (S)

Clinic (C) Prenatal care (P) Died Survived

Model 1: {SC, SP, PC} A Less 0.45 25.35

More 0.79 38.78

B Less 2.64 28.57

More 0.34 3.07

Model 2: {SC, PC} A Less 0.49 25.27

More 0.76 38.79

B Less 2.68 28.57

More 0.30 3.15

Model 3: {SP, PC} A Less 0.82 36.66

More 0.30 28.46

B Less 2.27 17.26

More 0.83 13.40

Model 4: {SP, SC} A Less 1.41 24.64

More 1.05 38.59

B Less 1.68 29.27

More 0.09 3.23

Model 5: {S, P, C} A Less 1.60 36.34

More 1.21 27.41

B Less 0.81 18.26

More 0.09 3.27

Note: These estimates differ under each model. Although cell probabilities are estimated more similarly under the
overfitted model {SC, SP, PC} and the correct model {SC, PC}, there is a clear difference between �̂�ijks under Models 3, 4,
and 5 and �̂�ijk under the correct imputation model {SC, PC}.

5.2 Pima Indian women

In our next example, we analyzed data collected on 768 Pima Indian women of at least 21 years of age living near Phoenix,
Arizona who were tested for diabetes according to World Health Organization criteria. These data were collected by the
U.S. National Institute of Diabetes and Digestive and Kidney Diseases, and are available in the mlbench R-package.
These data were analyzed in Miller et al60 and further in Smith et al61 and Ripley.62 The binary response variable indicates
whether or not diabetes was diagnosed within 5 years of the examination (positive/negative). The explanatory variables
are

1. number of pregnancies,
2. plasma glucose concentration at 2 hours in an oral glucose tolerance test,
3. diastolic blood pressure (mm Hg),
4. triceps skin fold thickness (mm),
5. 2-hour serum insulin (𝜇U/ml),
6. body mass index (kg/m2),
7. diabetes pedigree function,
8. age (years).

There are five values missing (0.6%) for plasma glucose concentration, 11 values (1.4%) for body mass index, 35 val-
ues (4.6%) for diastolic blood pressure, 227 values (30%) for triceps, and 374 values (49%) for serum insulin. We fitted a
logistic regression generalized linear model assuming three different imputation models. These are
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Model 1 Model 2 Model 3

AIC 7231.142 7660.071 10544.15

BIC 7714.096 8026.931 10818.13

Note: The data strongly favored Model 1, suggesting a
non-ignorable missing data mechanism.

T A B L E 8 Information criterion for different imputation models fitted to
the Pima Indian women data

T A B L E 9 Estimates of regression parameters and their standard errors (in parentheses) for different imputation models in the Pima
Indian women example

Intercept Pregnancy Glucose Pressure Triceps Insulin BMI Pedigree Age

Model 1 −0.912 (0.102) 0.282 (0.113) 0.918 (0.143) −0.034 (0.107) 0.163 (0.152) 0.321 (0.208) 0.503 (0.139) 0.328 (0.098) 0.284 (0.120)

Model 2 −0.890 (0.100) 0.290 (0.113) 1.080 (0.185) −0.124 (0.110) 0.088 (0.199) 0.022 (0.267) 0.606 (0.179) 0.322 (0.098) 0.315 (0.119)

Model 3 −1.055 (0.154) 0.076 (0.187) 1.055 (0.178) −0.025 (0.146) 0.114 (0.180) 0.084 (0.181) 0.449 (0.190) 0.407 (0.147) 0.628 (0.211)

Note: Pregnancy, insulin, pedigree, and age are log-transformed.

Model 1: the missingness mechanism is nonignorable (MNAR),
Model 2: the missingness mechanism is ignorable (MAR),
Model 3: complete case estimation (MCAR).

Using the StEM/improper MI via Metropolis Hastings within a Gibbs sampler58 similar to Section 4.2, we assume that
under Model 1, the missingness mechanism is p(ri | Xmis, i, Xobs, i, Y i), and under Model 2, the missingness mechanism is
p(ri | Xobs, i, Y i) where ri is the joint missingness indicator and Xi is the joint representation of all explanatory variables.
Under the complete case model, we assume that ri is independent of Xi and Y i.

Table 8 shows the AIC and BIC values compared for each fitted model where both information criteria choose Model 1
over the other models. This strongly suggests that the missingness mechanism is nonignorable. Also, Table 9 shows
the estimates of regression parameters for each imputation model. Note that results given in this table are based on
log-transformations of insulin, pregnancy, pedigree and age as well as standardization on all predictors, and its interpreta-
tion here is only used for drawing comparison between the three imputation models. We see that quite different results are
obtained for these three models. For example, the regression parameter for 2-hour serum insulin is estimated at 0.321 for
Model 1, 0.022 for Model 2, and 0.084 for Model 3. This result suggests how different conclusions can be drawn depending
on whether we include the missingness mechanism in the model and whether or not it is worth doing so.

Note that the nonignorability of the missingness mechanism necessarily relies on parametric assumptions. In this
example, we have assumed that [ri|Xi,Yi] follows a multivariate Bernoulli distribution with a logit link function. Also, for
Model 1, we assume nonignorability of missingness mechanism for all the missing variables. A further investigation of
different parametric assumptions for ri (or whether nonignorability assumption can be relaxed for some of the missing
variables) may be carried out if one has a reasonable argument for considering these in the study. For example, a visual
inspection of the density plots of the observed and imputed data of triceps skin fold thickness and 2-hour serum insulin
for Model 1 in Figure 2 might suggest further investigations into whether missingness mechanism for triceps skin fold
thickness can be ignored.

6 DISCUSSION

By exploiting the connection between MLE and MI, our findings show that we can diagnose imputation models for mis-
specification using standard likelihood-based information criteria such as AIC and BIC. Moreover, for the first time, we
have provided insights into imputation model misspecification via variational approximation. Furthermore, we examined
some theoretical properties of BIC. We showed that BIC is consistent for the correct imputation model which also holds
when the correct model is missing not at random. We analyzed two health research datasets to demonstrate the method’s
flexibility for imputation model selection in the presence of missing data and the use of multiple imputation. For these
examples, we evaluated the post-imputation effect of imputation model selection on parameter estimates. We conducted
three simulation studies and showed that imputation model misspecification and overfitting can have substantial costs
in terms of bias and efficiency of parameter estimation, a problem that can often be avoided using model selection. These
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F I G U R E 2 Density curve plots of, A, observed triceps skin fold thickness (blue) and multiple imputed values of triceps skin fold
thickness (red) and, B, observed 2-hour serum insulin (blue) and multiple imputed values of 2-hour serum insulin (red) for Model 1 in Pima
Indian Women example. Similarity between the observed curve and imputed curves in (A) suggests that triceps skin fold thickness might be
missing at random. Difference between the observed curve and imputed curves in (B) suggests that 2-hour serum insulin is missing not at
random [Colour figure can be viewed at wileyonlinelibrary.com]

results are not surprising—the costs of misspecification and overfitting models are well-known—but it is perhaps sur-
prising that this has been little considered previously in the context of choosing an imputation model, where the ideas
apply equally well, as does the notion of using model selection to guard against such problems.

A simulation result that we did not anticipate is that overfitting the imputation model had costs not just in loss of
efficiency, but also in bias. This is an unusual finding because overfitting a model is conventionally thought to not bias
predictions, rather to increase their variance (the “bias-variance tradeoff”53). We speculate that bias arose in our simu-
lations via a similar mechanism to regression attenuation in measurement error modeling.54 Specifically, overfitting the
imputation model would lead to larger variance in the imputed missing values of predictors, which could be interpreted
as a form of measurement error on predictors. Unaccounted-for measurement error in predictors tends to bias coefficient
estimators,54 and in our simulation this would bias the estimator of 𝛽1 toward zero, as we observed.

While our simulations suggested negligible loss of efficiency when mildly overparametrizing the imputation model
(with just one unneeded predictor included), this need not be true in general. It became clear in our simulation work that
the sensitivity to choice of imputation model varied considerably with the context, and some situations are much more
sensitive to imputation method than others.

The fitted models used in this article were quite simple so it would be of interest to see how the criteria perform for
more complicated scenarios such as in high-dimensional settings where the number of variables or components available
for use in the analysis is larger than the number of observations, or when including random effects in the model. That
said, our approach is very general and applies to any scenario where MI is used on a regression model that is fitted by ML
for complete data, and thus, we do not anticipate any difficulties extending simulation studies to other settings such as
mixed models, beyond the consideration of which information criterion to use.63

The application of our findings may be extended to other areas where MI’s performance could be improved in a likeli-
hood based framework. For example, suppose that we would like to predict myocardial infarction in patients with observed
blood pressure, body mass index, age, and gender, but cholesterol level is subject to missingness. MI’s approach based on
Rubin’s rules does not provide any guidance on how to approach prediction in the presence of missing data, and most of
the methods suggested in the MI literature are ad hoc.64 However, there is a clear guidance on how to carry out prediction
in a likelihood based framework and the close connection between MI and StEM could provide clarity in this field.

Another example of where likelihood based inference might improve MI’s performance is in hypothesis testing. In
the MI literature, hypothesis testing based on multiple imputed datasets were proposed to obtain a modified Wald test
statistic.8 Subsequent work by Meng and Rubin59 developed a pooling procedure for a likelihood ratio test with MI for
nested models, using the asymptotic relationship between the Wald test and likelihood ratio test statistics. Although
this approach works well, it can be quite cumbersome to implement in practice. Using connections with maximum
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likelihood, a likelihood ratio statistic could be directly constructed for MI. Our preliminary work suggests this has
improved performance over other statistics in the MI literature.

We primarily focused on the StEM algorithm in this article, however, an alternative Monte-Carlo approximation to
the EM algorithm, known as MCEM,10 could similarly be used. This algorithm obtains an (approximate) MLE by aver-
aging likelihood estimates across the multiple imputations, then maximizing, as opposed to StEM which maximizes on
each imputation and then averages estimates. The MCEM algorithm is more efficient than the StEM algorithm for finite
sample sizes and for finite number of imputations.38 This is due to the fact that StEM loses some efficiency due to the
maximize-then-average strategy. Therefore, in situations where there exists little concern for computational efficiency, it
would be beneficial to apply MCEM instead of StEM without having to compromise any of the results discussed in this
article.

Finally, in this article, we focused on using a fixed value for 𝜃 rather than random 𝜃. As such, there is the question
of whether there are any implications from using improper rather than proper MI, where we optimize for 𝜃 rather than
sampling it from a distribution (see Box 1, Step 2). While this was done in order to make a connection to maximum likeli-
hood, there are few issues anticipated in extending our results to the random 𝜃 scenario of proper MI. The reason for this
is that the inference machinery behind likelihood-based inference uses asymptotic theory as n→∞, and in this setting,
the posterior distribution for 𝜃 will typically converge in probability to its optimized value, hence we anticipate negligi-
ble effect of sampling 𝜃 from its posterior rather than plugging in its optimized value. One possible adjustment to the
proposed approaches when 𝜃 is random is to instead use Bayesian information criteria, such as the deviance information
criterion.65 Future work could study whether similar arguments apply for random parameters.
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APPENDIX A. PROOF OF THEOREM 1

Let y= (y1, y2, … , yn−m) and z= (z0, … , zm), where n ∈ N and m∈ {0, 1, … , n− 1}, and denote r = (r1, … , rn) as the
missingness indicator. Suppose that y1, y2, … , yn−m and r1, r2, … , rn are independent observations. Let S denote the
set of all possible imputation models, S = {Mk = q(z|y, r, 𝜃k); k = 0, 1, 2, … ,K} with |𝜃k| denoting the total number of
parameters for model Mk, and K being the number of competing imputation models. Also, define a subset M ⊂ S of
models which minimize KL(q||p). Furthermore, Mp ⊂ M denotes the finite subset of the most parsimonious correct impu-
tation models, Mp = {Mk ∈ M ∶ |𝜃k| ≤ |𝜃k∗ |,∀Mk∗ ∈ M}. For simplicity, we denote qk(z) = q(z|y, r, 𝜃k) throughout this
section.

To prove consistency of BIC for imputation model selection, we require a set of regularity conditions that consist of
the following assumptions:

Assumption 1. Observations z0, z1, … , zm are independent, and densities qk(zi) exist.

Assumption 2. m= op(n).

Assumption 3. The derivatives of the likelihood function ∫ qk(z) log (p(y, z, r|𝜃k)∕qk(z)) dz up to order three exist w.r.t.
𝜃k, and are continuous and uniformly bounded for all 𝜃k ∈ Θ(k).

Assumption 4. The derivatives of observed likelihood function up to order three exist w.r.t. 𝜃 and are continuous and
uniformly bounded for all 𝜃 ∈ Θ.

We also need Lemmas 1 and 2:

Lemma 1. Let qt(z) ∈ M be an arbitrary correct imputation model and qw(z) ∈ Mc be an arbitrary wrong imputation model
where Mc denotes the complement of M. Then, we have

∫ qt(z) log
(

p(y, z, r|𝜃t)
qt(z)

)
dz > ∫ qw(z) log

(
p(y, z, r|𝜃w)

qw(z)

)
dz.

Proof. The proof is straightforward by using the relationship between the imputation model and observed log-likelihood
in (2). Suppose qk(z) is any specified imputation model in S. Let Q be a class of lower bounds based on various imputation
models,

Q =
{
∫ qk(z) log

(
p(y, z, r|𝜃k)

qk(z)

)
dz, ∀qk(z) ∈ S

}
.

The maximum value of

∫ qk(z) log
(

p(y, z, r|𝜃k)
qk(z)

)
dz
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over qk is obtained when qk(z) = p(z|y, r, 𝜃) ∈ M, since the bound from above in (2) is attained for p(z|y, r, 𝜃):

∫ q(z) log
(

p(y, z, r|𝜃)
q(z)

)
dz = ∫ p(z|y, r, 𝜃) log

(
p(y, z, r|𝜃)
p(z|y, r, 𝜃)

)
dz = log p(y, r|𝜃).

Therefore, ∀qt(z) ∈ M,

∫ qt(z) log
(

p(y, z, r|𝜃t)
qt(z)

)
dz ≥ max

qk∈Mc ∫ qk(z) log
(

p(y, z, r|𝜃k)
qk(z)

)
dz.

Now, suppose ∃qw∗ (z) ∈ Mc which maximizes Q over the set of wrong imputation models, and for which the equality
holds in the above equation. This would imply that qw∗ (z) ∈ M ⊈ Mc which would contradict with the assumption of
qw∗ (z) ∈ Mc.

Thus, ∀qt(z) ∈ M and ∀qw(z) ∈ Mc,

∫ qt(z) log
(

p(y, z, r|𝜃t)
qt(z)

)
dz > ∫ qw(z) log

(
p(y, z, r|𝜃w)

qw(z)

)
dz.

▪

Lemma 2. Let q0(z) ∈ Mp be the most parsimonious correct imputation model and q1(z) ∈ M∕Mp be an over-fitted correct
imputation model. Partition

𝜃1 =

[
𝜃0

𝜃r

]
=

[
u × 1
s × 1

]

and consider the hypothesis test H0 ∶ 𝜃r = 0 versus H1 ∶ 𝜃r ≠ 0. Then, under H0 and as n→∞,

2

{
sup
𝜃1

∫ q1(z) log
(

p(y, z, r|𝜃1)
q1(z)

)
dz − sup

𝜃0
∫ q0(z) log

(
p(y, z, r|𝜃0)

q0(z)

)
dz

}
d
→ 𝜒2

s . (A1)

Proof. Rewrite the null hypothesis as H0 ∶ 𝜃1 = g(𝜃0) = (𝜃0, 0)⊺ such that G(𝜃0) = 𝜕g(𝜃0)∕𝜕𝜃0 = (Iu, 0)⊺ where Iu is the u×u
identity matrix and 0 is a s×u matrix of zeros. Let �̂�1 and �̂�0 be the MLEs of 𝜃1 and 𝜃0, respectively. Also, let S(𝜃), I(𝜃)
and J(𝜃) denote the full score function, Fisher and observed information matrix, respectively. Following Sen and Singer,66

p. 205-207, if Assumptions 3 and 4 are satisfied and as n→∞, then a Taylor expansion around �̂�1 yields

2∫ q1(z) log
(

p(y, z, r|𝜃1)
q1(z)

)
dz = 2∫ p(z|y, r, �̂�1) log

(
p(y, z, r|�̂�1)
p(z|y, r, �̂�1)

)
dz

− S⊺(𝜃1)[I(𝜃1)]−1S(𝜃1) + op(1),

since [I(𝜃1)]−1J(�̂�1)
p
→ Iu+s (Slutsky’s theorem) where Iu+ s is the identity matrix. Let S∗(𝜃), I∗(𝜃), and J∗(𝜃) denote the

restricted score function, Fisher, and observed information matrix, respectively. Similarly, since [I∗(𝜃0)]−1J∗(�̂�0)
p
→ Iu, we

may write

2∫ q0(z) log
(

p(y, z, r|𝜃0)
q0(z)

)
dz = 2∫ p(z|y, r, �̂�0) log

(
p(y, z, r|�̂�0)
p(z|y, r, �̂�0)

)
dz

− S∗⊺(𝜃0)[I∗(𝜃0)]−1S∗(𝜃0) + op(1).

Now, let E𝜃k [.|𝜃k] be the expectation w.r.t. the correct imputation model p(z|y, r, 𝜃k). Since E𝜃1

[
log p(y, r|𝜃1)

]
−

E𝜃0

[
log p(y, r|𝜃0)

]
= 0 under H0, we have

2
{
∫ p(z|y, r, �̂�1) log

(
p(y, z, r|�̂�1)
p(z|y, r, �̂�1)

)
dz − ∫ p(z|y, r, �̂�0) log

(
p(y, z, r|�̂�0)
p(z|y, r, �̂�0)

)
dz
}

= S⊺(𝜃1)[I(𝜃1)]−1S(𝜃1) − S∗⊺(𝜃0)[I∗(𝜃0)]−1S∗(𝜃0) + op(1). (A2)



2486 NOGHREHCHI et al.

Note that, under H0,

S∗(𝜃0) = G⊺(𝜃0)S(𝜃1).

Also, since

S∗(𝜃0)
d
→ N(0, I∗(𝜃0))

and

G⊺(𝜃0)S(𝜃1)
d
→ N(0,G⊺(𝜃0)I(𝜃1)G(𝜃0)),

under H0 we may write

I∗(𝜃0) = G⊺(𝜃0)I(𝜃1)G(𝜃0). (A3)

It follows that (A2) may be simplified to

S⊺(𝜃1)
[
I−1(𝜃1) − G(𝜃0)[I∗(𝜃0)]−1G⊺(𝜃0)

]
S(𝜃1) + op(1). (A4)

Furthermore,

tr{I−1(𝜃1) − G(𝜃0)[I∗(𝜃0)]−1G⊺(𝜃0)}I(𝜃1) = tr{Iu+s − G(𝜃0)[I∗(𝜃0)]−1G⊺(𝜃0)I(𝜃1)}
= u + s − tr{[I∗(𝜃0)]−1G(𝜃0)I(𝜃1)G⊺(𝜃0)}
= u + s − tr{[I∗(𝜃0)]−1I∗(𝜃0)} = s (A5)

Thus, using (A4) and (A5), and having [I∗(𝜃0)]−1∕2S∗(𝜃0)
d
→ N(0, Iu), and [I(𝜃1)]−1∕2S(𝜃1)

d
→ N(0, Is+u) by Slutsky’s theorem,

we obtain (A1).
▪

Theorem 1. Suppose M0 is the imputation model chosen by BIC and Mp is a finite set of the most parsimonious correct
models. If Assumptions 1 and 2 are satisfied, then

Pr(M0 ∈ M
p) → 1 as n → ∞.

Proof. Let M1 ∈ S∕Mp be an arbitrarily chosen model which is not in the class of the most parsimonious models. To prove
Theorem 1, it is sufficient to show that

Pr(BIC(M0) − BIC(M1) < 0) → 1 as n → ∞. (A6)

We have S = M
⋃

Mc, where Mc is the complement of M. Thus, either M1 ∈ M∕Mp or M1 ∈ Mc. We show that (A6) holds
under both of the following possible cases:
i. M1 ∈ M∕Mp

We need to show that the logarithmic penalty term in BIC outgrows the difference in the log-likelihood terms as
n→∞. In this case, both M0 and M1 are correct, but M1 is over-fitted w.r.t. to M0, that is, |𝜃1| − |𝜃0| > 0.
Based on Lemma 2, we may write

lim
n→∞

Pr (BIC(M0) − BIC(M1) < 0)

= lim
n→∞

Pr
(

2

{
sup
𝜃1

∫ q1(z) log
(

p(y, z, r|𝜃1)
q1(z)

)
dz − sup

𝜃0
∫ q0(z) log

(
p(y, z, r|𝜃0)

q0(z)

)
dz

}

< log(n) × (|𝜃1| − |𝜃0|)) = lim
n→∞

Pr
(
𝜒2|𝜃1|−|𝜃0| < log(n) × (|𝜃1| − |𝜃0|)) = 1.
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ii. M1 ∈ Mc

Denote KL(qk||p) as the relative Kullback-Leibler divergence of model qk(z) from p(z|y, r, 𝜃k). In this case, M0 is correct
and M1 is not, that is, KL(q1||p)>KL(q0||p). Thus, we need to show that the difference in the log-likelihood terms in
BIC outgrows the logarithmic penalty term as n→∞.
If Assumptions 1 and 2 are satisfied, then

1
2
{BIC(M1) − BIC(M0)} = −sup

𝜃1

[
(n − m)

{
1

n − m ∫ q1(z) log
(

p(y, z, r|𝜃1)
q1(z)

)
dz
}

+ m
{

1
m ∫ q1(z) log

(
q1(z)

p(z|y, r, 𝜃1)

)
dz
}]

+ sup
𝜃0

[
(n − m)

{
1

n − m ∫ q0(z) log
(

p(y, z, r|𝜃0)
q0(z)

)
dz
}

+ m
{

1
m ∫ q0(z) log

(
q0(z)

p(z|y, r, 𝜃0)

)
dz
}]

+ 1
2

log(n) × (|𝜃1| − |𝜃0|)
= (n − m)

{
1

n − m ∫ q0(z) log
(

p(y, z, r|𝜃0)
q0(z)

)
dz

− 1
n − m ∫ q1(z) log

(
p(y, z, r|𝜃1)

q1(z)

)
dz
}

− m
{

1
m ∫ q1(z) log

(
q1(z)

p(z|y, r, 𝜃1)

)
dz

− 1
m ∫ q0(z) log

(
q0(z)

p(z|y, r, 𝜃0)

)
dz
}

+ op(1)

+ 1
2

log(n) × (|𝜃1| − |𝜃0|)
= (n − m)

{
1

n − m ∫ q0(z) log
(

p(y, z, r|𝜃0)
q0(z)

)
dz

− 1
n − m ∫ q1(z) log

(
p(y, z, r|𝜃1)

q1(z)

)
dz
}

− m
{ 1

m
KL(q1||p) − 1

m
KL(q0||p)} + op(1)

+ 1
2

log(n) × (|𝜃1| − |𝜃0|)
= Op(n − m) − Op(m) ± O(log(

√
n))

= Op(n − m)

which tends to be positive since, according to Lemma 1 and the Law of Large Numbers, the term

(n − m)
{

1
n − m ∫ q0(z) log

(
p(y, z, r|𝜃0)

q0(z)

)
dz − 1

n − m ∫ q1(z) log
(

p(y, z, r|𝜃1)
q1(z)

)
dz
}

is positive and grows with probability approaching one as n→∞, with rate Op(n−m). Thus,

Pr(BIC(M0) − BIC(M1) < 0) = Pr(BIC(M1) − BIC(M0) > 0) → 1 as n → ∞.

▪

Furthermore, to prove the following corollary, we require the following regularity condition:

Assumption 5. The initial values 𝜃(0) in the StEM algorithm is consistent asymptotically linear estimate of 𝜃.

Corollary 1. If the Assumptions 1 to 5 are satisfied, the BIC (see Section 3) computed at 𝜃 = 𝜃 is consistent for imputation
model selection.
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Proof. Suppose �̂� is the MLE of 𝜃. It follows that

√
n(�̂� − 𝜃) = n− 1

2

n∑
i=1

[I(𝜃)]−1Si(𝜃) + op(1) (A7)

as the sample size n→∞66 p. 205-207.
Also, let 𝜃 denote the StEM estimator of 𝜃. Following Wang and Robins,15 eq. A7 and the regularity condition in

Assumption 5, we have √
n(𝜃 − 𝜃) = n− 1

2

n∑
i=1

[I(𝜃)]−1Si(𝜃) + op(1) (A8)

as n→∞ and the number of imputations M →∞.
From (A7) and (A8), it follows that √

n(𝜃 − 𝜃) =
√

n(�̂� − 𝜃) + op(1) (A9)

as n→∞ and M →∞.
Hence, given the Assumptions 1 to 5 and from (A9), the results of Lemma 2, and consequently the result of Theorem 2,

we may conclude that for sufficiently large number of imputations the BIC obtained from the StEM algorithm is consistent
for imputation model selection. ▪

APPENDIX B. COMBINATION RULES

Below, we discuss combination rules for variance estimation of model parameters for MI and StEM. The purpose of this
section is to compare the asymptotic results of their estimators and to provide a further heuristic argument to explain the
connection between MI and StEM.

B.1 Rubin’s rule
MI’s combination rules (or Rubin’s rule) are derived based on the Bayesian framework where 𝜃 and its estimate �̂�

are treated as unobserved random variables. Note that �̂� denotes an estimate of 𝜃 in the absence of missing data.
Further, with complete data, inferences about 𝜃 would be based on a normal approximation assumption (𝜃 − �̂�) ∼
N(0,W) where W is the associated variance of (𝜃 − �̂�). The mean and variance of the posterior distribution of 𝜃 are
given by

E(𝜃|y, r) = E(�̂�|y, r)

and

Var(𝜃|y, r) = E(W |y, r) + Var(�̂�|y, r), (B1)

respectively. Based on this result, in the presence of missing data, the posterior mean and variance of 𝜃 can be
approximated as described below.

Suppose that under a particular Bayesian model, �̂�1, … , �̂�j and W1, … , W j are the obtained values of �̂� and W for
each of j= 1, … , M imputed datasets which simulate features of posterior distribution of �̂� and W . In addition, let 𝜃 and B
denote estimates of the posterior mean and variance of �̂�, respectively. Then, for an infinitely large number of imputations
M, the combined estimate gives the MI estimator 𝜃 which is the posterior mean of �̂�,

𝜃 = 1
M

M∑
j=1

�̂�j = E(�̂�|y, r).

The variability associated with this estimate is the sum of two components: the posterior variance of �̂� and the posterior
mean of W . The posterior variance of �̂� is obtained by the between-imputation variance
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B = 1
M − 1

M∑
j=1

(�̂�j − 𝜃)⊺(�̂�j − 𝜃) = Var(�̂�|y, r),

and the posterior mean of W is obtained by the within-imputation variance

W = 1
M

M∑
j=1

Wj.

Thus, the trio statistic (𝜃,W ,B) from the multiple imputed datasets provides the information we need to estimate the pair
(�̂�,W), and so to estimate 𝜃.24 Therefore, for a multiple imputation method to belong to the class of proper MI, multiple
imputations must yield a consistent asymptotically normal estimator of 𝜃 and an unbiased estimator of its asymptotic vari-
ance when based on Rubin’s rule. By using heuristic arguments and several examples, Rubin8 concluded that “Conclusion
4.1. If imputations are drawn to approximate repetitions from a Bayesian posterior distribution of missing data under the
posited response (missingness) mechanism and an appropriate model for the data, then in large samples the imputation
method is proper”, where the posterior distribution of missing data is defined as

p(z|y, r) = ∫ p(z|y, r, 𝜃)p(𝜃|y, z)d𝜃. (B2)

Hence, a non-Bayesian MI where its �̂�js are not random draws from their posterior distributions is an improper MI and
its inference may not be based on Rubin’s rule.

B.2 Louis’ method
StEM’s combination rules are carried out as follows. At each iteration, multiple imputations are randomly drawn from
the imputation model given the current MLE of 𝜃. Let �̂�1, … , �̂�j and W1, … , W j, j= 1, … , M, be the MLEs of 𝜃 and
their variances, respectively, obtained from the next M iterations after the StEM algorithm converges. These final M
imputations are implemented as multiple imputations in combination rules as shown in Diebolt and Ip33 in a manner
discussed below.

Let 𝜃 be the StEM estimator which is the average of �̂�js over multiple imputed datasets, 𝜃 = M−1 ∑M
j=1 �̂�j. Wang and

Robins15 and Nielsen38 showed that, for sufficiently large M, (𝜃 − 𝜃) ∼ N(0, I−1
obs)where Iobs denotes the Fisher information

matrix. As such, the variance of the StEM estimator may be obtained based on the Louis’ method,67

Iobs = E
[

−𝜕2

𝜕𝜃𝜕𝜃⊺
log p(y, z, r|𝜃)|y, r

]
− Var

[
𝜕

𝜕𝜃
log p(y, z, r|𝜃)|y, r

]
, (B3)

and by replacing E[. | y, r] and Var[. | y, r] with their bootstrap estimates: from the difference between the complete infor-
mation matrices of the �̂�js averaged over multiple imputed datasets and the variance of their respected score functions
between multiple imputed datasets.

B.3 Connections between Rubin’s rule and Louis’ formula
Based on Rubin’s rule, the MI variance estimator of 𝜃 can be written as V̂ar(𝜃) = W + B where as previously B is the
between-imputation variance and W is the within-imputation variance. In EM terminology, W can be understood as a
complete data estimate of the variance, related to the first term in Equation (B3), and B is closely related to the second
term of (B3). Specifically, a StEM variance estimator of 𝜃 was derived by von Hippel68 which we can write as: V̂ar(𝜃) =
I−1

obs = W(W − B)−1W .

APPENDIX C. SUPPLEMENTARY FOR SIMULATION STUDIES

C.1 Univariate missing predictor
The following plots and tables show the results of the simulation study in Section 4.1.1 for 𝛽0 and 𝛽2. Figure C1 and
C2 show the magnitude of bias for 𝛽0 and 𝛽2, respectively. Table C1 and C2 show the RMSE for 𝛽0 and 𝛽2, respectively.
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F I G U R E C1 Boxplot of the relative bias (×100) of 𝛽0 for different methods. Each method is compared with the original dataset
(Complete) based on the accuracy of their estimators as the missing proportion and the sample size increase from the top-left corner to the
bottom-right. Note that the true value of the intercept coefficient is 1 [Colour figure can be viewed at wileyonlinelibrary.com]

Furthermore, the results of the simulation study in Section 4.1.1 for Amelia and MICE are presented in Figure C3 to C5
and Table C3 to C5.

C.2 Univariate missing response
We considered a log-linear Poisson regression model,

Yi|X1i,X2i
i.i.d∼ Poisson(𝜆i), i = 1, … ,n,

with

log(𝜆i) = 𝛽0 + 𝛽1X1i + 𝛽2X2i + 𝛽12X1iX2i.

Here, in addition to having missingness in the response variable, we have added more complexity to the design by consid-
ering an interaction term in the model instead of an additive structure (c.f. simulation scenario (a) in Section 4.1.1). The

http://wileyonlinelibrary.com
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F I G U R E C2 Boxplot of the relative bias (×100) of 𝛽2 for different methods. Each method is compared with the original dataset
(Complete) based on the accuracy of their estimators as the missing proportion and the sample size increase from the top-left corner to the
bottom-right. Note that the true value of the slope coefficient is 1 [Colour figure can be viewed at wileyonlinelibrary.com]

predictors X1i and X2i are fully observed where X1i ∼Bernoulli(0.35) and X2i ∼Bernoulli(0.5) but the response is subject
to missingness such that ri is the missingness indicator variable of Y i—for example, ri = 0 if Y i is missing and ri = 1 if Y i
is observed. Let 𝜙 be the probabilities of ri = 0, which satisfies logit(𝜙) = 𝜙0 + 𝜙1X1i + 𝜙2X2i + 𝜙3X1iX2i.

We ran 500 simulations and set 𝛽 = (1, 1, 1, 1)⊺. We imposed 24% missingness, on average, in the response variable Y i
by setting 𝜙 = (−1,−0.1,−0.1,−0.5)⊺. Once again, we used the squared distance of the parameters between the (t + 1)th
and tth iterations as the convergence criterion and set the convergence threshold to 10−4 with the number of multiple
imputations set to M = 100.

To investigate the performance of information criteria for imputation model selection in Section C0.2, missing values
Y mis, i were imputed under the following three candidate models and under MAR assumption:

Model 1: Ymis,i ∼ Poisson(𝜆i) where 𝜆i = 𝛽0 + 𝛽1X1i,
Model 2: Ymis,i ∼ Poisson(𝜆i) where 𝜆i = 𝛽0 + 𝛽1X1i + 𝛽2X2i,
Model 3: Ymis,i ∼ Poisson(𝜆i) where 𝜆i = 𝛽0 + 𝛽1X1i + 𝛽2X2i + 𝛽12X1iX2i,
Model 4: Ymis,i ∼ Poisson(𝜆i) where 𝜆i = 𝛽0 + 𝛽1X1i + 𝛽2X2i + 𝛽12X1iX2i + 𝛽3X3i,

http://wileyonlinelibrary.com
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T A B L E C1 RMSE (×1000) of 𝛽0 for different imputation methods across 500 simulations, compared with the original dataset
(Complete)

10% 25% 40%

n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

Complete 137 103 31 137 103 31 137 103 31

Correct 143 106 32 150 113 33 167 120 36

Overpar. mild 143 106 32 151 112 33 167 120 36

Overpar. strong 144 106 32 152 113 33 167 119 35

Missp. mean 149 112 46 170 136 82 206 162 124

Missp. dist. 162 130 75 202 174 137 232 213 174

AIC 143 106 32 150 113 33 168 120 36

BIC 143 106 32 151 113 33 168 120 36

Note: The true value of the slope coefficient is 1.

T A B L E C2 RMSE (×1000) of 𝛽2 for different imputation methods across 500 simulations, compared with the original dataset
(Complete)

10% 25% 40%

n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

Complete 147 110 32 147 110 32 147 110 32

Correct 157 119 34 170 124 36 186 134 38

Overpar. mild 157 118 34 170 124 36 185 133 38

Overpar. strong 158 119 34 166 123 36 185 133 38

Missp. mean 169 131 68 197 169 122 236 203 168

Missp. dist. 170 132 64 204 161 105 226 187 129

AIC 157 119 34 173 124 36 190 133 38

BIC 157 119 34 173 125 36 190 134 38

Note: The true value of the slope coefficient is 1.

where X3i is an auxiliary variable with X3i ∼Gamma(2, 2). In other words, we have assumed that Model 3 is correct, but
Model 1 and Model 2 underfit the data because of underparameterization, that is, only one predictor X1i is included (X2i
is ignored) in Model 1, and in Model 2, the interaction term X1iX2i is ignored. Furthermore, model 4 overfits the data
because of overparametrization by including X3i in the model.

Results in Table C6 show the proportion of times the corresponding model is chosen based on each infor-
mation criterion for various sample sizes of n= {50, 100, 1000}. Similarly to the simulation study with a univari-
ate missing predictor, we see that for even a small sample of 50, both AIC and BIC were able to choose the
correct model (Model 3) here at least 81% of the time. The performances of BIC improved as the sample size
increased where it was able to choose the correct model at least 97% of the time for a sample size of n= 100 and
larger.

Finally, we investigated the impact of imputation model selection on the post-selection inference from data. Table C7
shows the sample average of estimates of 𝛽j, denoted as 𝛽 j, j= 0, 1, 2, 12, for the corresponding imputation model averaged
over 500 simulations and its mean square error, MSEj = (𝛽 j − 𝛽j)2 + s2

j , where sj is the simulated standard error of 𝛽 j.
This table shows that more accurate estimates and smaller mean squared errors are obtained when using the correct
imputation model (Model 3) as well as the over-fitted model (model 4). In many practical situations, it is recommended
to add as many variables as possible to the imputation model when the imputation model is not known. In Table C6,
we noted that AIC chooses the over-fitted model (Model 4) 14.8-16% of the time, irrespective of sample size. Results in
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F I G U R E C3 Boxplot of the relative bias (×100) of 𝛽0 for multiple imputation softwares. Amelia and MICE correct, overparametrized
mild/strong and misspecified mean models are compared with the original dataset (Complete) based on the accuracy of their estimators as
the missing proportion and the sample size increase from the top-left corner to the bottom-right. Note that the true value of the intercept
coefficient is 1 [Colour figure can be viewed at wileyonlinelibrary.com]

Table C7 suggest that perhaps overfitting has little impact on post-selection inference. However, the reader concerned
about the post-selection impact of overfitting when using AIC can use an information criterion with consistency property
such as BIC (see Theorem 1).

http://wileyonlinelibrary.com
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F I G U R E C4 Boxplot of the relative bias (×100) of 𝛽1 for multiple imputation softwares. Amelia and MICE correct, overparametrized
mild/strong and misspecified mean models are compared with the original dataset (Complete) based on the accuracy of their estimators as
the missing proportion and the sample size increase from the top-left corner to the bottom-right. Note that the true value of the intercept
coefficient is 1 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E C5 Boxplot of the relative bias (×100) of 𝛽2 for multiple imputation softwares. Amelia and MICE correct, overparametrized
mild/strong and misspecified mean models are compared with the original dataset (Complete) based on the accuracy of their estimators as
the missing proportion and the sample size increase from the top-left corner to the bottom-right. Note that the true value of the slope
coefficient is 1 [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E C3 RMSE (×1000) of 𝛽0’s for Amelia and MICE correct, overparametrized mild/strong and misspecified mean models
across 500 simulations, compared with the original dataset (Complete)

10% 25% 40%

n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

Complete 137 103 31 137 103 31 137 103 31

Amelia correct 144 106 32 151 113 33 168 121 36

MICE correct 143 106 32 149 112 33 166 120 36

Amelia mild 143 106 32 150 112 33 167 120 35

MICE mild 143 106 32 150 112 33 167 119 36

Amelia strong 144 107 32 152 113 33 167 121 36

MICE strong 145 107 32 152 113 33 167 120 35

Amelia missp. 149 112 45 171 137 82 207 164 124

MICE missp. 149 112 45 170 136 82 205 162 124

Note: The true value of the coefficients is 1.

http://wileyonlinelibrary.com
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T A B L E C4 RMSE (×1000) of 𝛽1’s for Amelia and MICE correct, overparametrized mild/strong and misspecified mean models
across 500 simulations, compared with the original dataset (Complete)

10% 25% 40%

n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

Complete 146 103 32 146 103 32 146 103 32

Amelia correct 153 107 32 161 111 34 177 117 36

MICE correct 153 106 32 159 111 34 172 115 36

Amelia mild 153 106 32 161 111 34 176 116 36

MICE mild 153 107 32 159 111 34 172 115 36

Amelia strong 152 107 32 161 111 34 181 116 36

MICE strong 152 107 32 161 111 34 179 117 36

Amelia missp. 152 113 50 165 129 80 182 142 96

MICE missp. 152 114 50 170 133 81 189 149 98

Note: The true value of the coefficients is 1.

T A B L E C5 RMSE (×1000) of 𝛽2’s for Amelia and MICE correct, overparametrized mild/strong and misspecified mean models
across 500 simulations, compared with the original dataset (Complete)

10% 25% 40%

n=50 n=100 n=1000 n=50 n=100 n=1000 n=50 n=100 n=1000

Complete 147 110 32 147 110 32 147 110 32

Amelia correct 157 119 34 170 124 36 188 134 38

MICE correct 157 119 34 170 124 36 185 133 38

Amelia mild 157 119 34 169 124 36 188 133 38

MICE mild 157 119 34 170 124 36 186 133 38

Amelia strong 158 119 34 167 124 36 187 135 38

MICE strong 158 119 34 167 123 36 189 134 38

Amelia missp. 169 131 68 198 170 123 241 206 168

MICE missp. 169 131 68 197 170 123 238 205 168

Note: The true value of the coefficients is 1.

Model 1 Model 2 Model 3 Model 4

n=50 AIC 0.0 3.0 81.0 16.0

BIC 0.0 10.0 83.8 6.2

n=100 AIC 0.0 0.0 85.2 14.8

BIC 0.0 0.2 97.0 2.8

n=1000 AIC 0.0 0.0 84.4 15.6

BIC 0.0 0.0 99.0 1.0

Note: Model 3 (in bold) is the correct model, which was selected with the highest proportion even
for a small sample size of n= 50. Note that the proportion of times this model was chosen
approached one as sample size increased.

T A B L E C6 Proportion of times (%) the
information criterion chooses the fitted
imputation model for different sample sizes in 500
simulated datasets
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T A B L E C7 𝛽 j and mean
square error (in parenthesis) for
different imputation models
across 500 simulations for
different sample sizes

𝜷0 = 1 𝜷1 = 1 𝜷2 = 1 𝜷12 = 1

n= 50 Model 1 1.171 (0.09) 1.423 (0.47) 0.719 (0.13) 0.627 (0.42)

Model 2 0.819 (0.10) 1.284 (0.18) 1.187 (0.11) 0.713 (0.19)

Model 3 0.938 (0.07) 1.095 (0.14) 1.033 (0.09) 0.945 (0.16)

Model 4 0.937 (0.07) 1.095 (0.14) 1.034 (0.09) 0.945 (0.16)

n= 100 Model 1 1.193 (0.07) 1.438 (0.33) 0.708 (0.11) 0.601 (0.29)

Model 2 0.862 (0.05) 1.228 (0.10) 1.158 (0.06) 0.754 (0.11)

Model 3 0.982 (0.04) 1.029 (0.06) 0.999 (0.05) 0.998 (0.07)

Model 4 0.981 (0.04) 1.030 (0.06) 0.999 (0.04) 0.997 (0.07)

n= 1000 Model 1 1.211 (0.05) 1.397 (0.17) 0.709 (0.09) 0.618 (0.16)

Model 2 0.878 (0.02) 1.192 (0.04) 1.161 (0.03) 0.764 (0.06)

Model 3 1.001 (0.00) 0.999 (0.01) 1.000 (0.00) 1.000 (0.01)

Model 4 1.001 (0.00) 0.999 (0.01) 1.000 (0.00) 1.000 (0.01)


