
1

Issue 2 • Volume 5

The Vitals Risk Index—Retrospective Performance 
Analysis of an Automated and Objective Pediatric 
Early Warning System
Tyler J. Gorham, PhD, MPH*; Steve Rust, PhD*; Laura Rust, MD, MPH†‡; Stacy Kuehn, RN, BSN†;  
Jing Yang, MS*; James Shuhan Lin, MD‡; Jeffrey Hoffman, MD†‡; Yungui Huang, PhD, MBA*;  
Simon Lin, MD, MBA*‡; Richard McClead, MD, MHA†; Richard Brilli, MD, MCCM†‡; Ryan Bode, MD†‡;  
Tensing Maa, MD†‡   

INTRODUCTION
Survival to hospital discharge follow-
ing pediatric in-hospital cardiac arrests 
ranges from 16% to 48%.1–5 Hundreds of 
in-hospital cardiac arrests occur subop-
timally outside of the pediatric intensive 

care unit (ICU) and are considered pre-
ventable harm by the Children’s Hospital 

Association.6,7 Nationally, many efforts have 
attempted to address this distinct population 

with a demonstrable reduction in in-hospital cardiac 
arrests outside of the ICU, most notably the implementa-
tion of rapid response teams.3,8–11

However, unplanned transfers to the ICU persist and 
carry an associated but avoidable increased mortality.12–14 
Institutions looking to prevent these events have begun 
to diversify their deterioration detection efforts. One 
such focus is creating an optimal Pediatric Early Warning 
Score (PEWS) system,15–21 which is typically composed 
of rules applied to objective and subjective patient data 
and an associated actionable mitigation plan. To date, 
PEWS systems have been unable to demonstrate a signif-
icant decrease in hospital mortality but have favorably 
affected the rate of other clinical deterioration events.22,23 
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Therefore, institutions have sought to broaden their dete-
rioration detection efforts by utilizing scoring systems 
and increasing situational awareness while continuing to 
search for the optimal predictive model.14

Widespread adoption of electronic health records 
(EHR) has created large repositories of patient data, 
making the development and validation of predictive 
analytics models against large datasets feasible. Progress 
in this realm has led to a prediction model of ICU trans-
fer within 24 hours of admission, which outperformed a 
modified PEWS24 and completely automated EHR-based 
warning systems.25

Many of these scoring systems are still dependent on 
subjective assessments, such as mental status or capillary 
refill time, and rely on real-time documentation. These 
limitations can increase the documentation burden and 
reduce the efficacy of such systems when data entry is 
delayed.26 Initiatives have begun to investigate using 
objective variables available in real-time within the EHR 
to identify patients at high-risk for clinical deterioration.24

Our objective was to develop and validate an auto-
mated and objective pediatric early warning score utiliz-
ing predictive analytics modeling techniques that would 
perform as well as, or better than, our institution’s current 
standard, a modified version of Monaghan’s PEWS (see 
Supplemental Digital Content at http://links.lww.com/
PQ9/A170 for Table 1).20,27 Such a model would be devoid 
of the variability currently present with subjective PEWS 
components (behavioral assessment, capillary refill time, 
respiratory distress, persistent vomiting). This model, the 
Vitals Risk Index (VRI), is composed of entirely objective 
component inputs measured during routine inpatient clin-
ical care with automated risk score calculation. Predicted 
outcomes of interest were code blue activations outside of 
the ICU6 and emergent transfers to the ICU.14

METHODS
Study Population and Exclusion Criteria
The study population included children hospitalized 
from July 1, 2011, to December 31, 2017, at Nationwide 
Children’s Hospital, a freestanding, quaternary care aca-
demic children’s hospital. As this work was not human 
subject research, but rather a quality improvement study, 
review and approval by the Nationwide Children’s 
Hospital Institutional Review Board was not required 
per policy. Exclusion criteria for both cases and controls 
included patients who are 19 years of age or older, neo-
natal ICU hospitalizations, length of stay <12 hours, and 
absence of vital sign measurements recorded in the EHR 
(Epic Systems Corporation, Verona, Wisc.). The study 
population was also limited to patients with at least 1 
PEWS assessment recorded in the EHR.

Case hospitalizations were those with either a code 
blue event outside of the ICU6 or an emergent transfer to 
the ICU (see Supplemental Digital Content at http://links.
lww.com/PQ9/A171, for full case definitions).14 Code 

blue events required emergency assisted ventilation, chest 
compressions, or electric shock. We excluded code blue 
events triggered by a seizure (an internal practice) as they 
are often considered not predictable. Emergent transfers 
required 1 or more of the following interventions 1 hour 
before or after transfer: intubation, initiation of vasoac-
tive medications, 60 mL/kg of fluid boluses, or cardiopul-
monary resuscitation. We defined control hospitalizations 
as those without a clinical deterioration event type, as 
defined above. During the study period, there were 102 
emergent transfers and 56 code blue events outside the 
ICU for a total of 158 case hospitalizations and 135,597 
control hospitalizations.

We built the study dataset from data collected on 
patients outside the ICU within our inpatient EHR sys-
tem. Unless otherwise ordered, vital signs and PEWS 
evaluations were nominally recorded every 4 hours. If a 
patient received a PEWS score of 3 or 4, vital signs and 
PEWS assessment frequency increased to every 2 hours, 
and a PEWS score of 5 or 6 resulted in hourly vital signs 
and PEWS evaluations. Vital sign measurements and sup-
plemental oxygen flowsheet row data were considered 
valid for up to 24 hours or until a new measurement was 
recorded; if the most-recent value recorded in the EHR 
was over 24 hours old, the field was coded as missing. 
Missing data points were replaced with age-specific nom-
inally normal values that were ultimately coded to zeros 
in the final scoring algorithm.

Similarly, if no supplementary oxygen data were avail-
able, we assumed the patient was not receiving supple-
mentary oxygen. Handling missing data in this manner 
assumes that patients without a recent assessment are 
not at an increased risk of deterioration. Missing data 
imputation procedures were not considered because the 
implementation of such procedures would not be pos-
sible in real-time with the EHR system. To prevent bias 
toward hospitalizations with multiple events and to 
avoid unknown effects of event-driven interventions on 
the detection of subsequent events, only the first event of 
each hospitalization was employed.

Local Monaghan’s PEWS Implementation
NCH operationalized Monaghan’s PEWS (adapted from 
Monaghan20 and Tucker et al27) across all floor units 
under consideration by the beginning of the study period. 
PEWS is recorded in the EHR and was included in the 
extracted data. Because a PEWS score of 5 or greater 
(PEWS-5) is used by the study institution as a trigger for 
evaluation, mitigation, and escalated response, PEWS-5 is 
the baseline against which we compare VRI performance. 
Comparisons against PEWS-4 are also provided, as this 
alternative allows for higher sensitivity when compared 
with PEWS-5, but lower specificity.

Modeling Approach
Five patient vital sign measurements and a proxy for sup-
plemental oxygen requirements were used to develop the 
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VRI algorithm. Vital signs included heart rate, respiratory 
rate, temperature, percutaneous oxygen saturation, and 
systolic blood pressure. We captured supplemental oxy-
gen as either flow rate (liters per minute) or fraction of 
inspired oxygen delivered when the flow rate was not 
recorded.

We trained a multivariate logistic regression model 
to predict the occurrence of an inpatient deterioration 
event within the subsequent 24-hour period. All vital 
signs and supplemental oxygen variables were discretized 
into bins (eg, “very low,” “low,” ‘“normal,” “high,” and 
“very high”), by age group when appropriate, follow-
ing the work of Duncan et al (2006)15 and Fleming et al 
(2011).28 Note that this previous work was only refer-
enced to threshold-continuous values by age group for 
algorithm development and is unrelated to Monaghan’s 
PEWS scoring and thresholds. High and very high sup-
plemental oxygen thresholds were determined by observ-
ing change points in the receiver operating characteristic 
(ROC) curves for these flowsheet rows, predicting emer-
gent transfers and cardiopulmonary failure events.

For each case hospitalization, we limited data used in 
model training to the 6 hours leading up to the deterio-
ration event, to allow the model to be more specifically 
trained to data very near an event. For case events occur-
ring <6 hours after admission, we included all data before 
the event. For controls, we used data from the middle 24 
hours of hospitalization if the hospitalization was >24 
hours; otherwise, all data were included. This middle 
24-hour period is intended to represent a period of rela-
tive clinical stability among controls. In the final model, 
for future EHR implementation, statistically insignificant 
predictors (P-value ≥ 0.05) with negative coefficients 
were manually dropped. The remaining coefficients were 
reweighted so that the smallest and largest possible VRI 
values would be 0 and 100, respectively.

For performance evaluation and comparisons, we 
included case data for the 24 hours before the first dete-
rioration event and control data for the middle 24 hours 
of hospitalization. Comparisons were performed using 
all data up until the time of the event as well as remov-
ing data recorded within 1, 2, and 3 hours of the event. 
This strategy helps address the challenge of identifying 
at-risk patients with sufficient lead time to either prevent 
the event from occurring or limit its severity. To allow 
for the discussion of the VRI as an early warning tool, 
the primary model results chosen for discussion hereafter 
are those representing the removal of case data within 
2 hours of the deterioration event. VRI performance 
results were generated by performing 10-fold cross-vali-
dation (dividing the data into 10 folds, then using 9 folds 
to produce predicted values for the remaining fold). The 
10-fold cross-validation process was repeated 10 times to 
reduce the variability in the reported performance results. 
For graphical and statistical comparisons, PEWS perfor-
mance is compared with an averaged VRI ROC curve, 
constructed by taking the mean predicted response at the 

patient level across the 10 repetitions of cross-validation. 
We did not use a train-test split in performance assess-
ment due to the small number of available cases.

Confidence intervals for PEWS and VRI ROC curves 
and sensitivities were constructed using non-parametric 
stratified bootstrapping,29 via the “pROC” package in 
R.30 All figures were created using the “ggplot2” pack-
age in R.31

RESULTS
Final Model
The final model coefficients are presented in Table  1. 
“High” and “low” respiratory rate categories as well as 
“low” and “very low” temperature ranges were found not 
to be predictive of deterioration and were collapsed into 
the “normal” ranges. The VRI is the sum of the applicable 
model coefficients for the 6 model components.

ROC curves for Monaghan’s PEWS and the VRI, based 
on at least 2 hours of lead time, are presented in Figure 1. 
There was no significant difference in the area under the 
ROC curve (AUC) of the VRI 0.76 (95% CI, 0.72–0.80) 
compared with PEWS 0.73 (0.69–0.78) (P = 0.16; Fig. 1). 
Additionally, there was no significant difference in the 
areas under the ROC curve between VRI and PEWS at 
false-positive rates ≤ 10% (pAUC10), a threshold chosen 
to compare the 2 approaches under clinically tolerable 
false positive rates (pAUC10 of 0.065 and 0.064, respec-
tively; P = 0.74). The pAUC10 metric can take on values 
from 0 to 0.1 with a random algorithm taking on the 
value 0.005.

The VRI is a continuous score, ranging from 0 to 100, 
so a threshold must be set along this scale to calculate 
metrics like sensitivity and specificity. Testing VRI thresh-
olds that match the false alarm rate of PEWS-4 (5%) or 
PEWS-5 (1%) allows for fair comparisons of the sensitiv-
ities of these 2 approaches, controlling for the “cost” of 
false-positive alarms. When the threshold for the VRI is 
set to match the specificity of PEWS-4 (0.95), the VRI and 
PEWS have very similar sensitivity levels from the time of 
the event to 3 hours before an event (Fig. 2A). Matching 
on the very high specificity of PEWS-5 (0.99), the sensitiv-
ity of the VRI (0.25, 95% CI, 0.19–0.32) is significantly 
lower than that of PEWS-5 (0.46, 95% CI, 0.38–0.54) at 
the time of the event (Fig. 2B). However, the advantage 
of PEWS-5 over the VRI disappears if a successful alarm 
is required to occur 2 or more hours before the deteri-
oration event. Both approaches perform similarly when 
requiring this much lead time at such high specificity.

DISCUSSION
The goal of this study was to develop a fully automated 
and objective early warning predictive analytics tool—the 
VRI—that would perform at least as well as PEWS in the 
accurate and timely identification of hospitalized pediat-
ric patients at risk for clinical deterioration outside of the 
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ICU setting. We chose the specific and defined outcomes 
of code blue events outside of the ICU and emergent 
transfers to the ICU, which represent late or unrecog-
nized inpatient clinical deterioration, because of their 
associated increased morbidity and mortality.1,32 To elim-
inate these preventable harm events, we have focused on 
earlier detection, mitigation, and potential escalation or 
transfer to a higher level of care before decompensation. 
Currently, we have been unable to sustain zero emergent 
transfers and continue to have patients with insidious 

deterioration undetected by Monaghan’s PEWS and the 
healthcare team. Specifically, there have been concerns 
regarding the predictive ability of PEWS due to its subjec-
tive aspects (eg, behavior and mental status) and non-au-
tomated nature. Thus, the emphasis is on developing an 
automated, objective predictive tool that would augment 
or ultimately replace PEWS.

The VRI did not include any subjective components 
that exist in Monaghan’s PEWS. Despite this advantage, 
the VRI still requires accurate and timely documentation 
of vital signs and supplemental oxygen requirements. 
Fortunately, this behavior is “hard-wired” and embedded 
in our current workflow. In this study, we intentionally 
chose a relatively simple modeling approach of logistic 
regression, because the published coefficients can be eas-
ily implemented into any EHR system with built-in clini-
cal decision support. We believe the VRI model is simple, 
purely objective, automated, real-time, and easily repro-
ducible in other pediatric institutions. Further, we antici-
pate VRI will complement rather than replace PEWS and 
add a layer of decision support for clinicians to consider. 
An automated alert may particularly be beneficial during 
the high census and high acuity winter months when 
resources are stretched thin.

Zhai et al33 reported a machine learning-based algo-
rithm predicting ICU transfer within 24 hours of initial 
admission. This model used 36 measurements and 155 
variables, including vital signs and nursing assessments, 
with an AUC of 0.91 when identifying patients with 
at least 2 hours of lead time. Rubin et al24 developed a 
predictive model that used objective vital signs as well 
as automatically calculated pulse pressure, mean arte-
rial pressure, and shock index. Their case encounters 

Table 1.  Item Sub-scores of the VRI

Item Age Item sub-score

Heart rate (beats/min) Coefficient 8.79 1.84 0 4.31 18.29
0–3 months <90 90–109 110–150 151–180 >180
3–12 months <80 80–99 100–150 151–170 >170
1–4 years <70 70–89 90–120 121–150 >150
4–12 years <60 60–69 70–110 111–130 >130
>12 years <50 50–59 60–100 101–120 >120

Respiratory rate 
(breaths/min)

Coefficient 13.58  0  12.36
0–3 months <20  20–80  >80
3–12 months <20  20–70  >70
1–4 years <15  15–60  >60
4–12 years <12  12–40  >40
>12 years <8  8–24  >24

Systolic blood 
pressure (mm Hg)

Coefficient 20.94 4.16 0 0.57 1.31
0–3 months <50 50–59 60–80 81–100 >100
3–12 months <70 70–79 80–100 101–120 >120
1–4 years <75 75–89 90–110 111–125 >125
4–12 years <80 80–89 90–120 121–130 >130
>12 years <85 85–99 100–130 131–150 >150

Temperature (°F) Coefficient   0 9.01 14.27
All ages   <101.3 101.3–104 >104

Oxygen saturation (%) Coefficient 19.80 5.06 0   
All ages <85 85–95 >95   

Supplemental oxygen 
(flow rate, L/ 
min; FiO2, %)

Coefficient   0 4.94 13.12
All ages   Flow rate ≤ 0.45 or  

(flow rate is NA and 
FiO2 ≤ 21)

(0.45 < flow rate ≤ 6.5) or 
(flow rate is NA and 21  

< FiO2 ≤ 31)

Flow rate > 6.5 or (flow 
rate is NA and FiO2 > 31)

Fig. 1.  ROC curves for Monaghan’s PEWS and the VRI. The 
AUC of VRI, when identifying patients at risk of deterioration with 
2 hours of lead time, was 0.76 (95% CI, 0.72–0.80) compared 
with 0.73 (0.69–0.78) for PEWS.
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were defined as any ICU transfer during the hospitaliza-
tion, rather than just ICU transfers within 24 hours of 
admission. Their predictive model performed better than 
modified PEWS at both study institutions tested, with a 
false positive rate of 26%–27%. Finally, Rothman et al19 
published the development of a pediatric Rothman Index 
(pRI) using vital signs, nursing assessments, laboratory 
tests, and cardiac rhythms. AUC for 24-hour mortality 
was reported over 3 hospitals to be 0.93, 0.93, and 0.95. 
Due to the relative rarity of pediatric mortality compared 
with adults, the authors proposed using their model for 
prediction of “unplanned transfer to the ICU” as an out-
come metric. The authors noted a “trend in physiologic 
deterioration before and after unplanned transfer to the 
ICU further validates the pRI.”19 However, no sensitiv-
ity, specificity, or AUC data were provided to support this 
conclusion.

Our work confirms that EHR-derived data can be 
used to successfully develop a predictive model that 
performs similar to PEWS in detecting pediatric inpa-
tient deterioration outside of the ICU. Compared with 
the Zhai et al33 and Rothman et al19 models, the VRI 
has added benefits of simplicity and objectivity using 
vital signs and level of supplemental oxygen while not 
relying on potentially subjective or delayed nursing 
assessments. The VRI adds, to prior prediction models, 
the ability to detect a set of focused, and, in our opin-
ion, meaningful clinical deterioration events that have 
been demonstrably associated with increased morbidity 
and mortality. We avoided targeting the set of all ICU 
transfers because it is very heterogeneous and has not 
been demonstrably associated with negative healthcare 
outcomes.

Identification and detection of impending clinical dete-
rioration need to be done in advance of the actual event to 
mitigate successfully and, if necessary, escalate or transfer 
to a higher level of care and intensity of resources. Neither 
VRI nor Monaghan’s PEWS perform well (sensitivities 

<15%) when removing data within the 2 hours before the 
event under strict specificity levels (eg, ≥0.99). The drop 
in sensitivity for PEWS-5 from 0 to 2 hours before the 
event may provide some insight as to why PEWS has not 
been associated with measurable decreases in mortality 
and morbidity. The sensitivity of 45% at event time fades 
to <15% at 2hours before the event when there is still 
time to intervene.

There is a balance of “alert fatigue” and the “needle in 
the haystack” phenomena when trying to predict clinical 
deterioration. Equally important as predicting and iden-
tifying at-risk patients is the evaluation and mitigation 
response. These responses—including potential physician 
assessments, rapid response and code teams, increased 
monitoring, and increased EHR documentation—require 
personnel, time, and resources. Excessive false positives 
can lead to alert fatigue and undermine the utility of a 
predictive analytic tool and the accompanying response. 
An important question to address moving forward is to 
determine the targeted or acceptable false-positive rate in 
predicting clinical deterioration and adverse patient out-
comes. To achieve zero-preventable events such as these, 
we will likely need to tolerate an increase in the false-pos-
itive rates associated with pediatric early warning systems 
and predictive analytic tools.

Limitations
There are multiple potential limitations to our study. This 
work represented patients from a single, albeit large, free-
standing academic children’s hospital. While the control 
population was robust with over 135,000 hospitaliza-
tions, there were only 158 case hospitalizations despite 
including 7 years’ worth of data. Also worth mention-
ing is the heterogeneity in EHR systems utilized by insti-
tutions, potentially limiting the generalizability of the 
described model.

In developing the VRI, while the calculation of the 
individual components is objective, the categories used to 

A B

Fig. 2.  Sensitivity of the VRI when matching the specificity of (A) PEWS-4 and (B) PEWS-5. A, The VRI has a similar sensitivity to 
PEWS-4 from 0 to 3 hours before an event (with both approaches operating at a specificity of 0.95). B, PEWS-5 (specificity = 0.99) 
has a higher sensitivity than VRI at event time, but the 2 approaches perform similarly at 2 and 3 hours before an event.
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discretize vital sign measurements were based on expert 
opinion and could potentially be optimized by a fully data-
driven approach. The need to collapse some categories 
after initial model fitting may be a result of this limitation. 
Additionally, our approach utilized logistic regression to 
allow final model coefficients to be implemented in the 
study institution’s EHR, but we acknowledge that deep 
learning approaches, such as recurrent neural networks, 
may present an opportunity for improved predictive 
performance.34,35

Future Studies
The next steps include validating model performance 
prospectively in the patient care environment as well 
as determining how to integrate VRI into our current 
workflow, selecting a false positive rate that allows for 
accurate patient identification but not at the expense of 
alert fatigue or exhaustion of available resources. Specific 
patient populations whose baseline vital signs are abnor-
mal for age (eg, oncologic, single ventricle, or ventila-
tor-dependent patients) may require a different algorithm 
for triggering an alert. Finally, we may incorporate other 
objective or electronically captured patient character-
istics that would improve accuracy and identify at-risk 
patients, such as past medical history, technology depen-
dence, or prior recent critical event (ie, ICU transfer, rapid 
response team). Future parameter considerations will 
balance improved performance with simplicity, need for 
automation, and objectivity.

CONCLUSIONS
In this study, we developed a novel pediatric early warn-
ing systems—the VRI—based solely on objective vital 
sign measurements and supplemental oxygen demand. 
The VRI was shown to be as sensitive as Monaghan’s 
PEWS as implemented at Nationwide Children’s 
Hospital, when predicting patient deterioration outside 
of the ICU 2 to 3 hours before an event. In settings 
where an early warning system has not been imple-
mented, the VRI may serve as an important clinical 
decision-support tool utilizing clinical workflows that 
are likely already incorporated into the EHR.
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