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Abstract
Atherosclerotic cardiovascular disease is a leading cause of death and
morbidity globally. Over the past several years, arterial inflammation has
been implicated in the pathophysiology of athero-thrombosis, substantially
confirming what pathologist Rudolf Virchow had observed in the 19th
century. Lipid lowering, lifestyle changes, and modification of other risk
factors have reduced cardiovascular complications of athero-thrombosis,
but a substantial residual risk remains. In view of the pathogenic role of
inflammation in athero-thrombosis, directly targeting inflammation has
emerged as an additional potential therapeutic option; and some early
promising results have been suggested by the Canakinumab
Anti-inflammatory Thrombosis Outcome Study (CANTOS), in which
canakinumab, a fully human monoclonal antibody targeting the
pro-inflammatory and pro-atherogenic cytokine interleukin 1 beta, was
shown to reduce cardiovascular events.
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Introduction
Cardiovascular disease from atherosclerosis manifests as acute 
and chronic ischemic syndromes such as acute coronary syn-
dromes, angina pectoris, claudication, ischemic strokes, conges-
tive heart failure, and sudden and non-sudden cardiac death1–4  
Atherosclerosis consists of build-up of plaque inside the intima 
of medium and large arteries, leading to chronic luminal  
narrowing or disruption of the plaque surface (plaque rupture 
or superficial erosion) with superimposed thrombosis and a  
subacute or acute luminal compromise. Most of the acute and life-
threatening manifestations of atherosclerosis result from plaque  
disruption and thrombosis1–4.

Pathophysiology of atherosclerosis
Atherosclerotic plaques contain a variable mix of lipids, smooth 
muscle cells, extracellular matrix, calcium, and components of 
the immune system (both from innate and adaptive immunity) 
such as macrophages, dendritic cells, mast cells, natural killer 
cells, and T cells. In addition, increased plaque neovasculariza-
tion and intraplaque hemorrhage are features of atherosclerotic 
plaques. Although the precise mechanism of athero-thrombosis  
remains incompletely understood, a number of risk factors 
that increase the likelihood of atherogenesis have been iden-
tified: these include dyslipidemia with elevated apolipopro-
tein B (apoB) 100–containing lipoproteins, low levels of  
high-density lipoprotein (HDL), hypertension, diabetes, smok-
ing, central obesity and metabolic syndrome, advanced age, 
menopause, genetic factors and family history of premature  
coronary disease, chronic immune-inflammatory conditions 
(such as psoriasis, rheumatoid arthritis [RA], systemic lupus 
erythematosus, HIV, and Kawasaki’s syndrome), chronic  
infections, and radiation exposure1–5. Cardiovascular disease is  
now recognized as a major cause of premature mortality 
among patients with autoimmune chronic inflammatory con-
ditions, and there is an urgent need to identify those who are 
at risk of cardiovascular ischemic events in order to optimize  
prevention and therapeutic intervention6. In this regard, several 
clinical trials showed that methotrexate use is associated with a 
reduced risk of cardiovascular events in patients with RA. This 
suggests that reducing the inflammation in RA by using meth-
otrexate not only improves disease-specific outcomes but also  
may reduce collateral damage such as atherosclerosis7,8.

Key role of lipids in atherogenesis
It is generally agreed that lipids play a key role in the ini-
tiation of atherosclerosis. Experimental observations have  
suggested that one of the earliest events in atherogenesis is the 
entry of atherogenic (apoB 100–containing) lipoproteins into 
the sub-endothelial space, where they interact with extracellular  
matrix components, leading to trapping of lipoproteins with 
subsequent aggregation and oxidative modification and then to  
generation of pro-inflammatory lipids9,10. These pro-inflammatory 
lipids lead to endothelial dysfunction manifesting with increased 
adhesivity of endothelium to circulating mononuclear cells 
which then are recruited into the sub-endothelium aided by the 
local production of inflammatory cytokines. Monocytes in the  
sub-endothelium mature into macrophages expressing scav-
enger receptors through which the lipids are engulfed, turning  

monocyte-derived macrophages into foam cells. Some foam cells 
are also derived from vascular smooth muscle cells. Monocyte- 
macrophages in the lesion secrete mediators that also recruit 
smooth muscle cells from the media; these smooth muscle cells 
migrate, proliferate, and secrete matrix proteins, contributing to 
build-up of plaque; some macrophages and dendritic cells present 
neoantigens to the T cells, creating a pro-inflammatory adaptive  
immune response that perpetuates inflammation in the plaque1.

Critical role of inflammation in hyperlipidemia-
induced atherogenesis
Experimental studies and many clinical observations have shown 
that hyperlipidemia is essential but not sufficient to produce 
atherosclerosis unless there is inflammation as well. Inflam-
mation was, in fact, implicated in atherosclerosis by Virchow 
as far back as in 185811. Many cytokines and chemokines are 
involved in the development and progression of the atheroscle-
rotic plaque. Some of them, such as colony-stimulating factor-1  
(CSF-1) and monocyte chemoattractant protein-1 (MCP-1), whose 
partial or complete deletion dramatically reduces atherosclerosis 
in murine models despite severe hyperlipidemia, are important 
in the initial phases of plaque formation12. Hyperlipidemia acti-
vates innate immunity by activating Toll-like receptor 2 (TLR-2) 
and TLR-4 pathways, leading to activation of inflammatory and  
pro-atherogenic genes in macrophages and endothelial cells12.  
Disruption of lipid-induced innate immune signaling reduces 
atherosclerosis in hyperlipidemic murine models12. Given the mul-
tifactorial nature of cardiovascular disease and the complexity of 
the inflammation pathways involved in atherosclerotic plaque 
development (as shown in Figure 1), the implications of findings in  
hyperlipidemic mice have to be carefully assessed when con-
sidering humans. In addition to apoB 100–containing lipopro-
teins, HDL may become pro-inflammatory and pro-atherogenic 
when it undergoes chemical modification by macrophage-derived 
myeloperoxidase or mast cell–derived proteases through acquisi-
tion of pro-inflammatory mediators (such as serum amyloid A 
and symmetrical dimethyl arginine) or loss of anti-inflammatory 
mediators (such as clusterin, paraoxonase, and apoA-1), creating 
a dysfunctional form of HDL which promotes atherosclerosis13.  
Furthermore, mast cell–derived neutral proteases neutralize some 
of the critical anti-atherogenic functions of HDL. Thus, they 
degrade the pre-beta–HDL fraction, thereby blocking the ABCA1-
dependent cholesterol efflux from foam cells14. Moreover, the 
anti-inflammatory functions of apoA-1 on endothelial cells are 
lost upon its C-terminal cleavage by the human mast cell neutral  
protease chymase15.

Thus, a large body of evidence implicates inflammation in the 
initiation and progression of atherosclerosis1–5,12. Inflamma-
tion has also been implicated in outward remodeling that occurs 
with plaque formation, intraplaque neovascularization and 
plaque hemorrhage, matrix depletion with thinning of the fibrous  
cap through increased matrix proteolysis mediated by matrix-
degrading enzymes, and eventually disruption of the fibrous 
cap leading to thrombosis1–5,12. Plaque thrombogenicity has 
also been attributed to macrophage-derived tissue factor within  
the plaque1–5,12. Thus, inflammation plays an important role at  
multiple steps in the evolution of athero-thrombosis.
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Figure 1. Different pathways for inflammation in athrosclerosis are depicted in this figure. (CHIP, clonal hematopoetic mutations of 
indeterminate potential).

Do other factors contribute to inflammation in 
atherosclerosis?
Local shear stress and flow dynamics
Atherosclerotic plaques tend to preferentially form at sites of 
low or oscillating shear stress, such as branch points and curva-
tures where flow patterns are disturbed; these disturbed flow 
patterns appear to promote entry of atherogenic lipoproteins 
by increasing their residence time; in addition, such disturbed 
flows promote a pro-inflammatory endothelial phenotype that is  
orchestrated by flow-sensitive transcription factors such as 
KLF2; inhibition of KLF2 by low shear stress promotes a pro- 
inflammatory phenotype contributing to atherogenesis and plaque 
inflammation16. Murine studies have shown that athero-prone 
sites of normolipidemic mouse aorta contain cellular components  
priming these sites for enhanced inflammatory responses17.

Cholesterol crystals and inflammasome activation
Cholesterol crystals, frequently present in atherosclerotic plaques, 
can activate the NLRP3 inflammasome pathway to induce secre-
tion of pro-inflammatory and atherogenic cytokines like inter-
leukin 1 beta (IL-1β) and IL-1818–22. Activation of NLRP3 
inflammasome requires a priming signal which can be pro-
vided by neutrophil-derived extracellular traps and by oxidized 
lipids followed by the second signal provided by cholesterol  

crystals19. Mitochondrial damage and dysfunction can also play 
important roles in activating NLRP3 inflammasome21,22.

Integrated stress response, inflammation, and 
atherosclerosis
Dyslipidemia, especially exposure to saturated fatty acids, induces 
endoplasmic reticulum stress, mitochondrial oxidative stress, 
and elF2 alpha phosphorylation which hyperactivates an inte-
grated stress response (ISR), which in turn activates a local and 
systemic inflammatory response through activation of NLRP3 
inflammasome: this process contributes to atherogenesis since 
inhibition of ISR at different nodes reduces atherosclerosis  
in hyperlipidemic murine models22. Small-molecule ISR inhibi-
tors could emerge as important anti-inflammatory agents for  
atherosclerosis and other chronic inflammatory conditions22,23.

Visceral obesity, insulin resistance, and type II diabetes 
mellitus
Several studies have shown that visceral adiposity is associ-
ated with organ-specific inflammation involving the adipose  
tissue, liver, pancreas, and arterial wall; visceral adipose tissue 
of diet-induced obese mice was demonstrated to be rich in  
T cells secreting interferon gamma (IFN-γ) at higher levels 
than lean controls. This inflammation is associated with insulin  
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resistance and metabolic syndrome, eventually contributing to  
the development of type II diabetes mellitus24–28. Diabetes- 
associated dyslipidemia and pro-inflammatory state contribute  
to enhanced atherogenesis observed with diabetes24–28.

Smoking and environmental pollution
Active smoking and passive exposure to smoking are associated 
with increased atherogenesis and risk of acute vaso-occlusive 
cardiovascular events mediated in part by pro-inflammatory and 
pro-thrombotic effects of smoke exposure29, which are associated 
in part with perturbations on lipid metabolism30. Similarly, 
environmental pollutants may induce inflammation, enhanc-
ing risk of cardiovascular disease29. The underlying mechanism  
in both cases may be due to the increased production of  
reactive oxygen species (ROS) exceeding the endogenous anti-
oxidant capacity associated with an increase in the markers of  
inflammation31,32.

Hypertension and inflammation
Recent studies have implicated oxidative stress and innate and 
adaptive immunity in hypertension and hypertension-related 
end organ damage. Angiotensin II, salt retention, or increased 
mineralocorticoid activity activates innate immunity that pre-
cipitates or aggravates hypertension33. These hypertensive 
stimuli also induce oxidative stress in antigen-presenting cells  
which lead to neoantigen formation33. These neoantigens in turn 
lead to an adaptive immune response which can further damage 
end organs such as the kidney33. Several experimental studies 
have implicated T helper 17 (Th17) cells and their cytokines in 
inflammation in hypertension, and IL-10 has a counterbalancing  
role by producing regulatory T (Treg) cells33.

Adaptive autoimmunity and inflammation in 
atherosclerosis
An adaptive immune response to autoantigens, both humoral and 
cell-mediated, exists in animal models of atherosclerosis and in 
human subjects1,34,35. T-cell activation occurs upon presentation 
of the antigen in the setting of an inflammatory state, resulting 
in clonal proliferation and in the differentiation of CD4+ T cells 
to Th1, Th2, or Th17 phenotype, depending on the cytokines 
secreted by the antigen-presenting cells1,34,35. Both a pro- 
atherogenic inflammatory immune response mediated by Th1 and 
possibly Th17 and B-cell subsets and an athero-protective anti-
inflammatory immune response mediated by Treg cells and B1 
cells have been shown to exist and modulate atherosclerosis1,34,35.  
Autoantigens that have been identified include antigens derived 
from both the protein and lipid components of apoB 100– 
containing lipoproteins, heat shock protein 60 (HSP 60), and beta 
glycoprotein1,34,35. These observations have led to the concept 
of immunomodulatory therapies for atherosclerosis, which are  
being developed in various laboratories34,35.

Infections, atherosclerosis, and cardiovascular events
Several studies have implicated infections to either atherogen-
esis or precipitation of acute cardiovascular events5,36,37. These 
infections include influenza, gingivitis, urinary tract infec-
tions, skin infections, HIV, pneumonia, and Helicobacter pylori  
infections5,36,37. The link between infection and atherosclerosis has 
been attributed to direct infection of the vessel wall (Chlamydia  

pneumoniae), indirect effects involving molecular mimicry, or 
systemic pro-inflammatory effects5,37. However, a number of 
large-scale randomized clinical trials targeting C. pneumoniae  
with antibiotics failed to reduce cardiovascular events5. On the 
other hand, influenza vaccination has been shown to reduce  
cardiovascular events in a limited number of randomized  
clinical trials and in many observational studies5. The car-
dioprotective effects of pneumococcal vaccines have not been  
as persuasively demonstrated5.

Diet and gut microbe interaction
In recent years, gut microflora has been implicated in the patho-
genesis of a number of diseases, including obesity, diabetes, 
hypertension, atherosclerosis–thrombosis, and neurodegenerative 
diseases38. Several studies have suggested that certain dietary 
constituents such as phosphatidylcholine, choline, and carnitine 
are acted upon by enzyme trimethylamine lyase (TMA lyase)  
produced by gut microbes such as Clostridia, Shigella, Pro-
teus, and Aerobacter to generate TMA which is converted into  
trimethylamine oxide (TMAO) by hepatic flavin mono- 
oxygenases. TMAO enhances foam cell formation by upregulat-
ing macrophage scavenger receptors which may contribute to its 
pro-atherogenic effects38. In addition, TMAO enhances platelet  
activity and predisposes patients to thrombosis38.

In human subjects, circulating TMAO levels correlate with 
the presence of coronary artery disease and the future risk of 
athero-thrombotic cardiovascular events38. TMAO also has 
been shown to contribute to enhanced atherogenesis in murine  
models and enhanced platelet aggregation38. In murine models, 
antibiotics directed at gut microflora reduce atherogenesis38.  
Inhibition of TMA-generating microbial enzymes by dimeth-
ylbetane also reduces murine atherosclerosis38. Consumption 
of a Mediterranean-type diet is also associated with lower  
circulating levels of TMAO38 and this may account for the anti-
inflammatory and health-promoting effects of a Mediterranean  
diet. Recently developed, non-toxic potent inhibitors of gut 
microbial TMA lyase (halomethylcholines) were shown to  
markedly inhibit platelet reactivity and thrombosis38.

Leaky gut and low-grade endotoxemia
A number of studies have shown that low-grade endotoxemia 
due to leaky gut is present in human subjects under certain con-
ditions and that, in animal models, such low-grade endotoxemia  
has pro-inflammatory effects and enhances atherosclerosis39,40.

Senescence-associated cellular secretory phenotype and 
inflammation
Senescent cells are characterized by short telomeres and other 
markers such as senescence-associated beta-glycosidase (SA-
Beta Gal) p53, p21, and p16ink4a41. Experimental studies in murine 
models have shown the accumulation of senescent endothe-
lial cells, macrophages, and smooth muscle cells in atheroscle-
rotic plaques42. Senescent cells express inflammatory cytokines 
in early stages of murine atherosclerosis and matrix-degrading 
enzymes in more advanced stages of atherosclerosis; both of 
these are implicated in atherogenesis and plaque instability32.  
Depletion of these senescent cells reduces atherosclerosis and  
creates a more stable plaque composition, suggesting a causal 
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role for senescent cells in inflammation, atherosclerosis, and  
plaque instability41. These observations suggest that senolytic 
compounds, such as fisetin, that remove senescent cells may have 
athero-protective effects42. Another important situation dealing  
with senescence and inflammation is chronic kidney disease.  
Uremia is typified by activation of innate immunity, which is  
characterized by activated monocytes and increased synthesis 
of pro-inflammatory cytokines (IL-6, tumor necrosis fac-
tor, and IL-1)43–45. In mice, chronic inflammation is related to  
cellular senescence, and senescent cells may upregulate and secrete 
pro-inflammatory cytokines as part of a senescence-associated 
secretory phenotype46. This scenario is associated with progressive 
atherosclerosis and vascular calcification45.

Somatic hematopoetic mutations and inflammation
Aging is associated with accumulation of somatic hematopo-
etic mutations in certain genes that contribute to increased risk 
of hematological cancers and also to increased cardiovascular 
mortality47,48. This phenomenon is also called clonal hemato-
poetic mutations of indeterminate potential (CHIP). Mutations 
in DNMT3A or TET2 genes, in particular, are associated with  
enhanced cardiovascular events47,48. Experimental observations 
in a murine model have demonstrated that enhanced atheroscle-
rosis with TET2 mutations is likely due to increased activity of 
NLRP3 inflammasome in monocytes47,48. Such age-dependent 
somatic mutations may contribute to increased inflammation and  
cardiovascular risk in the elderly.

Impaired anti-inflammatory mechanisms
Acute inflammation generally resolves with time through the 
activity of a number of inflammation-resolving cellular and 
molecular mechanisms. These inflammation-resolving mecha-
nisms involve lipid-derived pro-resolving humoral factors and 
cellular mechanisms. One of these cellular mechanisms involves 
clearance of apoptotic debris (efferocytosis) by macrophages 
mediated by several cellular receptors such as MerTK49–51.  
Thus, chronic persistent and smoldering inflammation may 
also result from failure of inflammation-resolving mecha-
nisms in the host49–51. Molecules like CD47 that present a “don’t 
eat me” signal to the cells that clear apoptotic debris have been 
shown to be expressed in murine and human atherosclerotic  
plaques, and inhibition of CD47 stimulates efferocytosis and 
reduces atherosclerosis in murine models50. Humoral media-
tors such as resolvins, protectins, and maresins are also involved 
in resolution of inflammation49. Chronic inflammation likely 
results from an imbalance between pro-inflammatory and  
anti-inflammatory mediators; however, precise factors that  
modulate this delicate balance are poorly understood.

Acute and chronic mental stress and inflammation
Mental stress is known to play an adverse role in cardiovascu-
lar disease, but the mechanisms linking stress to atherosclero-
sis have remained elusive. Recent studies on mice have shown 
that acute and chronic mental stress induce a pro-inflammatory 
response in which the brain sends signals to the bone marrow 
and spleen, stimulating hematopoiesis and production of  
pro-inflammatory monocytes (Ly6hi) that are recruited into athero-
sclerotic plaques, creating enhanced plaque inflammation52,53.  

Human studies have also provided support for the link  
between mental stress, inflammation, and atherosclerotic artery  
disease54–58. Interestingly, meditation has also been shown to reduce 
inflammatory markers and cardiovascular risk56.

Sleep deprivation and fragmentation, inflammation, 
and atherosclerosis
Sleep fragmentation or deprivation is associated with increased 
cardiovascular risk in human subjects59,60. Recent experimental 
studies in murine models have shown that sleep fragmenta-
tion enhances atherosclerosis by suppressing the release of 
hypocretin (orexin) from the hypothalamus; suppression of 
hypocretin results in increased myeloid hematopoiesis and  
production of pro-inflammatory monocytes, likely by stimulat-
ing the release of CSF-1 by pre-neutrophilic precursors in the 
bone marrow61. Non-invasive imaging has shown an increased 
subclinical atherosclerotic burden in subjects with inade-
quate or fragmented sleep62. Obstructive sleep apnea (OSA) is  
recognized as an independent risk factor for atherosclerotic car-
diovascular disease63,64. In patients with OSA, pro-inflammatory 
molecules, such as soluble intercellular adhesion molecule 1, 
soluble vascular adhesion molecule 1, and MCP-1, were detected 
at very high levels with direct correlation to the desaturation  
index63,64. A study with a rat model of recurrent obstructive 
apneas reported increased leukocyte–endothelial cell interactions  
characterized by a significant increase in the flux of leukocyte 
rolling, number of rolling leukocytes, and number of adherent  
leukocytes65.

Summary and perspective
A large body of experimental and clinical observations high-
lights the role of inflammation in atherosclerosis and its compli-
cations (that is, plaque disruption and thrombosis). Some part of 
this inflammation is mediated through unhealthy lifestyles and 
conventional risk factors that can be addressed with aggressive 
lifestyle and risk factor modification. However, further incre-
mental risk reduction may require agents that directly target  
inflammation. In keeping with these, a number of drugs target-
ing inflammation were tested in the clinic. The results, with 
the exception of those of the Canakinumab Anti-inflammatory 
Thrombosis Outcome Study (CANTOS), have largely been dis-
appointing. Phospholipase inhibitors darapladib and varespladib, 
targeting pro-inflammatory phospholipases, failed to reduce  
cardiovascular events in randomized trials66,67. A mitogen-activated  
protein kinase inhibitor, losmapimod, also failed to reduce car-
diovascular events68. Because there appear to be multiple and 
redundant pathways for inflammation in athero-thrombosis, 
identification of the precise and optimal target for modifica-
tion is relatively challenging. Recently, low-dose methotrexate  
was tested in the CIRT (cardiovascular inflammation reduc-
tion trial) and shown not to reduce cardiovascular events in 
high-risk patients69. Interestingly, in this trial, low-dose Meth-
otrexate also failed to reduce circulating inflammatory markers 
high-sensitivity C-reactive protein (hs-CRP) and IL-669. In  
contrast, methotrexate has been shown to reduce inflamma-
tory markers when used in the setting of high inflammatory  
burden7,8,70. On the other hand, preliminary studies of cardiovas-
cular benefits of low-dose colchicine have been encouraging,  
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and large-scale randomized clinical trials examining the car-
diovascular benefits of low-dose colchicine are ongoing71. A 
recent significant development in this arena was the landmark 
CANTOS trial, in which canakinumab, a monoclonal antibody  
to IL-1β, showed significant cardiovascular benefit without  
changes in circulating lipids, albeit at the expense of an increase  
in fatal infections72. High cost, increased risk of serious infec-
tion, and a relatively modest clinical benefit with canakinumab  
will make it unfeasible for routine clinical use.

It is clear that the search for agents that selectively target 
adverse vascular inflammation without interfering with benefi-
cial aspects of inflammation must continue22,34,35. Several prom-
ising avenues of research, including different strategies, are in 
active development. Among these are the blockage of CD40-
induced tumor necrosis factor receptor-associated factor (TRAF)  
signaling in macrophages73 and triggering receptor expressed 
on myeloid cells 1 (TREM-1)74, strategies that activate the 
inhibitory immune receptor CD3175, or blocking CD47/SIRPA  
(signal regulatory protein alpha) signaling to promote inflam-
mation resolution in plaques through enhanced efferocytosis50.  

The CANTOS and CIRT trials showed important limita-
tions related to immunosuppression. On the other hand, phos-
pholipase inhibitors failed in reducing cardiovascular events.  
The optimal targets for modulation of inflammation need to be 
identified in order to develop anti-inflammatory therapies with 
high efficacy and safety. A potential and hopeful approach is 
the favorable modulation of atherosclerosis by vaccination by 
using antigens relevant to atherosclerosis. This would involve 
the development of antigen-specific antibodies or induction of  
antigen-specific Treg cells or other athero-protective immune 
responses. However, identification of the antigenic epitopes most 
relevant for atherosclerotic disease development in humans and 
some difficulties in vaccine design (for example, choice of the 
adjuvant, safety, and stability) are obstacles that will need to be 
overcome.
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