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Simple Summary: Ancylostomiasis is a zoonotic disease caused by the Ancylostoma hookworm
infection of dogs, cats, and other wildlife species and is frequently found in Asia and tropical regions.
The present study had confirmed the species of hookworm in dogs and soil environments collected
from temple communities. In addition, we investigated the association of hookworm-contaminated
soil in temple areas to increase awareness and establish a regimen to prevent zoonotic hookworm
transmission. Lastly, we analyzed the genetic diversity and evolution of hookworm in dogs and soil
environments among Thai A. ceylanicum and other Asian populations and disclosed insight into their
fundamental genetic relationship.

Abstract: Ancylostoma ceylanicum is a zoonotic helminth that is commonly found in domestic dogs
and cats throughout Asia but is largely neglected in many countries. This study aimed to confirm the
species of hookworm in dogs and soil environments and investigate the evolutionary analyses of
A. ceylanicum among Thai and Asian populations. In a total of 299 dog fecal samples and 212 soil
samples from 53 temples, the prevalence rates of hookworm infection by microscopic examination
were 26.4% (79/299) and 10.4% (22/212) in dog and soil samples, respectively. A PCR-RFLP targeting
the ITS region was then utilized to identify the hookworm species. In dogs, A. ceylanicum was the
main hookworm species, and the rates of A. ceylanicum and A. caninum infections were 96.6% and 3.5%,
respectively. The genetic characterization and diversity indices of the A. ceylanicum cox1 gene among
Thai and Asian populations were evaluated. Nine haplotypes were identified from Thai A. ceylanicum,
in which the haplotype diversity and the nucleotide diversity were 0.4436 and 0.0036, respectively.
The highest nucleotide diversity of Chinese A. ceylanicum populations suggested that it could be the
ancestor of the populations. Pairwise fixation indices indicated that Thai A. ceylanicum was closely
related to the Malaysian population, suggesting a gene flow between these populations. The temples
with hookworm-positive dogs were associated with the presence of hookworm-contaminated soil,
as these levels showed an approximately four-fold increase compared with those in temples with
hookworm-negative dogs (OR = 4.38, 95% CI: 1.55–12.37). Interestingly, the genotypes of A. ceylanicum
in the contaminating soil and infecting dogs were identical. Therefore, increased awareness and
concern from the wider public communities with regard to the responsibility of temples and municipal
offices to provide proper deworming programs to community dogs should be strongly endorsed to
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reduce the risk of the transmission of this zoonotic disease. In addition, parasitic examination and
treatment should be strongly implemented before dogs are imported and exported worldwide.

Keywords: Ancylostoma ceylanicum; community dogs; ITS region; cox1; Thailand; population diversity

1. Introduction

Hookworms are soil-transmitted gastrointestinal nematodes of the Ancylostomatidae family that
infect dogs, cats, and humans. These nematodes are endemic in tropical and subtropical regions of the world,
including parts of China, Southeast Asia, Australia, and Africa [1–4]. Hookworms can infect the host by
the fecal-oral route and through the skin penetration of the third-stage larvae [2]. Hookworm infection
causes intestinal blood loss, anemia, malnutrition, and dermatitis [5]. Common species of hookworm
infection in dogs include Ancylostoma caninum, A. ceylanicum, A. braziliense, and Uncinaria stenocephala,
while A. braziliense, A. tubaeforme, A. ceylanicum, and U. stenocephala are commonly found in cats [6,7].
Recent studies have shown that ancylostomiasis in humans results from Necator americanus, A. duodenale,
and A. ceylanicum [5,8,9]. Among Ancylostoma species, A. ceylanicum is the only species of animal
hookworms known to produce patent infections in humans and is an important cause of zoonotic
ancylostomiasis in Asia and Southeast Asia [9–14].

In general, the epidemiological study revealed that animal-derived Ancylostoma species are
emerging due to human and animal interaction [15,16]. In Thailand, free-roaming community dogs
have been widespread and come in close contact with people in some areas, such as temples and rural
communities. The presence of hookworm larvae in soil reported by George et al. [5] confirmed that
humans and dogs are at risk of infection from hookworm-contaminated soil. Additionally, a previous
report in Malaysia from Ngui et al. [15] indicated that people who are not wearing shoes are at risk of
hookworm infection from hookworm-contaminated soil. The opportunity for exposure to hookworm
is high in children, farmers, and especially Buddhist monks, who do not wear shoes based on their
practices and Buddhist tradition in Thai temples. Information regarding whether the soil in the area is
contaminated with hookworm is, therefore, important for public health to promote awareness and
establish a regimen to prevent zoonotic hookworm transmission.

The conventional method for hookworm diagnosis is coprological examination. However, this method
cannot differentiate hookworm species due to the similar egg size and morphology. Morphological
identification of adult hookworms is achievable, but the process is time-consuming and labor-intensive
and requires personal skill [16]. Alternatively, molecular techniques have been developed for the
identification of hookworms at the species level, such as polymerase chain reaction (PCR) assays
and PCR with restriction fragment length polymorphism (PCR-RFLP) assays targeting the internal
transcribed spacer (ITS) region [16]. The ITS region is a conserved region with a low mutation rate and
has no intraspecific variation [17]. Thus, the ITS region is suitable as a genetic marker for hookworm
species identification [18]. Recently, the cytochrome c oxidase subunit 1 (cox1) gene has been utilized to
evaluate the evolution and relationship of hookworm species among the population [19,20], given its
high intraspecific sequence variation from maternal inheritance and high evolutionary rates [21].

In Northern Thailand, a few reports have assessed the prevalence of hookworm infection
in humans, domestic dogs, and cats. By microscopic examination, hookworm infection rates of
approximately 21.3% in dogs and 13.9% in cats [22] and 12% in dogs and 4.5% in cats [23] have been
reported in the lower northern region and in the Chiang Mai province of the upper northern region,
respectively. The prevalence of hookworm infection in humans ranged from 0.6% to 13.4% [24,25].
However, the species of hookworm in Upper Northern Thailand have never been clarified. The present
study, therefore, aimed to identify the species of hookworm in dogs and investigate the presence of
hookworm contamination in the soil environment of community temples where there are high risks
of communicable pathogen transmission. Furthermore, the genetic characteristics of Ancylostoma
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hookworm and the evolutionary genetic relationships among the Thai hookworm and the populations
of neighboring Asian countries have been elucidated.

2. Materials and Methods

2.1. Study Area and Sample Size

The study area is located in the upper northern region of Thailand. Four provinces, including Chiang Mai
(18◦47′26” N, 98◦59′14” E), Chiang Rai (20◦01′05” N, 99◦40′22” E), Lampang (18◦17′21” N, 99◦29′26” E),
and Phayao (19◦11′30” N, 99◦52′47” E), were chosen and considered as high dog population density
provinces (Figure 1). Sampling sites were 53 community temples that were chosen based on convenience
and distribution from at least 3 districts in each province. The inclusion criteria for temple selection were
(i) a human population density of more than 30 persons per sq. km. [26,27], (ii) no regular deworming
program in dogs within 3 months, and (iii) ease of access and sample transportation to the laboratory.
The sample size of 299 dog fecal samples for the detection of hookworm infection was calculated using
the Win episcope 2.0 program [28] based on an estimated hookworm prevalence of 12.8% in dogs [29]
and an error rate of 5% with a 95% level of confidence. The stratified sampling method was used to
generate the number of samples per province based on dog population data [30].
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All the owners signed an informed consent form, and the animal use was approved by the Ethics
Committee of the Laboratory Animal Center, Faculty of Veterinary Medicine, Chiang Mai University
(S41/2561), on 18 January 2019.

2.2. Sample Collection and Examination

2.2.1. Fecal and Soil Sample Collection

Samples were collected between June and September 2019. Two hundred and ninety-nine fecal
samples were collected from the rectum of dogs or fresh fecal samples found on the ground. All the
collected fresh feces were normal in appearance (medium to dark brown in color, soft to firm in texture)
based on the WALTHAM fecal scoring system [31]. The dog ID, date of collection, temple name,
district, province, cleaning housing program, and type of food were recorded. Soil environment
samples were collected at the temple in the morning (08:00–10:00). For soil sample collection, the sites
of sample collection were defined by 4 areas in each temple: (i) temple courtyard, (ii) dog dwelling
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area, (iii) human activity area (such as sand pagoda), and (iv) under the big tree. In the collection
site that was not dirt ground, the soil sample for that site was obtained from the adjacent ground
within a 2 m radius of the area. Soil samples were collected from moist areas within the selected
sampling sites, and approximately 50 g (wet weight) was obtained by scraping the surface layer to
gather a 0.09 square meter area using a metal spade. The soil samples were kept separately in a sealed
plastic bag.

All the samples were stored on ice and transported to the Parasitology Laboratory, Faculty of
Veterinary Medicine, Chiang Mai University. Samples were refrigerated at 4 ◦C upon arrival.

2.2.2. Microscopic Examinations of Fecal and Soil Samples

Fresh fecal samples were examined under a light microscope after simple floatation using zinc
sulfate solution (specific gravity: 1.18) for the presence of eggs. The remainder of the fecal sample was
stored at −20 ◦C until further molecular analysis. The Baermann technique was used to determine
the presence of hookworm-like larvae in the soil samples [32]. Twenty grams of soil samples were
primarily filtered through a tea strainer to remove any debris and then subjected to another filtration
step using 2 sieve filters with pore sizes of 0.4 and 0.2 mm. The filtrated soil sample was cultured
individually using tap water. Hookworm-like larvae containing sediments were stored at −20 ◦C until
further molecular analysis could be carried out.

2.3. DNA Extraction

Genomic DNA (gDNA) samples from hookworm-positive samples were extracted using the
NucleoSpin®DNA stool kit (Macherey-Nagel GmbH, Düren, Germany) according to the manufacturer’s
instructions. In the elution step, gDNA samples were eluted with 100 µL of elution buffer. The extracted
DNA concentration and quality were determined using a spectrophotometer (Beckman Coulter DU®

730 Life Sciences, Pasadena, CA, USA) at wavelengths of 260 and 280 nm. All the gDNA samples were
kept at −20 ◦C until the next step.

2.4. Molecular Analyses

2.4.1. Identification of Hookworm Species Using a Polymerase Chain Reaction-Restriction Fragment
Length Polymorphism (PCR-RFLP) Assay Based on ITS Region

The PCR-RFLP assay, which was established by Traub et al. [16], was conducted to
identify the species of hookworm in the positive dog fecal and soil samples. A forward
primer RTGHF1 (5′-CGTGCTAGTCTTCAGGACTTTG-3′) and a reverse primer RTABCR1
(5′-CGGGAATTGCTATAAGCAAGTGC-3′) were used to amplify the 545-bp region of the internal
transcribed spacer (ITS1, 5.8S, and ITS2). PCR amplification reactions were performed in a 25 µL
reaction volume containing 10 ng of template gDNA (2–4 µL), 0.2 µM of each primer (0.5 µL of 10 µM),
and 12.5 µL of 2× PCR Master Mix (KOD One™ PCR Mastermix; Toyobo, Japan). The thermocycling
conditions were as follows: initial denaturation at 94 ◦C for 2 min, 45 cycles of amplification (94 ◦C
for 30 s, 62 ◦C for 30 s, and 72 ◦C for 30 s), and a final extension at 72 ◦C for 5 min. The reaction was
performed on a T100™Thermal Cycler (Bio-Rad, Hercules, CA, USA). The amplified PCR products were
digested with Hinf1 to differentiate A. caninum from A. ceylanicum and U. stenocephala. The digestions
were performed at 37 ◦C for 16 h, using 1 unit of restriction enzyme and 1 µg of DNA (3–5 µL of PCR
product) in a total reaction volume of 20 µL. The PCR products were analyzed using 2% agarose gels
electrophoresis. Distilled water (DW) and the gDNA of A. caninum and A. ceylanicum were used as a
negative and positive control, respectively.

2.4.2. PCR Assay and Nucleotide Analysis Based on A. ceylanicum and A. caninum cox1 Gene

The mitochondrial cox1 gene served as the target to assess the genetic characteristics and
evolutionary analysis. The previously identified A. ceylanicum- and A. caninum-positive samples were
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successively subjected to PCR for the cox1 gene using a set of primers described by Inpankaew et al. [33],
including the forward primer AceyCOX1F (5′-GCTTTTGGTATTGTAAGACAG-3′) and the reverse
primer AceyCOX1R (5′-CTAACAACATAATAAGTATCATG-3′), amplifying a 377-bp amplicon.
The reactions were performed in a 50 µL reaction mixture volume, containing 10 ng of template
gDNA (2–4 µL), 0.2 µM of each primer (1 µL of 10 µM), and 25 µL of 2× PCR Master Mix (KOD
One™ PCR Mastermix; Toyobo, Japan). The PCR conditions were set as follows: initial denaturation
at 94 ◦C for 2 min, 45 cycles of amplification (94 ◦C for 30 s, 55 ◦C for 30 s, and 68 ◦C for 45 s),
and a final extension at 72 ◦C for 5 min. The reaction was performed using a T100™ Thermal
Cycler (Bio-Rad, Hercules, CA, USA). The DW and gDNA of A. caninum and A. ceylanicum were
used as negative and positive controls, respectively. The PCR products were purified using a
NucleoSpin® PCR Clean-up Kit (Macherey-Nagel GmbH, Düren, Germany). Purified PCR products
were submitted for fluorescent dye-terminator sequencing by Bio Basic, Inc. (Singapore, Singapore) in
the sense and antisense directions using the PCR primer set described above. For nucleotide analysis,
the cox1 amplicons of 32 samples (29 A. ceylanicum samples from dogs, 2 A. ceylanicum samples from soil,
and 1 A. caninum sample from dog) were selected based on the geographic distribution, covering all
positive provinces.

2.5. Data Analyses

2.5.1. Prevalence of Hookworm Infection/Contamination

Positive fecal samples from the zinc sulfate flotation technique and positive soil samples from
the Baermann technique were considered as positive for hookworm detection. The prevalence of
hookworm infection in dogs and contamination in soil samples were estimated using the formula
prevalence = (number of positives samples divided by the number of samples in dogs/soil examined) × 100.
The association between hookworm-positive results and sampling areas was assessed using Fisher’s
exact test. The significance was defined as p < 0.05.

2.5.2. Phylogenetic Analysis

The cox1 sequences were edited and manually aligned. The consensus sequences were generated
using the BioEdit Sequence Alignment Editor [34] and then compared with the nucleotide sequences
from GenBank using a Basic Local Alignment Search Tool (BLAST) analysis. Phylogenetic analysis
was performed using MEGA X [35]. Multiple sequences were aligned using ClustalW (https://
www.genome.jp/tools-bin/clustalw), and phylogenetic analysis was performed using a maximum
likelihood (ML) method based on the Kimura 2-Parameter model. The consensus tree was obtained
after a 1000-replication bootstrap analysis. The cox1 sequences of A. ceylanicum from other areas
of Thailand and other countries, including Malaysia, Cambodia, China, Japan, Papua New Guinea,
Australia, and Tanzania, and A. caninum from Australia (NC012309) were used as reference sequences
for tree construction (Table S1). In addition, the sequence of A. duodenale from China (accession number:
NC003415) was used as an outgroup species.

2.5.3. Population Genetic Analysis

The DnaSP 6 program [36] was used for the haplotype analysis and calculations to determine
the haplotype diversity (Hd), nucleotide diversity (π), and the number of variable sites (S). The gene
flow among populations was analyzed by fixation index (FST) statistics using the Arlequin program
Version 3.5 [37]. The gene flow of A. ceylanicum was analyzed using the reference sequences from Asian
countries, including Thailand, China, Malaysia, and Cambodia (Table S2). The Network program [38]
was used to generate a median-joining (MJ) network of cox1 haplotypes and reference haplotypes and
was subsequently drawn manually. The references haplotype and their frequency obtained from the
NCBI database (https://www.ncbi.nlm.nih.gov/genbank/) are described above.

https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
https://www.ncbi.nlm.nih.gov/genbank/
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3. Results

3.1. Prevalence and Distribution of Hookworm Infection

A total of 299 fecal samples and 212 soil samples from 53 temples were examined microscopically,
and the hookworm species were identified by PCR-RFLP targeting the ITS region. The prevalence
rate of hookworm in dogs was 26.4% (79/299), as assessed by microscopic examination. PCR-RFLP
successfully identified the species of hookworm in 58 samples, and the rates of A. ceylanicum and
A. caninum infection were 96.55% (56/58) and 3.45% (2/58), respectively (Figure 1). On the other
hand, the prevalence of hookworm-like larvae in soil was 10.38% (22/212), as assessed by microscopic
examination (Table 1). However, PCR-RFLP only identified the species in 8 of 22 samples, and all the
samples were identified as A. ceylanicum (Table 1).

Table 1. Summary of hookworm infection in dog fecal samples and soil samples in Thailand,
as demonstrated by the microscopic results and subsequent PCR-RFLP targeting the ITS region.

Province

Fecal Samples Soil Samples

Positive
Microscopic N2

A.
ceylanicum

A.
caninum n/a Positive

Microscopic N4
A.

ceylanicum
A.

caninum n/a

N1 n % n % n % n N3 n % n % n % n

Chiang Mai 159 57 35.85 a 42 40 95.24 2 4.76 15 120 16 13.33 3 3 100 0 0 13
Chiang Rai 70 6 8.57 b 5 5 100 0 0 1 48 1 2.08 1 1 100 0 0 0
Lampang 20 9 45.00 a 5 5 100 0 0 4 16 3 18.75 2 2 100 0 0 1
Phayao 50 7 14.00 b 6 6 100 0 0 1 28 2 7.14 2 2 100 0 0 0

Total 299 79 26.42 58 56 96.55 2 3.45 21 212 22 10.38 8 8 100 0 0 14

N1: total number of examined dog fecal samples assessed by microscopic examination; N2: number of positive
dog samples successfully assessed with PCR-RFLP; N3: total number of examined soil samples by microscopic
examination; N4: number of positive soil samples successfully assessed with PCR-RFLP; n/a: species unidentified
samples; superscripts (a,b) indicate test results of Chi-square on prevalence among four provinces (any measurements
with shared superscript letters are not significantly different from each other at p < 0.05).

Considering the population, the temple-level prevalence of positive dogs and positive soils was
47.17% (25/53) and 26.42% (14/53), respectively (Table S3). A total of 10 temples were positive for hookworm
both in dog and soil samples (Table S3). Although not statistically significant, the hookworm-positive results
in dogs were speculated to be associated with the hookworm-positive results in the soil (p = 0.06).
Regarding the different areas in each temple, we found that the soil from dog-dwelling areas had the
highest rates of hookworm contamination (15.09%, 8/53), followed by the soil from human activity
areas, such as sand pagoda (11.32%; 6/53); the areas under big trees (9.43%; 5/53); and the temple
courtyard (5.66%, 3/53) (Table S4). However, the frequency of hookworm-contaminated soil in each
sampling site in the temple exhibited no significant differences (p > 0.05; Fisher’s exact).

3.2. Hookworm Species Confirmation and Genetic Characteristics of the A. ceylanicum Mitochondrial cox1 Gene

The nucleotide BLAST of partial cox1 sequences (315 bp) of 31 A. ceylanicum sequences exhibited a
high identity (98.07–100%) with Thai A. ceylanicum (GenBank accession no. KF896595). An A. caninum
sequence from a dog exhibited a 96.71% identity with A. caninum from Australia (GenBank accession
no. AJ407962). The obtained A. ceylanicum cox1 gene sequences from dog and soil isolates were classified
into nine haplotypes, which were referred to as Acy-COX1-TH01 to Acy-COX1-TH09. The sequences of
A. ceylanicum of dogs and soil were deposited in GenBank (DDBJ/EMBL/GenBank database accession
no. LC533318-LC533327). The sequence of A. caninum was deposited as LC533328 (Table S5).

Genetic variation among nine haplotypes of Thai A. ceylanicum, as assessed by multiple alignment
analysis, revealed 12 different variable sites, including 2 transversions and 10 transitions (Table 2).
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Table 2. Multiple alignment of the partial cox1 from 9 haplotypes of A. ceylanicum in this study.

Haplotype
Name

Nucleotide Position on the A. ceylanicum cox1 Gene

48 72 87 88 90 105 147 150 198 199 219 264

Acy-COX1-TH01 A C A G A A G A G G A G
Acy-COX1-TH02 G . . . . . A . . . . .
Acy-COX1-TH03 . T . . . . . . . . . .
Acy-COX1-TH04 . . . . . G . . A A . .
Acy-COX1-TH05 . . . C . . . . . . . .
Acy-COX1-TH06 . T G . G . A . . . G A
Acy-COX1-TH07 . . . . . . . T . . . .
Acy-COX1-TH08 . . G . . . . . . . . .
Acy-COX1-TH09 G . . . . . . . . . . .

Dots indicated the matching of nucleotide position the A. ceylanicum sequence.

The distribution and frequencies of A. ceylanicum haplotypes in Upper Northern Thailand were
analyzed and revealed that the Acy-COX1-TH01 haplotype was detected at the highest frequency
at 74.2% (23/31 sequences). This haplotype was commonly observed in all four provinces and
found in both fecal and soil samples. As displayed in Figure 2, the sequence of two soil isolates
(Acy-COX1-TH01-soil) was close to Acy-COX1-TH01-dog. Six haplotypes are present in Chiang Mai
(Acy-COX1-TH01 to TH06), 3 haplotypes are present in Lampang (Acy-COX1-TH01, TH08, and TH09),
whereas only one or two haplotypes were observed in Chiang Rai (Acy-COX1-TH01 and TH07) and
Phayao (Acy-COX1-TH01) provinces (Table S5). Regarding the relationship among the human and
animal isolates, Thai Acy-COX1-TH01 was close to the sequences of A. ceylanicum from Malaysian
people (MK792828), dog (MK792824), and cat (MK792825) that belong to the same haplotype MA02
(Figure 2 and Table S1). Similarly, Acy-COX1-TH03 was close to the sequences of A. ceylanicum from
human (KC247737) and dog (KC247734) that belong to the haplotype Malaysian MA01. Regarding the
relationship between A. ceylanicum and geographic distribution, a phylogenetic tree demonstrated that
A. ceylanicum from Thailand and all reference countries, including Malaysia, Cambodia, China, Japan,
Papua New Guinea, and one country from the African continent (Tanzania), were located in the same
clade, with the exception of one human sequence in Australia (AJ407937) (Figure 2).

3.3. Population Analyses of the A. ceylanicum Mitochondrial cox1 Gene among Asian Countries

The haplotype network displayed a star-like pattern and exhibited a wide dispersal around the
predominant haplotype Acy-COX1-TH01 (in this study). This haplotype was identical to haplotypes
MA02 from Malaysia, CA01 from Cambodia, and CH01 haplotype from China (Figure 3). The second
most abundant haplotype was Acy-COX1-TH03, which was placed in the same group as haplotype
MA01 from Malaysia and haplotype CA03 from Cambodia. Acy-COX1-TH06 was the most distinct
haplotype, which includes four nucleotide-substitutions and was delineated from the haplotype CA02
from Cambodia.

The genetic diversity of the Thai A. ceylanicum population has been analyzed and compared
pairwise to the populations of Cambodia, Malaysia, and China. The Thai A. ceylanicum cox1 population
(32 sequences; 31 from this study and 1 sequence from Inpankaew et al. [33]) displayed the lowest
genetic diversity—i.e., a haplotype diversity (Hd) of 0.4435 and a nucleotide diversity (π) of 0.0036
(Table 3).
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Figure 2. The evolutionary relationship of A. ceylanicum and A. caninum isolates from dogs and soil
based on the 259-bp fragments of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The tree
was constructed using a maximum likelihood method based on the Kimura 2-Parameter using the
MEGA X software version 10.0.5. The number in each branch indicates the percentage of 1000 bootstrap
replications. Sequences obtained from GenBank are indicated by their accession numbers.
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Figure 3. The haplotype network map of A. ceylanicum based on a fragment of the cox1 gene from
Thailand, Cambodia, China, and Malaysia. Circle size is scaled to frequencies of each haplotype.
The hash marks indicate nucleotide substitutions among adjacent haplotypes.

Table 3. Summary of the genetic diversity of the 4 populations of A. ceylanicum based on the nucleotide
sequences of the partial mitochondrial cox1 gene.

Populations N
Diversity

S h Hd ± SD π ± SD

Thailand 32 11 9 0.4435 ± 0.1105 0.0036 ± 0.0028
Cambodia 10 6 6 0.9111 ± 0.0620 0.0088 ± 0.0059
Malaysia 40 4 5 0.6141 ± 0.0593 0.0043 ± 0.0006

China 12 17 9 0.9394 ± 0.0577 0.0201 ± 0.0118

N: numbers of A. ceylanicum sequences used; S: numbers of variable sites; h: numbers of haplotypes; Hd: haplotype diversity;
SD: standard deviation; π: nucleotide diversity.

The highest haplotype diversity and nucleotide diversity were observed in the Chinese
A. ceylanicum population (Hd = 0.9394; π = 0.0201), followed by the Cambodian and Malaysian
populations. Pairwise (FST) indices between the Thai A. ceylanicum population and other reference
populations were 0.2644, 0.2507, and 0.1526 for the Chinese, Cambodian, and Malaysian populations,
respectively. In addition, the highest FST value of 0.3577 was observed between the Chinese and
Malaysian populations. All the FST values were statistically significant (Table 4).

Table 4. The pairwise fixation index (FST) among four A. ceylanicum populations based on the partial
mitochondrial cox1 gene.

Populations Thailand Cambodia Malaysia China

Thailand -
Cambodia 0.2507 -
Malaysia 0.1526 0.0999 -

China 0.2644 0.1939 0.3577 -

All values were statistically significant (p < 0.001).

4. Discussion

The major hookworm species in the community dogs in Upper Northern Thailand was A. ceylanicum.
We demonstrated an approximately 50% temple-level prevalence of hookworm infection in dogs,
and these positive dogs were commonly living in the community temples and freely roaming in the
surrounding communities. The prevalence of hookworm infection at the individual dog level in this
study (26.4%) showed an approximately two-fold increase compared with previous studies in Chiang
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Mai province (approximately 12%), as reported by Tiwananthagorn et al. (unpublished results) and
Tangtrongsup et al. [23], and greater than that reported by Pumidonming et al. [22] in Lower Northern
Thailand (21.3%). These differences are probably due to the different study areas and the inclusion
criteria of no regular deworming program. The proportion of A. ceylanicum infection in dogs from
our study in Upper Northern Thailand (96.6%) was higher than the previous report in the Lower
Northern region, which reported a rate of 82.1% [22]. Recently, various studies have reported the
rate of A. ceylanicum in hookworm infection in the bordering countries of Thailand: 94.4% of dogs in
Cambodia, 52% of dogs in Malaysia [39], 77.8% of dogs in Laos [40], and 42.7% of dogs in China [7].
The failure of PCR amplification in some fecal and soil samples was noticed in the present study and
was also noted in other studies. This failure could be due to the low intensity of infection, resulting in
a reduced number of hookworm eggs, and some PCR inhibitors in the fecal and soil samples interfere
with the amplification reaction [15,41]. Therefore, developing a more robust PCR assay to improve the
diagnosis of hookworm infection is needed for the efficient control of this zoonosis.

The temples with hookworm-infected dogs are prone to have hookworm-contaminated soil.
Here, we confirmed the presence of A. ceylanicum larvae in the soil. Moreover, the A. ceylanicum
genotypes in dogs and soil were identical, suggesting the shedding of hookworm from dogs to
the soil. The frequently detected areas in the positive temples included the dog’s dwelling areas;
human activity areas, such as the sand pagoda; and the areas under the big tree. These areas are
the places that community people commonly access for the Buddhist rituals, ceremonies, commerce,
and recreation. In addition, allowing dogs to roam freely with indiscriminate defecating areas in the
Thai temples can lead to the widespread contamination of infective A. ceylanicum hookworm larvae
in the environment and possible transmission to humans who occasionally go barefoot during these
activities. As suggested in rural Malaysia, close contact with community dogs and cats was associated
with A. ceylanicum hookworm infection in humans [42]. Previous reports worldwide have reported
soil contaminated with hookworm in the public parks of Brazil and Malaysia [43,44], a tribal area of
India [5], dog parks in Portugal [45], and organic farms in the Philippines [46]. Therefore, good hygienic
practices of shoe-wearing and temple ground cleaning programs should be encouraged to reduce
the risk of transmission [47]. In addition, reducing the number of free-roaming dog population size
through a sterilization campaign or by sheltering free-roaming dogs should be implemented [48].

The molecular epidemiologic data, phylogenetic relationship, and population analysis obtained
from the characterization of the cox1 gene of A. ceylanicum hookworms strongly support the distribution
of this parasite in the country, within the Asian continent, and possibly worldwide. A common haplotype
of Thailand (Acy-COX1-TH01), which was observed in all four provinces of Upper Northern Thailand,
suggested the circulation of A. ceylanicum in the region. Genetic differentiation analysis showed that
Thai A. ceylanicum had the lowest haplotype diversity and nucleotide diversity, indicating minimal
differences between haplotypes in Thailand. However, further studies in other regions of Thailand are
necessary. The pairwise fixation index showed that Thai A. ceylanicum was mostly close to Malaysian
A. ceylanicum, suggesting gene flow between these populations. In addition, the sharing haplotype of
the cox1 gene of A. ceylanicum among the countries (Acy-COX1-TH01 and MA02 and CA01 and CH01;
or Acy-COX1-TH03 and MA01 and CA03) advocated the transmission and widespread geographic
distribution among these countries [49]. The haplotype relationship between Malaysia and Cambodia
populations revealed a very complex evolutionary pattern with some median vectors that indicated
many lost or potential ancestors [50]. Interestingly, the Chinese A. ceylanicum exhibited the highest
haplotype and nucleotide diversities, suggesting that the Chinese A. ceylanicum might be an ancestor of
the populations in Asian countries. Our hypothesis is consistent with a previous study on the history
of domestic dogs, in which China was the origin of the dog species [51]. Animals potentially migrated
to accompany human colonization to other Asian countries and subsequently carried the parasites
and allowed the parasites to colonize new habitats [51–53]. Hence, the transportation of companion
animals should strictly follow the guidelines and regulations of each county to prevent the spreading
of zoonotic hookworm.
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Based on the phylogenetic tree, the sequences of A. ceylanicum from humans (MK792828-29),
dogs (MK792824), and cats (MK792825) in Malaysia belong to the same haplotype MA02, confirming that
transmission from dogs to humans has occurred. This species was also found in wildlife, such as
Asian golden cat, leopard cat, civet, and wild canids [9,54,55]. The biological, epidemiological,
and pathophysiological characteristics of A. ceylanicum in humans and other wildlife species in Thailand
and their genetic diversity with isolates from companion animals deserve further investigation.

Integrated control programs intended for combining chemotherapeutic interventions by
deworming programs with improvements in community hygiene and animal health programs
will aid in curbing this potentially opportunistic zoonosis. For the deworming program of community
dogs in Thailand, an oral dose of 10 mg/kg BW of pyrantel pamoate and the subcutaneous injection of
0.2–0.4 mg/kg BW ivermectin have been regularly administered for deworming; however, the efficacy
of these regimens against A. ceylanicum in dogs remains unclear. Currently, many commercial drugs
against A. ceylanicum infection in dogs have been tested at the laboratory level and exhibited greater than
99% efficacy within 3–7 days, including a combination of 15 mg/kg BW of febantel and 14.4 mg/kg BW
of pyrantel embonate (Drontal® Plus, Bayer Animal health) [56], a spot-on of 2.5 mg/kg BW moxidectin
(Advocate®, Bayer Animal health) [57], and 0.5 mg/kg BW milbemycin oxime (NexGard Spectra®,
Boehringer Ingelheim) [58]. The clinical field assessment of the efficacy of anthelminthic agents against
A. ceylanicum infection warrants further investigation.

5. Conclusions

In conclusion, this study provided the data, genetic characteristics, and evolutionary relationship
of A. ceylanicum in Thailand and other Asian countries. We confirmed that A. ceylanicum was the
predominant hookworm species in Northern Thailand, and the data fully supported the transmission
dynamics from dogs to soil environments. Therefore, the awareness of A. ceylanicum transmission from
dogs and soil in the temple should be raised. A proper schedule for the deworming of community
dogs and the regular cleaning of the temple ground are suggested to reduce the risk of transmission of
this zoonotic disease.
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