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Mining the Synergistic Core Allosteric Modules Variation
and Sequencing Pharmacological Module Drivers in a
Preclinical Model of Ischemia

Yingying Zhang1,2,3, Zide Zhao4, Yanan Yu2, Jun Liu2, Pengqian Wang2,5, Bing Li2, Xiaoxu Zhang4, Yinying Chen6 and
Zhong Wang2*

Identifying the variation of core modules and hubs seems to be critical for characterizing variable pharmacological
mechanisms based on topological alteration of disease networks. We first identified a total of eight core modules by using an
approach of multiple modular characteristic fusing (MMCF) from different targeted networks in ischemic mice. Interestingly,
the value of module disturbance intensity (MDI) increased in drug combination group. Second, we redefined a weak allosteric
module and a strong allosteric module. Then, we identified 15 pharmacological module drivers (PMDs) by leave-one-out
screening with a cutoff of two folds, which were at least, in part, validated by expression and variation of topological
contribution. Finally, we revealed the fusional and emergent variation of PMD in core modules contributing to
multidimensional synergistic mechanism in ischemic mice and rats. Our findings provide a new set of drivers that might
promote the pharmacological modular flexibility and offer a potential avenue for disease treatment.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 269–280; doi:10.1002/psp4.12281; published online 14 March 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Identifying the variation of core modules and hubs

seems to be critical for characterizing variable pharma-

cological mechanisms based on topological alteration

of disease networks.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study first identified the core modules by using

an approach of MMCF from different targeted networks

in cerebral ischemia. We redefined a weak allosteric

module and a strong allosteric module. Then, we identi-

fied the PMDs.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� This study reveals the diversity of fusional and emer-
gent variations of PMD in core modules contributing to
multidimensional synergistic mechanism in ischemic
mice.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� This study provides a new set of drivers that might
promote the pharmacological modular flexibility and
offers a potential avenue for disease treatment.

Dissection of variable mechanisms of drug combination is

still challenging due to complex molecular evolution pro-

cesses that may be associated with pathophysiological and

pharmacological changes. Modular structure plays a signifi-

cant role in aiding the diagnosis, prevention, and therapeu-

tic treatment of diseases.1 To date, hundreds of methods

have been proposed for module identification,2 which may

help us to elucidate how various deciphering mechanisms

operate to ensure precise module identification and assem-

bly.3 Generally, the multipotent functional changes in modu-

lar architecture are referred to as allosteric modules,4 which

can be used to reflect the dynamics of modular networks

and quantitatively analyze allosteric variations to reveal

detailed allosteric pharmacological events in cellular net-

works.5 Modular pharmacology suggests that the treatment

of complex diseases requires a modular design to affect

multiple targets. The modular pharmacology extends the

comprehension of drug targets from entitative ontology to

relational ontology,6 which may help to measure and inte-

grate the multipart relationship between drug and disease.

Thus, dynamic variation of core modules and key hubs may

satisfy the modified heterogeneity of biological networks –

criteria for judging whether a specific network member can

provide an important impetus for network evolution – for

causality of systematic regulation.
Although searching for the dominant region in enormous

information dataset is not an easy task, the opening work is
still concentrated in finding the leader of numerous mod-
ules. For example, knowledge-driven matrix factorization
aims at calculating the value of interaction between mod-
ules through module matrix and network structure matrix,
and a higher value of the module indicates a more
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important position.7 In another study, researchers devel-
oped a pathway-based tool entitled COre Module Bio-
marker Identification with Network ExploRation
(COMBINER), and assumed that core modules might con-
sist of driver genes and their first-degree neighbors.8 Addi-
tionally, researchers also focused on the overlapping
modules and root-like upstream based on multiple specific
stress regulator modules and a graphical approach derived
from the dynamical laws, respectively,9,10 It seems that net-
work modules are artificially divided into domination and sub-
ordination, and a core module is defined as a unit occupying
the leading architecture and dominating function. However,
what we attempt to do is not only quantitatively identifying
core modules and key hubs, but also discussing the dynamic
structural changes of these core modules based on pharma-
cological module drivers (PMDs). We define PMD as an
actual component entity of a module that has the ability to
drive the conformation of this module. This is not only a
huge challenge for deeply understanding the evolutional
instant of key factors in biological system, but also an oppor-
tunity for further characterizing the synergistic mechanism of
drug combination. Thus, we developed a new approach
named Quantitative Core Module and Driver Paradigm,
which may contribute to translational medicine in a practical
and real-world manner. Remarkably, as a pharmacological
mechanism model, Qingkailing injection with two bioactive
components of jasminoidin (JA) and ursodeoxycholic acid
(UA), which are commonly used for treating cerebral ische-
mia, has been extensively studied in both basic and clinical
experiments during the last few years,11–13 which is consid-
ered an indispensable precondition for scanning the context
of intermolecular cooperation frame by frame.

MATERIALS AND METHODS

In this study, we administered the interventions of genipo-

side alone, cholic acid alone, and their combination in

middle cerebral artery occlusion (MCAO) models, built net-

works based on the different genes of gene microarrays,

and identified the core modules from these networks by

using the approach of multiple modular characteristic fusing

(MMCF). Then, the spectrum of adjacency matrix was used

for identifying PMDs, which were also validated by topologi-

cal contributions, animal experiments, published literature,

and available databases.

Molecular network mapping
Animal models control and pharmaceutical administration

were strictly executed. The differentially expressed genes

identified by microarray analysis consisted of 11,644 cDNAs.

One-way analysis of variance models and significance analy-

ses of microarrays were used to compare the means of the

altered genes between groups.11,12 A total of 414, 470, and

401 significantly differentially expressed genes were found

among JA vs. vehicle, UA vs. vehicle, and JU (jasminoidin

and ursodeoxycholic acid) vs. vehicle, respectively. Then, all

the significantly differentially expressed genes in each group

were uploaded to the ingenuity pathway analysis system

(http://www.ingenuity.com/). A cutoff was set to identify

molecules whose expression was significantly differentially

regulated. All the protein molecules with specific semantic

annotations were filtrated out, and were able to attract out all

the rest of the molecules from the STRING database (http://

www.string-db.org/) to construct networks. A strategy extract-

ing the multiscale backbone of complex weighted networks

was used.14 The method offers a practical procedure to

extract the relevant connection backbone in complex multi-

scale networks, thereby preserving the edges that represent

statistically significant deviations with respect to a null model

for the local assignment of weights to edges. It does not

belittle small-scale interactions and operates at all scales

defined by the weight distribution. The multiscale backbone

has between-edge weight scales ranging from 0–1, which

depends on eight aspects of evaluation on intermolecular

interaction coefficient in the STRING database (i.e., neigh-

borhood, gene fusion, co-occurrence, co-expression, experi-

ments, databases, text-mining, and homology). When we got

this weighted network skeleton, second-order neighbors

were merely reserved around those “baits” of each group to

limit the spread range of activity and further form the tar-

geted network.

Modular screening and stability
Three module-screening methods, including affinity propa-

gation (AP; parameters: lambda parameter 5 0.5, number

of iterations 5 8),15 Markov Cluster algorithm (MCL; param-

eters: granularity parameter 5 2.0, number of iter-

ations 5 16),16 and Molecular Complex Detection (MCODE;

parameters: degree cutoff 5 2, K-core 5 2, and node score

threshold 5 0.2),17 were compared. The AP takes as input

measures of similarity between pairs of data points, and

real-valued messages are exchanged between data points

until a high-quality set of exemplars and corresponding

clusters gradually emerges. The MCL algorithm assigns

proteins into families based on precomputed sequence sim-

ilarity information. The MCODE is based on vertex weight-

ing by local neighborhood density and outward traversal

from a locally dense seed protein to isolate the dense

regions according to given parameters. Their network struc-

ture entropies were calculated for balancing the selective

speculation.18 Network structure entropy is defined as

follows:

E52
XN

i51

Ii ln Ii (1)

where N is the number of nodes in network, and Ii is the

importance of node i. A smaller entropy value means higher

similarity between modular nodes, thereby determining

module stability.

Core module identification using the multiple modular

characteristic fusing approach
In this network, modules were regarded as “super-nodes,”

and the weighted edges between these modules were

derived from the intermolecular relations across modules.

The approaches of multiple modular characteristic fusing

(MMCF), including weighted degree,19 betweenness
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centrality,20 and PageRank,21 were used for this searching

process.
We removed each core module from the whole network

and the module network, respectively, and then observed

the rate change of the characteristic path length L22 to vali-

date the results of identification.

L5
1
n

X
i2N

Li 5
1
n

X
i2N

X
j2N:j 6¼i

dij

n21
(2)

where i and j are the different nodes in the network, Li is

the average distance between node i and all other nodes,

and dij is the distance between node i and j.

GO functional enrichment analysis
The DAVID version 6.7 (http://david.abcc.ncifcrf.gov/) soft-

ware was used for functional enrichment analysis, with spe-

cies restricted to Mus musculus. The biological process

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway are able to describe the biological features of

modules. Modified Fisher’s exact test and Benjamini were

utilized for calculating and correcting P values (P<0.05).

Calculation of module disturbances intensity
Module disturbance intensity (MDI) is used to characterize

the degree of module fragmentation after being disturbed.

Specifically, we got the formula of MDI for a given module

with two variables – module disturbance and node distur-

bance. For any given module M, its MDI is defined as:

MDI5
1
2

jMD j
jMD2maxj

1
jND2all j2jND j
jND2all j

� �
0 < MDI < 1 (3)

where MD is a disturbing module set defined as MD 5

{Md |M \ Md 6¼u}, in other words, module M is dissociated

into multiple modules Md with intersecting disturbance

nodes for tracing and confirming Md. This means all mod-

ules in MD can be the next state of module M after M is

disturbed. When the theoretical members in MD tend to be

the most, we use MD-max instead of MD, and the ratio of

|MD| to |MD-max| can be used to assess the disturbance of

M in the module level based on reality and theory. The

|MD| represents the number of modules in MD, MD-max 5

{Md
0|M\Md

0 6¼u, TMd0!max}, and |MD-max| means the num-

ber of modules in the set MD-max. The same importance as

module disturbance, node disturbance is another variable

of MDI, which is still a ratio, only at node level within the

module scale. Here, ND is a node set, in which each node

comes from Md and must be the conservative member of

the module M at the same time. In truth, we need to note

the remaining nodes in Md, because they are responsible

for performing module phase change from M to Md. As a

result, the number ratio of the remaining nodes to all nodes

in Md is implied to express the degree of node disturbance.

The ND 5 {Nd |Nd�M, Nd�Md}, ND-all 5 {Nd-all |Nd-all�Md}.

The |ND-all| and |ND| represent the number of nodes in

ND-all and ND, respectively.

Calculation of relative retention index and relative

generation index
Relative retention index (RRI) refers to the number of

unchanged nodes and edges of a module after drug combi-

nation divided by the total number of nodes and edges; and

relative generation index (RGI) refers to the number of new

nodes and edges of a module after drug combination

divided by the total number of nodes and edges.

RRI5
jNR j1jER j
jNNew j1jENew j

(4)

RGI512
jNR j1jER j
jNNew j1jENew j

(5)

where jNR j5 Nrf jNr 2 MNew ;Nr 2 Moldg; jER j5 Erf jEr 2 MNew ;

Er 2 Moldg , jNNew j and jENew j are the number of nodes and

edges in the drug combination group, respectively; jNR j and

jER j are the number of overlapping nodes and edges before

and after drug combination, respectively; and M
Old

and MNew

are the modules before and after the drug combination,

respectively.

Identification of PMDs
We identified PMDs by leave-one-out screening and with a

cutoff of two folds. A method using the spectrum of adja-

cency matrix was used for identifying PMDs.23 According to

the normal distribution test, if it is a normal distribution, two

times of the mean is considered as threshold; if it is an

abnormal distribution, then two times of the median is con-

sidered as threshold. The eigenvalue of PMDs must equal

or exceed the threshold of the dataset. Furthermore, for

each PMD, we also calculated the topological contribution

using the weighted degree, PageRank, and betweenness

centrality of the network, so as to identify the importance of

PMDs for the module from different points of view.

Western blotting
The expression levels of interleukin-1 receptor antagonist

(IL-1RA) and CYCLIN were assessed by Western blotting

analysis. The hippocampuses of three rats from each group

were removed from the brains at 24 hours after ischemia.

After cell lysis, 40 mg of protein were electrophoresed in

10% SDS-polyacrylamide gels and transferred to polyvinyli-

dene difluoride membranes.
Then, the primary and secondary antibodies rabbit anti-

IL1RA (Abcam, ab124962), mouse anti-cyclin E1 (CST,

4129), and mouse anti-b-actin (Tiandeyue, Beijing, China)

were used. Image analysis of the blots was performed on

optical density-calibrated images. The IL1RA and CYCLIN

protein expression levels were normalized to b-actin protein

expression levels. Each measurement was performed in

three replicates.

Real-time polymerase chain reaction analysis
The changes in the expression of IGF1 was further vali-

dated by SYBR Green I real-time polymerase chain reac-

tion (PCR). Three rats from each group were used for this

analysis. The total RNA of tissue samples was extracted by

an ultrapure RNA extraction kit in accordance with the

product instructions (CWbio, catalog #CW0581). We
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Figure 1 Schematic diagram of analyzing the synergistic pharmacological mechanism. (a) Workflow of identifying the pharmacological
module driver (PMD). (b) Screening and identification of core modules from different ischemia networks. Networks in colors of yellow,
red, green, and pink represent the vehicle, jasminoidin (JA), ursodeoxycholic acid (UA), and JU (jasminoidin and ursodeoxycholic acid)
groups, respectively. The modules from top to down are the top three ranked modules identified by the three methods. (c) Modular net-
work of each group; the nodes in the network represent modules. (d) The rate change of characteristic path length after removing
each top one module identified by the three methods from the modular network. The black line is the average rate change of character-
istic path length, and the red and black points represent longer or shorter than the average, respectively. (e) The characteristic path
length after removing each module from the network. MCAO, middle cerebral artery occlusion.
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utilized 5ll RNA 1% agarose gel electrophoresis to detect
the integrity of the RNA, and then used DNase I kit (CWbio,
catalog #CW2090) and HiFi-MMLVcDNA first strand syn-
thesis kit (CWbio, catalog #CW0744) to digest residual
genomic DNA in RNA and reverse transcription, respec-
tively. The expression level was measured by quantitative
real-time PCR running on the ABI 7500 system following
the product instructions. Relative quantitative data was cal-
culated by the comparative Ct method (2-��CT).24

RESULTS

According to our previous study,12 the combination of JA
and UA showed a pharmacodynamic synergistic effect in
fighting against cerebral ischemia. Figure 1a illustrates the
workflow of our proposed framework in analyzing the phar-
macological mechanism. The significantly differentially
expressed genes in JA, UA, and combination groups after
intervention in MCAO models were identified through sec-
ondary screening of the microarray experiment and the
ingenuity pathway analysis database. The molecules were
mapped to the STRING database to construct the molecu-
lar networks via interaction between molecules and their
first-neighbor, and then the modules were identified from
the network. Based on the edge of the nodes between the
modules, the weighted module interaction network was con-
structed. The core module identification was implemented
using the approach of MMCF, including weighted degree,
betweenness centrality, and PageRank. For the core mod-
ule, the spectrum of adjacency matrix was used for identify-
ing PMDs by leave-one-out screening and with a cutoff of
two folds, which were also validated, at least in part, by the
variation of topological contribution.

Network mapping and module identification
The networks of the vehicle, JA, UA, and JU groups were
listed, GVehicle: N 5 3,750, E 5 9,162; GJA: N 5 3,416,
E 5 7,581; GUA: N 5 3,407, E 5 9,057; and GJU: N 5 3,429,
E 5 8,111 (Supplementary Figure S1a–d). According to

the minimum entropy criterion, compared with two other
methods (AP and MCL), MCODE demonstrated its strik-

ingly consistent stability in each group (Table 1). Corre-
spondingly, 30, 24, 19, and 29 modules were dug out from

the network data of the vehicle, JA, UA, and JU groups,
respectively (Supplementary Figure S2 and Supplemen-

tary Table S1).

Identification and validation of core modules
Intermolecular relationships between modules can make
the modules connect together (Figure 1b). The modular

networks of each group were displayed: G0Vehicle: N 5 27,
E 5 76; G0JA: N 5 22, E 5 40; G0UA: N 5 18, E 5 46; and

G0JU: N 5 24, E 5 72 (Figure 1c). The top three modules
with their scores confirmed by the three methods in each

group are listed in Table 1 and shown in Figure 1b. Finally,
1, 2, 3, and 2 highest-ranked modules were identified as

core modules in the vehicle, JA, UA, and JU groups,
respectively (Table 1).

After removing the top one module identified by the three

methods in each group from the modular network, five
modules were found to have a higher-than-average rate

change of the characteristic path length (Figure 1d). Then,
after removing each module one by one in each group from

the global network, we observed that removing the top one
module of each group had more effects on the global net-

work (Figure 1e).

Functional enrichment analysis of core modules
A total of 168, 248, 275, and 149 biological processes were
detected from MVehicle-2, MJA-1&2, MUA-2&6&7, and MJU-3&4,

respectively (Figure 2a, Supplementary Table S2). All of
these biological processes could be divided into 17 catego-

ries (Figure 2b, Supplementary Figure S3). The 30
unique functions in the JU group were shown to be associ-

ated with cerebral ischemia in previous studies (Supple-
mentary Table S3).

Moreover, 21, 28, 47, and 32 KEGG pathways were iden-

tified from MVehicle-2, MJA-1&2, MUA-2&6&7, and MJU-3&4,
respectively (Figure 2c, Supplementary Table S4). Over

Table 1 Network structure entropy by different modular analysis methods and a list of the top three core modules screened by MMCF in each group

Vehicle JA UA JU

AP 7.0619 6.97052 6.9835 6.99358

MCL 7.47127 7.33767 7.22118 7.37138

MCODE 5.5791 4.78964 5.19916 5.09114

Weighted degree Rank 1 2 (25.100) Rank 1 1 (11.500) Rank 1 2 (19.600) Rank 1 3 (16.000)

Rank 2 4 (15.900) Rank 2 5 (8.100) Rank 2 3 (17.200) Rank 2 2 (15.600)

Rank 3 5 (14.300) Rank 3 2 (4.500) Rank 3 6 (16.000) Rank 3 1 (9.000)

Betweenness centrality Rank 1 2 (254.946) Rank 1 1 (156.533) Rank 1 7 (114.538) Rank 1 4 (101.167)

Rank 2 3 (148.407) Rank 2 21 (114.000) Rank 2 6 (60.838) Rank 2 10 (95.667)

Rank 3 11 (105.800) Rank 3 2 (96.383) Rank 3 17 (60.000) Rank 3 12 (67.900)

PageRank Rank 1 2 (0.107) Rank 1 2 (0.099) Rank 1 6 (0.116) Rank 1 4 (0.097)

Rank 2 3 (0.800) Rank 2 9 (0.094) Rank 2 7 (0.110) Rank 2 12 (0.084)

Rank 3 5 (0.069) Rank 3 1 (0.088) Rank 3 2 (0.089) Rank 3 10 (0.078)

Notes: The second to the fourth rows of the table are the results of network structure entropy using different methods; and the fifth to the seventh rows present

the top three values by the three methods to identify the core modules. The figures listed are the module number and the score calculated from each method

(in parentheses). All data are rounded to the third decimal place.

AP, affinity propagation; JA, jasminoidin; JU, jasminoidin and ursodeoxycholic acid; MCL, Markov Cluster algorithm; MCODE, Molecular Complex Detection;

MMCF, multiple modular characteristic fusing; UA, ursodeoxycholic acid.
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90% of KEGG pathways identified in each group were over-
lapped with those in the Comparative Toxicogenomics
Database that were related with brain ischemia, infarction,
middle cerebral artery, and cerebral infarction (Figure 2d).
Two nonoverlapping pathways (p53 signaling pathway and
oocyte meiosis) were enriched in MJU-4. According to the
published literature, most signaling pathways of drug
groups were closely associated with cerebral ischemia. The
top 10 biological processes and KEGG pathways are listed
in Supplementary Table S5.

Variation of module disturbances intensity
As shown in Figure 3, with the spatiotemporal state migra-
tion, the originally pathological module was dismembered.
Those dissociated fragments (red, green, and pink nodes)
entered into multiple pharmacological modules to become
positively responsive members in different drug groups
(Figure 3b1–d5). Our data showed that the JU group expe-
rienced more powerful disturbances when overturning the
pathological core module (MDI 5 0.4332) than the JA
(MDI 5 0.3918) and UA (MDI 5 0.3594) groups (Figure 3).

Relative retention index and relative generation index

of core modules in the combination group

We plotted out the images of multiple core modules in the

three drug groups and merged them into a geographic

map (Figure 4a). The map was artificially divided into two

regions around the core modules of the JU group. One

was composed of three overlapping modules (i.e., MJU-3 &

MJA-1 & MUA-2) and the other consisted of two overlapping

modules (i.e., MJU-4 & MJA-2). The two regions might be

separated if no jointed nodes came from the MUA-6 and

MUA-7.
We used RRI and RGI to evaluate the change in the

modular structure before and after the drug combination

(Figure 4b). In the drug combination group, MJU-3 was con-

sidered a weak allosteric module, because most (13/16) of

its nodes were inherited from the core modules of the

monotherapy groups, which might function to maintain

metastable biological processes. Conversely, MJU-4 showed

a strong allosteric tendency due to the presentation of

more molecular newcomers.

Figure 2 (a) The functional distribution and related pathways of all core modules. The number of biological processes in the jasminoi-
din (JA), ursodeoxycholic acid (UA), and JU (jasminoidin and ursodeoxycholic acid) groups. (b) Functional classification of each core
module. (c) The number of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the JA, UA, and JU groups. (d) Pathways
of core modules match with cerebral ischemia-related pathways in the Comparative Toxicogenomics Database (CTD); the colorful and
gray histograms represent overlapping or nonoverlapping modules, respectively.
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Identification of PMDs and driver-induced divergent
core modules
In light of the abnormal distribution of eigenvalue set in
each module, we hypothesized that the eigenvalue of
PMDs should be at least two folds of the median of the
dataset. The eigenvalue of PMDs must satisfy two qualifica-
tions: (1) it must rank first in each eigenvalue set; and (2) it
must exceed the threshold of the dataset (Supplementary
Figure S4). Finally, the PMDs of the core module of MJA-1

were determined to be Il6D
JA21 , IfngD

JA21 , and Tlr4D
JA21 ,

those of MJA-2 were Egf D
JA22 and Grb2D

JA22 , of MUA-2 were
Tnf D

UA22 and Cd4D
UA22 , of MUA-6 were Akt1D

UA26 , Grb2D
UA26

and Ifnb1D
UA26 , of MUA-7 were Ccnd1D

UA27 and Il2D
UA27 , of

MJU-3 were Il1bD
JU23 , Cd4D

JU23 and Stat1D
JU23 , and those

of MJU-4 were VegfaD
JU24 and Igf 1D

JU24 (Figure 5a–g). All of
the five PMDs were the unique drivers in synergistic drug
combinations vs. control; except Cd4, the other four PMDs
were the unique drivers in synergistic drug combinations
vs. monotherapies.

In order to trace the source of component covariations,
we imagined and reproduced this process by rewiring both
core and noncore modules at a larger scale before and after
the drug combinations (Figure 6a,b). Subregions marked
with different colors were almost traceable from multiple
modules of the two monotherapy groups (Figure 6a2). The
driver nodes of Il1bD

JU23 , Cd4D
JU23 , and Stat1D

JU23 must get
rid of the shackles of the PMDs in the JA and UA modules
(shown as purple lines) to become positive responders to
the combination therapy, which could be regarded as the
PMDs of the JU-3 module. Along the arrow line, the domi-
nant areas of PMDs were located. Only if the driver nodes in
the monotherapy modules had linkages with the PMDs in
the combination module, they could be detected in the com-
bination group along with the modular evolution. The PMDs

were divided into party driver and date driver. Party driver,
such as Il1bD

JU23 and VegfaD
JU24 , was defined as the node

that had normal driving force to driver nodes; but for the date
driver, such as State1, its driving behavior was manifested
contingent. The driving relationship could also be observed
after the two drivers in MJU-4VegfaD

JU24 and Igf 1D
JU24 were

investigated in detail (blue dotted line, Figure 6b1, b3,
b5).The core module structure based on overlapping PMDs
before drug combination can be seen as the foundation of
synergistic effect, and the core module structure based on
nonoverlapping PMDs before drug combination can be seen
as the complement of synergistic effect (Figure 6c).

Validation of PMDs by network topological variation
The degree, weighted degree, and PageRank of each PMD
were higher than the average score except the degree and
weighted degree of Stat1D

JU23 in MJU-3 (Supplementary
Table S6). However, the betweenness centrality score of
Stat1D

JU23 was 53, ranked third among all nodes, much
higher than the average; and combined with the PageRank
score, Stat1 was still an important node as PMD in MJU-3.
Furthermore, a literature review was performed that showed
that all the PMDs were related with cerebral ischemia in pre-
vious studies, and some of them were also considered as
biomarkers of cerebral ischemia, such as Il1bD

JU23 , Il6D
JA21,

and Tnf D
UA22 (Supplementary Table S7).

Biological verification of PMDs and relevant nodes in
core modules
The Igf 1D

JU24 and CYCLIN coexisted in p53 signaling path-
way. The IGF1 reduced the infarct volume and improved
neurological function after ischemia in rats following mid-
dle cerebral artery occlusion.25 Results of real-time PCR
showed that, compared with the vehicle group, IGF1 was
significantly downregulated in the JA group (P< 0.05),

Figure 3 The dynamic images of divergence and convergence of core modules. (a) The core module of the vehicle group. It is divided
by different modules in the jasminoidin (JA) (b; b1–b4), ursodeoxycholic acid (UA) (c; c1–c3), and JU (jasminoidin and ursodeoxy-
cholic acid) (d; d1–d5) groups, including core modules (name in red) and other modules (name in black).
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but significantly upregulated in the JU group (P< 0.01;
Figure 5h). This indicated that, in the combination group,
IGF1 might contribute to the recovery of neurological
functions.

Treatment with a cyclin-dependent kinase inhibitor can
significantly reduce cell death in vitro.26 Our study showed
that, compared with the sham group, the protein expression
level of CYCLIN was significantly downregulated in the

vehicle group (P< 0.05); and compared with the vehicle
group, it was significantly downregulated in the JU group
(P<0.01; Supplementary Figure S5a). This indicated that
the drug combination had the effect of neuroprotection fol-
lowing cerebral ischemia, but neither of the monotherapies
showed such an effect.

The IL-1RA is a target of brain ischemia, and localized
striatal injection of IL-1RA following cerebral ischemia in

Figure 4 The detailed path of core modules and quantitative analysis of their alterations. (a) The relationship between core modules
before or after drug combination. The red, green, and pink represent the jasminoidin (JA), ursodeoxycholic acid (UA), and JU (jasminoi-
din and ursodeoxycholic acid) groups, respectively. (b) The relative retention index (RRI) and relative generation index (RGI) of core
modules in the combination group are compared with those in the monotherapy groups.
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rats had the effect of cortical protection.27 It was a member

of MUA-2, and our study showed that, compared with the

sham group, the protein expression level of IL1RA was

significantly downregulated in the vehicle group (P<0.05);

and compared with the vehicle group, it was significantly

upregulated in the JA, UA, and JU groups (Supplementary

Figure S5b). This indicated that JA, UA, and JU all had the

effect of protection after cerebral ischemia. Moreover,

another three pathways derived from this study: (1) extra-

cellular matrix-receptor interaction; (2) autoimmune thyroid

disease; and (3) primary immunodeficiency, might be

related to cerebral ischemia, pending further research and

discussion in future work.

PMDs may drive pathway variation
The driver nodes are not only in the center of network

topology, but also should regulate the components toward

which they converge or through which crosstalk distinct sig-

naling pathways exist.28 Many PMDs were found to be

located upstream in known pathways; for example, Igf1D
JU24

and Egf D
JA22 in a cancer-related pathway (Supplementary

Figure S6), Il1bD
JU23 in mitogen-activated protein kinase

signaling pathway, Tlr4D
JA21 in toll-like receptor signaling

pathway, Grb2D
JA22 and Egf D

JA22 in glioma, and Tnf D
UA22 in

apoptosis,Il2D
UA27 in Jak-STAT signaling pathway. Because

accessibility plays an important role in maintaining struc-

tural controllability, the upstream nodes play a more impor-

tant role in control capability, which is rooted in the nature

of control,29,30 indicating that they may get involved in path-

way variation. In addition, PMDs also acted as shared mol-

ecules to carry on pathway convergence of crosstalk31

between different pathways (Supplementary Figure S7),

and thereby drive network convergence via pathway varia-

tion to exert different functions.

DISCUSSION

The game between the pathological module and pharmaco-

logical module for restoring cell homeostasis may mainly

depend on the re-allocation of information transmission in

molecular networks. A similar process is described as

rewiring the signaling network or nudging the pathophysio-

logical networks to get rid of their abnormal state by drug

action.32–36 Actually, the gray nodes, the neighbors of posi-

tively responsive members (Figure 3b1–d5), are those we

really cannot neglect because of a consensus that many

drugs do not target the actual disease-associated proteins

but their neighborhood.37

We used MDI to finalize the evaluation model of target

module allosterism associated with external disturbances of

nodes and modules. Just like affine transformation or con-

formational barcode hypothesis of cellular components,38,39

modules may grow, contract, merge, split, be born, or die.2

Our data show that the JU group plays a more powerful

role in overturning the pathological core module than the

monotherapy groups. MDI may inspire novel understanding

of how to eliminate the cascade of network failures based

on topological structure and also provide quantitative evi-

dence for synergistic attack of drug combinations.
Synergistic reconstruction of pharmacological modular

infrastructure can be responsible for improving the core

Figure 5 The pharmacological module driver (PMD) identification and validation. (a–g) The PMD determination in core modules by the
method of “community core.” The “nc” is the number of communities, and the different shapes represent the top one node under each
condition of the ncs. Nodes are considered as the PMD when the eigenvalue goes beyond the threshold (threshold 5 twice the
median). (h) Validation of Igf 1D

JU24 expression levels by real-time polymerase chain reaction.*P<0.05 vs. vehicle; **P< 0.01 vs. vehi-
cle. The dotted line in h is the average expression level of the group. The D in the upper right corner of genes’ name means driver,
and that in the lower right corner denotes its source. JA, jasminoidin; JU (jasminoidin and ursodeoxycholic acid); UA, ursodeoxycholic
acid (UA).
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Figure 6 The paradigm of pharmacological module driver (PMD)-induced MJU3 and MJU4 formation. (a) Formation process of MJU-3.
(a1) Modules from the jasminoidin (JA) and ursodeoxycholic acid (UA) groups participate in the formation of MJU-3. (a2) Different mod-
ules from A1 around the PMD Il1bD

JU23, Cd4D
JU23, and Stat1D

JU23 in different regions contribute to the formation of the new module (for
example, Il13, Cxcl10, Cd4, Traf6, Il5, Il2, and Rela from MJA-1 around Il1bD

JU23 collectively form the fan-shaped region). The name of
core modules is marked in red, the purple line link to the PMDs, the pink dashed arrows link to the new PMDs, and the colorful nodes
are the overlapping nodes between different modules. (b) Formation process of MJU-4. The blue dotted lines in MJU-4 denote the nodes’
interaction between different modules, and the pink dotted lines link to the new nodes based on their interaction with other nodes in
the module. The D in the upper right corner of genes’ name means driver, and that in the lower right corner denotes its source. (c1)
The effect of PMDs before and after the drug combinations. Nodes in colors of red, green, and pink represent the JA, UA, and JU (jas-
minoidin and ursodeoxycholic acid) groups, respectively. (c2) The different kinds of newborn PMD in the JU group (drug combination).
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attacking power of drug combinations, which may benefit
from the basic features of nonlinear discrete-time system.
Actually, coherent allostery of multimodules is an outcome
caused by drug-induced molecular hovering between mem-
ory and perturbance. We speculate that the production of a
weak allosteric module may hinge on the fusion between
precursors, but a strong allosteric module may be a result
of rejecting. Because when adapting to disturbances,
whether or not automatically, the system will make a choice
to stay or to change.40 Coincidentally, this structural recon-
figuration of system optimization was recently described
approximatively as the complementation of plastic and rigid
networks.39 However, not exactly the same, we want to
emphasize on the whole emergence after drug combination
that is rooted in the synergistic reconstruction of module
components as well as the relocation of network signal
navigation.

In an open system, we concentrate on who exactly is the
internal responder of the dynamic changes. Network robust-
ness can tolerate limited malfunctioning until self-organized
critical status starts appearing and being disturbed. This is
an essential topic of practical reason, as it affects directly
the efficiency of any process running on the networks
severely.41 The critical phenomenon is the widespread
appearance of phase transition in the nature.42 With the
“sandpile model” and the “avalanche effect” as typical rep-
resentation,43 exogenous-endogenous collective dynamics
may determine the next moment of an open system. As an
important feature of system far-from-equilibrium (self-orga-
nized criticality), self-similarity has been proven to be the
intrinsic property of complex network through the renormali-
zation group theory.44 Interestingly, this property has also
been extended to characterizing the community of the com-
plex network.45 Developmental details of the scale-free net-
work underline a principle about preferential attachment of
a few key nodes.46 Adaptive changes of network topology
are also considered controlled by node behavior.47 Hence,
we are highly concerned about the critical nodes called
PMD owing to a similar process between module reconfigu-
ration and scale-free evolution of complex networks. It
should be noted that unlike simple structural biology-related
module conformation, such as protein domain or dock-
erin,48,49 in this case, conformation is originated from drug-
induced global molecular Van der Waals force covariation,
including physical and nonphysical connections (heredity/
mechanism correlation) between molecules.

It is well known that analysis of synergistic pharmacologi-
cal mechanism still faces a serious challenge because of
the temporary powerlessness in capturing molecular cluster
dynamics. This prompted us to first present a paradigm
called Quantitative Core Module and Driver Paradigm, by
which a quantitative calculating method can reproduce the
mutable details of synergistically attacking a disease before
and after drug combination. In this study, we enriched the
concepts of both core module and PMD, and demonstrated
the ability of PMD in impelling the core module to experi-
ence allosteric transition. This dynamic point of strength
coupled with the pharmacological modular flexibility will pro-
vide critical analysis strategy in the context of drug combi-
nation therapy. Although this study tends to be based on

the structural analysis of the pure molecular network topol-

ogy framework, in the future, we are not going to miss any

opportunities of involving the structure and function fitting

analysis between the core module and its driver.
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