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Background: Cancer patients are alleged to have poor coronavirus disease 2019

(COVID-19) outcomes. However, no systematic or comprehensive analyses of the role

and mechanisms of COVID-19 receptor-related regulators in cancer are available.

Methods: We comprehensively evaluated the genomic alterations and their clinical

relevance of six COVID-19 receptor-related regulators [transmembrane serine protease

2 (TMPRSS2), angiotensinogen (AGT), angiotensin-converting enzyme 1 (ACE1), solute

carrier family 6 member 19 (SLC6A19), angiotensin-converting enzyme 2 (ACE2), and

angiotensin II receptor type 2 (AGTR2)] across a broad spectrum of solid tumors. RNA-

seq data, single nucleotide variation data, copy number variation data, methylation data,

and miRNA–mRNA interaction network data from The Cancer Genome Atlas (TCGA)

of 33 solid tumors were analyzed. We assessed the sensitivities of drugs targeting

COVID-19 receptor-related regulators, using information from the Cancer Therapeutics

Response Portal database.

Results: We found that there are widespread genetic alterations of COVID-19 regulators

and that their expression levels were significantly correlated with the activity of cancer

hallmark-related pathways. Moreover, COVID-19 receptor-related regulators may be

used as prognostic biomarkers. By mining the genomics of drug sensitivities in cancer

databases, we discovered a number of potential drugs that may target COVID-19

receptor-related regulators.

Conclusion: This study revealed the genomic alterations and clinical characteristics

of COVID-19 receptor-related regulators across 33 cancers, which may clarify the

potential mechanism between COVID-19 receptor-related regulators and tumorigenesis

and provide a novel approach for cancer treatments.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus has resulted in the ongoing coronavirus disease
2019 (COVID-19) pandemic. As of July 7, 2021, there are
184,820,132 confirmed cases and 4,002,209 deaths, with the
numbers still surging worldwide (1). With the continued increase
in cases and affected regions, patients with chronic conditions,
such as cancer, have been disproportionately affected (2–5). The
COVID-19 pandemic has been identified as a global health
emergency by the World Health Organization (WHO).

Respiratory inflammation is activated by the renin–
angiotensin–aldosterone system (RAS), which maintains
the blood pressure by angiotensin II (Ang II) and is catalyzed
by the angiotensin-converting enzyme (ACE). Angiotensinogen
(AGT) is the protein precursor of Ang II (6, 7). Ang II receptor
type 2 (AGTR2), a member of the G-protein coupled receptor
1 family, functions as a receptor for Ang II. ACE2 degrades
Ang II, counteracting its chronic effects, and serves as the
SARS-CoV-2 receptor. ACE2 is also a molecule present on the
surface of various cell types, including type II alveolar cells,
bronchial transient epithelial secretory cells, endothelial cells,
intestinal epithelium cells, and uterine epithelial cells (8). The
spike protein (S protein) of SARS-CoV binds to cell surface
ACE2 receptors (9). ACE1, homologous to the ACE2 gene, may
be involved in the progression of diseases caused by several
human coronaviruses (10, 11). Transmembrane serine protease
2 (TMPRSS2), a member of the serine protease family, facilitates
human coronavirus infections (SARS-CoV and SARS-CoV-2)
via proteolytic cleavage of the ACE2 receptor, which promotes
viral uptake and cleavage of coronavirus spike glycoproteins,
activating glycoproteins for host cell entry (12–14). Solute carrier
family 6 member 19 (SLC6A19), a SARS-CoV-2 co-receptor, is
a neutral amino acid transporter and forms a heterodimer with
ACE2 (15). However, the genomic alterations and prognostic
characteristics of COVID-19 receptor-related regulators in
cancer are still unclear.

The clinical symptoms of COVID-19 range from
asymptomatic to severe cardiopulmonary disease (16–18).
Enhanced expression of ACE2 and immunosuppressive states
caused by malignancies and anticancer treatments, such as
chemotherapy or surgery, contribute to more severe disease
in older patients with COVID-19 (19, 20). Recent studies also
identified that aberrant expression of ACE2 receptor-related
regulators is associated with the activation of several cancer-
associated pathways (21–23). Therefore, it is of great clinical
significance to clarify the genomic and clinical characteristics
of the six ACE2 receptor-related regulators among 33 solid
tumors for the management and treatment of tumor patients
with COVID-19.

METHODS

Dataset Acquisition and Preprocessing
The Genotype-Tissue Expression (GTEx) dataset (V7.0) (https://
commonfund.nih.gov/GTEx/) was used for gene expression

analysis in normal tissues from healthy individuals. The tumor-
associated data are composed of mRNA Seq data, clinical data,
single nucleotide variation (SNV) data, copy number variation
(CNV) data, and methylation data, which were collected from
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/). Reverse phase protein array (RPPA) data were obtained
from The Cancer Proteome Atlas (TCPA) (https://tcpaportal.
org/tcpa/index.html). The Genomics of Drug Sensitivity in
Cancer (GDSC) database (www.cancerrxgene.org) was used
to investigate the correlation between gene expression and
drug sensitivity.

Samples from 33 solid cancer types were investigated in
the final analysis, namely, adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), lymphoid neoplasm diffuse large
B-cell lymphoma (DLBC), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), kidney chromophobe (KICH), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), acute myeloid leukemia (LAML), brain
low-grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), mesothelioma (MESO), ovarian serous
cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),
pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ),
sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach
adenocarcinoma (STAD), testicular germ cell tumors (TGCT),
thyroid carcinoma (THCA), thymoma (THYM), uterine corpus
endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS),
and uveal melanoma (UVM).

mRNA Expression Analysis
For mRNA differential expression analysis between paired tumor
and normal samples, TCGA mRNA expression was normalized
using RNA-Seq by Expectation-Maximization (RSEM). The
number of samples for each cancer type ranged from 48 to
1,098, where only 14 cancer types that harbored over 10 pairs
of tumor and normal samples were incorporated into analyses,
namely, BLCA, BRCA, COAD, ESCA, HNSC, KICH, KIRC,
KIRP, LIHC, LUAD, LUSC, PRAD, STAD, and THCA. Gene
expression values were represented as RNA-Seq by Expectation-
Maximization (RSEM) normalized data (24). The genes with a
fold change (FC) <2 and significance false discovery rate (FDR)
<0.05 underwent further analysis.

Subtype Analysis
Expression subtype analysis was used to find clinically relevant
genes that may affect cancer subtype. To make the analysis
feasible, the number of subgroups in a given subtype was at least
10, leaving 11 cancer types for gene analysis. We analyzed 11
cancer types for ACE2 receptor-relevant genes using a Student’s
t-test (n_subtype = 2) and ANOVA test (n_subtype > 2). The
method used for the clinically relevant analysis depends on the
number of subgroups in each cancer subtype.
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Survival Analysis
For expression survival analysis, mRNA expression and clinical
survival data were merged by the sample barcode. Tumor
samples were divided into “high” and “low” gene expression
groups using the median RSEM value. The R package “survival”
was used to fit the survival time and survival status for the two
groups. A Cox Proportional-Hazards model was calculated for
each gene using the R package. Genes that had a Kaplan–Meier
log-rank test p-value <0.05 were retained.

SNV Analysis
SNV data of 33 cancer types (N = 8663) were investigated.
SNV oncoplot (or waterfall plot) was generated by maftools
(25). The TCGA SNV data includes the following variant type
values: Missense_Mutation, Silent, 5’ Flank, 3’ UTR, RNA,
In_Frame_Del, Nonsense_Mutation, Splice_Site, Intron, 5’ UTR,
In_Frame_Ins, Frame_Shift_Del, Nonstop_Mutation, 3’ Flank,
Frame_Shift_Ins, and Translation_Start_Site. The Silent, Intron,
IGR, 3’ UTR, 5’ UTR, 3’ Flank, and 5’ Flank were filtered out
for SNV percentage calculation. The percentage of SNVs in each
gene’s coding region was calculated by the number of mutated
samples divided by the number of cancer samples. SNV data and
clinical overall survival data were combined, and the R package
was used to estimate the survival difference between mutated and
non-mutated genes.

CNV Analysis
CNV raw data from 33 cancer types (N = 11,495) were
investigated and processed with GISTICS2.0 (26). The CNV
was divided into heterozygous and homozygous CNV subtypes,
which represented the occurrence of CNV on one chromosome
or two chromosomes, respectively. The homozygous or
heterozygous CNV profile showed the percentage of homozygous
or heterozygous CNV, including CNV amplification and deletion
percentages for each gene in each cancer. The percentage of
CNV subtypes was calculated using GISTIC-processed CNV
data. Only genes with >5% CNV were considered significant. As
the method has been employed by Schlattl et al. (27), the mRNA
expression and CNV data were merged by a sample’s TCGA
barcodes. The association between paired mRNA expression
and CNV percentage were detected based on a Pearson
product–moment correlation coefficient and t-distribution.

Methylation Analysis
Methylation data of paired tumor and normal samples
across 14 cancer types (N = 10,129) were investigated. The
mRNA expression and methylation data were merged by a
sample’s TCGA barcode. The association between paired mRNA
expression and methylation was tested based on a Pearson
product–moment correlation coefficient and t-distribution. The
mRNA expression and methylation data of the regulators were
merged via the TCGA barcode. The association between paired
mRNA expression and methylation data was calculated using
the Pearson’s product–moment correlation coefficient, followed
by a t-distribution test. p-values were adjusted by the FDR, and
genes with an FDR ≤ 0.05 were retained. Further analysis was
carried out on genes that were significantly influenced by genome

methylation. Methylation data and clinical overall survival data
were combined, and the methylation level of a gene was divided
into two groups by median methylation. Cox regression was
performed to estimate the hazard (risk of death). If the Cox
coefficient was <0, the high methylation group showed a poorer
survival, theHyper_worse defined asHigh risk, otherwise defined
as Low risk.

Pathway Activity Analysis
Following the method used by Ye et al. (28), RPPA data from
TCPAwere used to calculate a score for 7,876 samples. RPPA data
of replicates-based normalization (RBN) were median-centered
and normalized by the standard deviation across all samples for
each component to obtain the relative protein level. The pathway
score is the sum of the relative protein levels of all positive
regulatory components minus the sum of the relative protein
levels of all negative regulatory components in a given pathway.
Gene expression was divided into two groups (upregulation
group or downregulation group) by the median expression. The
difference in the pathway activity score (PAS) between the two
groups was determined. When PAS (gene A, upregulation group)
was greater than the PAS (gene A, downregulation group), we
considered gene A as having an activating effect on a pathway;
otherwise, gene A had an inhibitory effect on a pathway.

miRNA Regulation Network Analysis
miRNA regulation data (N = 9,105) was collected from TCGA
across 33 cancer types. miRNA expression and gene expression
were merged by TCGA barcode. The association between paired
mRNA and miRNA expression was tested based on a Pearson
product–moment correlation coefficient and t-distribution. The
p-value was adjusted by the FDR, and genes with an FDR of≤0.05
(R < 0) were retained. The correlation was calculated for all
paired samples. In addition, with consideration to the presence of
positive regulators (including transcription factors), an miRNA–
gene pair with negative correlation was considered as a potential
negative regulation pair. Network was generated by visNetwork
R packages.

Drug Sensitivity Analysis
Following the method used by Rees et al. (29), 481 small
molecules from the Cancer Therapeutics Response Portal
(CTRP) were collected. To analyze the correlation between
gene expression and drug sensitivity, the values from the area
under the dose–response curve (AUC) for drug and gene
expression profiles for all cancer cell lines were downloaded.
The Pearson correlation coefficients of transcription levels and
AUCs were normalized using Fisher’s z transformation. The
Pearson correlation coefficients of the transcript levels and AUCs
were normalized using Fisher’s z transformation. A Bonferroni-
corrected, two-tailed distribution test, with a family-wise error
rate of <0.025 in each tail, was used for the z-score calculation.
Pearson correlation coefficients of annotated drug–target pairs
were compared with the same number of correlation pairs
generated by random sampling of the correlations. The gene set
drug resistance analysis was performed on IC50 drug data.
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Statistical Analysis
Correlations between gene expression were evaluated using
the Spearman’s correlation test. The prognostic significance
of the indexes was estimated using Kaplan–Meier survival
curves and compared by a log-rank test. The Cox proportional
hazards model was used to calculate the adjusted hazard
ratio (AHR). All statistical analyses were performed with SPSS
version 23.0 (SPSS Inc, Chicago, IL, USA) and R version
3.4.4 (http://www.r-project.org). p < 0.05 was considered as
statistical significant.

RESULTS

mRNA Expression and Subtypes of ACE2
Receptor Regulators
Six ACE2 receptor-related regulators, namely, TMPRSS2, AGT,
ACE1, SLC6A19, ACE2, and AGTR2, were identified and
analyzed in this study. We first explored the differential
expression of the six receptor-related regulators across cancers
based on the TCGA expression data. As shown in Figure 1A,
the regulators were identified as having significantly abnormal
expression in 14 solid cancers. Expression of TMPRSS2 in KIRC,
LUAD, BRCA, COAD, KIRP, LIHC, LUSC, and HNSC; ACE1 in
LUAD and LUSC; AGT in KICH and HNSC; ACE2 in KICH;
SLC6A19 in KIRC, KICH, COAD, KIRP, and LIHC; and AGTR2
in KIRC, KICH, LUAD, BRCA, KIRP, LUSC, and THCA was
significantly downregulated (p < 0.001). However, expression of
AGT in KIRC, LUAD, BRCA, COAD, THCA, and STAD; ACE2
in KIRC and LUAD; ACE1 in KIRC and LIHC; SLC6A19 in
BRCA; and TMPRSS2 in KICH was significantly upregulated (p
< 0.001). To further identify the expression of clinically relevant
genes that affect cancer subtype, regulator gene expression was
explored. The regulator expression subtypes were significantly
associated with the tumorigenesis of BRCA, LUSC, KIRC, STAD,
LUAD, HNSC, and BLCA (Figure 1B; p < 0.05). ACE2 in
BRCA, ACE1 in LUSC and BLCA, ACE2 and SLC6A19 in KIRC,
AGT and AGTR2 in STAD, ACE2 and TMPRSS2 in LUAD,
and TMPRSS2 in HNSC were the main regulator subtypes. The
results indicated that COVID-19 may be more infectious in
BRCA, LUSC, KIRC, STAD, LUAD, HNSC, and BLCA patients
than in the normal population.

We further explored the effect of regulator expression on
cancer survival and found that high expression of TMPRSS2 in
ACC; ACE1 in UVM and LUSC; AGTR2 in KIRP, KICH, and
LUSC; ACE2 in LGG; and AGT in UVM were associated with
poor survival of cancer patients, while expression of TMPRSS2
in KIRP, KICH, PAAD, and LIHC; ACE1 in KIRC, LIHC, and
OV; SLC6A19 in KIRC, KIRP, and ESCA; ACE2 in KIRC and
UVM; and AGT in PAAD were associated with good survival
in cancer patients (Figure 1C and Supplementary Figure 1;
p < 0.05). As shown in Figure 1D, the low expression of
ACE2 was significantly associated with poor survival in KIRC
(HR = 0.54; p = 6.4e−05). These results indicated that the
expression of COVID-19 receptor-related regulators may play
an important role in the progression and deterioration of cancer
with COVID-19.

Somatic Mutations of ACE2 Receptor
Regulators
We analyzed ACE2 receptor regulator-related SNP data to detect
frequency and variant types in each cancer subtype. As shown
in the oncoplot in Figure 2A, the main variant type of the
regulators in different cancer subtypes were missense_mutation,
in_frame_del, nonsense_mutation, splice_site, in_frame_ins,
frame_shift_del, frame_shift_ins, and multi-hit. Regulator SNV
frequency was increased in SKCM, UCEC, LUAD, and LUSC.
The SNV frequency of the regulators in pan-cancers was 100%
(520 out of 520 tumors). The SNV frequency of ACE1, SLC6A19,
ACE2, AGTR2, AGT, and TMPRSS2 were 37, 26, 20, 16, 14,
and 12%, respectively. SNV percentage analysis indicated that
ACE1, SLC6A19, ACE2, AGTR2, AGT, and TMPRSS2 were 42,
26, 34, 26, 26, and 22%, respectively, in UCEC; 46, 23, 15, 29,
14, and 18%, respectively, in SKCM; 11, 18, 7, 8, 5, and 0%,
respectively, in LUSC; and 18, 15, 9, 6, 6, and 3%, respectively,
in LUAD (Figure 2B). The most frequent mutations were
X971_splice/R971W in ACE1, H195Y/X195_splice in ACE2,
F430Lfs∗25 in AGT, R182∗ in AGTR2, D334N in SLC6A19, and
G492S/C in TMPRSS2 (Supplementary Figure 2). In addition,
ACE1 mutations found in malignancies were distributed across
all exons of ACE1, with several hot spot mutation sites, such
as R487H in GBM; R508Q, E510K, and R487C in UCEC;
and E510K in UVM (Supplementary Table 1). Pan-cancer
mutation prognosis analysis showed that ACE1 and TMPRSS2
mutations were associated with better survival in cancer
patients (Supplementary Figure 3; p = 0.0273 and 1.18e−10),
whereas mutated SLC6A19 was associated poor survival
in cancer patients (Supplementary Figure 3; p = 1.47e−4).
These results indicated that mutations in ACE2 receptor
regulators are involved in tumorigenesis and associated with
clinical survival.

CNV of ACE2 Receptor Regulators
To identify the CNV change of ACE2 receptor regulators
at the chromosome arm level, we analyzed the CNV data
of ACE2 receptors from the TCGA database. We found
that TMPRSS2, SLC6A19, ATGR2, AGT, ACE2, and ACE1
had >5% CNV amplification or deletion in 33 cancers. As
shown in the CNV pie distribution in Figure 3A, TMPRSS2
had 80% heterozygous amplification in TGCT but 63%
heterozygous deletion in ESCA; ACE2 had 51% heterozygous
amplification in ACC and >50% heterozygous deletion in
OV and KICH; and AGT in LUAD, UCS, BRCA, LIHC,
CESC, LUSC, SKCM, ESCA, and CHOL; ACE1 in KIRP; and
SLC6A19 in ACC and LUSC had almost 50% heterozygous
amplification, whereas ACE1 in KICH; SLC6A19 in TGCT;
and AGT in KICH had almost 50% heterozygous deletion.
To identify the heterozygous/homozygous CNV profile in
each cancer, we further analyzed heterozygous/homozygous
amplification and heterozygous/homozygous deletion. As shown
in Figure 3B, all regulators had heterozygous amplification and
deletion. However, homozygous CNV analysis showed that
SLC6A19 had homozygous amplification in 12 solid cancers,
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FIGURE 1 | Gene set expression of ACE2 receptor-related regulators. (A) Differential expression in 14 solid tumors. The y-axis refers to the gene and the x-axis refers

to the cancer type. The colors range from purple to red, representing the increasing fold change between tumor vs. normal sample, respectively. The size of the dot

indicates the degree of significance. (B) A graph showing how each subtype is affected by ACE2 receptor-related regulator mRNA expression in seven solid tumors,

where each gene can have differential expression in each regulator subtype. (C) Survival analysis of ACE2 receptor-related regulators. The dot size represents the

significance of a gene affecting survival in each cancer type, and the p-value is obtained from a Kaplan–Meier analysis. The red dot color indicated the worse of the

high or low expression in the cancer types and the blue dot indicates low expression. (D) The survival of ACE2 gene in KIRC.

with TMPRSS2 homozygous deletion only found in PRAD
(Figure 3C).

Comparing the relationship between CNV and mRNA
expression, the correlation analysis indicated that mRNA
expression of each regulator was positively correlated with its
CNV in most cancers (p < 0.05). However, the expression of
TMPRSS2 in KIRC; SLC6A19 in ESCA and PAAD; and ACE1
in TGCT, SKCM, and LIHC were negatively correlated with
the CNV (p < 0.05) (Figure 3D). These results indicated that
the CNV of ACE2 receptor-related regulators mediated their
abnormal expression, whichmay play an important role in cancer
patients with COVID-19.

Methylation Analysis of ACE2 Receptor
Regulators
We explored the methylation analysis of ACE2 receptor
regulators to identify the corresponding epigenetic methylation
levels. As shown in Figure 4A, ACE2 in COAD, BLCA, KIRC,
LUSC, KIRP, LUAD, and ESCA; AGTR2 in HNSC, UCEC,
COAD, KIRC, LUSC, PRAD, and LUAD; SLC6A19 in HNSC;
UCEC, BLCA, KIRC, LUSC, and KIRP; ACE1 in HNSC, BLCA,
KIRC, and ESCA; AGT in HNSC and KIRC; and TMPRSS2 in
PRAD were hypomethylated (p < 0.05); TMPRSS2 in COAD,
KIRC, LUSC, KIRP, LUAD, ESCA, LIHC, and BRCA; AGT in
BLCA, LUAD, and BRCA; ACE1 in PRAD; and SLC6A19 in
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FIGURE 2 | SNV frequency and variant types of ACE2 receptor-related regulators. (A) SNV oncoplot. An oncoplot showed the mutation distribution of ACE2

receptor-related regulators and a SNV classification of SNV types (such as missense mutation, frame shift deletion, and non-sense mutation). All selected cancer

samples are shown together. Side bar plot and top bar plots show the number of variants in each sample or gene. (B) The SNV frequency of genes in cancers. The

darker the color, the higher the mutation frequency. Numbers represent the number of samples that have the corresponding mutated gene for a given cancer. “0”

indicates that there was no mutation in the gene coding region, and no number indicates that there was no mutation in any region of the gene.

COAD, PRAD, and PAAD were significantly hypermethylated
(p < 0.05). We assessed regulator methylation and mRNA
expression through correlation analysis and found that the
mRNA expression of AGT in KICH and HNSC; ACE2 in
KICH; ACE1 in LUAD, LUSC, and PRAD; SLC6A19 in KIRC,
KICH, COAD, KIRP, and LIHC; TMPRSS2 in KIRC, LUAD,

BRCA, COAD, KIRP, LIHC, LUSC, and HNSC; and AGTR2
in KIRC, KICH, LUAD, BRCA, KIRP, LUSC, and THCA were
negatively correlated with their methylation (p< 0.05; Figure 4B
and Supplementary Figure 4). The mRNA expression of ACE1
in KIRC and LIHC; AGT in KIRC, LUAD, BRCA, COAD,
THCA, and STAD; ACE2 in KIRC and LUAD; AGT in KIRC,
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FIGURE 3 | Copy number variation of ACE2 receptor-related regulators. (A) CNV pie distribution in 33 cancers. CNV pie plot showed the combined

heterozygous/homozygous CNV of each gene in each cancer. A pie represented the proportion of different types of CNV of one gene in one cancer, and different

colors represented different types of CNV. Hete Amp, heterozygous amplification; Hete Del, heterozygous deletion; Homo Amp, homozygous amplification; Homo Del,

homozygous deletion; None, no CNV. (B) Heterozygous CNV profile showing the percentage of heterozygous CNV, including the percentage of amplification and

deletion of heterozygous CNV for each gene in each cancer. Only genes with >5% CNV in a given cancer are shown as a point on the figure. (C) Homozygous CNV

profile showing the percentage of homozygous CNV, including the percentage of amplification and deletion of homozygous CNV for each gene in each cancer. Only

genes with >5% CNV in a given cancer are shown as a point on the figure. (D) CNV correlation with mRNA. The association between paired mRNA expression and

CNV percentage in samples was based on a Pearson product–moment correlation coefficient. The size of the point represents the statistical significance, where the

bigger the dot size, the higher the statistical significance.

LUAD, BRCA, COAD, THCA, and STAD; SLC6A19 in BRCA;
and TMPRSS2 in KICH were positively correlated with their
methylation (p < 0.05; Figure 4B and Supplementary Figure 4).
Prognosis analysis showed that hypermethylation of AGTR2 in
BRCA; AGT in SKCM, CESC, and LAML; TMPRSS2 in KIRP,

LUAD, READ, ACC, and HNSC; SLC6A19 in KIRP; ACE2 in
ACC; and ACE1 in HNSC were associated with poor survival.
Hypermethylation of TMPSS2 in GBM and UVM; AGT in
THCA and KIRP; ACE2 in ESCA; SLC6A19 in BRCA; AGTR2
in LGG; and ACE1 in LGG and SKCM were associated with
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FIGURE 4 | Methylation of ACE2 receptor-related regulators. (A) Differential methylation changes in ACE2 receptor-related regulators between tumor and normal

samples in each cancer. Blue points represent decreased methylation in tumors and red points represent increased methylation in tumors, where the darker the color,

the larger the difference in methylation levels. (B) Correlation between methylation and mRNA gene expression. Blue points represent a negative correlation and red

points represent a positive correlation, where the darker the color, the higher the correlation. (C) Survival difference between samples with ACE2 receptor-related

regulators with high and low methylation. Red points represent poorer survival in high methylation groups; blue points were just the opposite. The size of the point

represents the statistical significance, where the larger the dot size, the higher the statistical significance. (D) Survival analysis of SLC6A19 methylation in KIRP.

good survival (p < 0.05; Figure 4C). As shown in Figure 4D, the
hypermethylation of SLC6A19 was significantly associated with
poor survival in KIRP (p= 8.6e−05; Figure 4D).

Pathway Activity Analysis
The pathway relation network indicated that ACE2 receptor-
related regulators were involved in TSC/mTOR, RTK,
RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, EMT,
DNA damage response, cell cycle, and apoptosis pathways
(Figure 5A). The global percentage of cancers in which
regulators have an effect on a pathway showed that ACE1 was
involved in the activation of apoptosis, DNA damage, epithelial–
mesenchymal transition (EMT), hormone ER, hormone AR,
RAS/MAPK, and RTK pathways and the inactivation of the cell
cycle and TSC/mTOR pathways. ACE2 was associated with the
activation of PI3K/AKT, RAS/MAPK, and TSC/mTOR pathways,
and with the inactivation of the cell cycle, DNA damage, EMT,
and hormone AR pathways. AGT was associated with the
activation of the EMT pathway and the inactivation of apoptosis.
AGTR2 was associated with the activation of RAS/MAPK, RTK,
and TSC/mTOR pathways and the inactivation of apoptotic,
cell cycle, DNA damage, hormone ER, and hormone AR

pathways. SLC6A19 was involved in the activation of RTK
and hormone AR pathways and the inactivation of hormone
ER and TSC/mTOR pathways. TMPRSS2 was associated with
the activation of the RTK pathway and inactivation of EMT
(Figure 5B). As ACE2 receptor-related regulators are often
mutated in UCEC, we further analyzed the global percentage
of pathway activity in UCEC. We found that ACE1 was mostly
involved in the inhibition of the cell cycle (21% inhibition vs.
7% activation) and activation of RAS/MAPK (9% inhibition vs.
13% activation). ACE2 was mainly involved in the inhibition of
hormone AR (12% inhibition vs. 7% activation) and activation
of the RTK pathway (0% inhibition vs. 19% activation). AGT
was associated with inhibition of apoptosis (18% inhibition
vs. 0% activation) and activation of EMT (6% inhibition
vs. 16% activation). TMPRSS2 was mainly involved in the
inhibition of the DNA damage response (12% inhibition vs.
7% activation) and EMT (34% inhibition vs. 4% activation),
while it was associated with the activation of hormone AR (9%
inhibition vs. 13% activation), hormone ER (9% inhibition vs.
13% activation), and RTK (6% inhibition vs. 22% activation)
pathways (Supplementary Figure 5). These results indicated
that the abnormal expression of ACE2 receptor-related regulators
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FIGURE 5 | The pathway network between ACE2 receptor-related regulators. (A) A line represents a connection between different pathways, where a solid line

represents activation and a dashed line represents inhibition. Color of line represented different cancer types. (B) Global percentage of cancers in which ACE2

receptor-related regulators had an effect on the pathway among 32 cancer types, obtained as follows: number of activation or inhibition cancer types/32 × 100%.

mediated the abnormal activation of cancer-related signaling
pathway, which played different roles in regulating tumorigenesis
and progression.

miRNA Regulation Analysis
To clarify any miRNA regulation of ACE2 receptor-related
regulators, visNetwork was used to generate miRNA regulation
networks. As shown in Figure 6, hsa-miR-98-5P, hsa-let-7a-
5P, hsa-miR-665, hsa-miR-432-5P, hsa-let-7b-5P, hsa-let-7d-5p,

hsa-let-7g-5p, hsa-miR-545-3P, hsa-miR-452-5P, hsa-miR-939-
5P, hsa-miR-7-5P, hsa-miR-513c-5P, hsa-miR-514-5P, hsa-miR-
664a-3P, and hsa-let-7i-5p, hsa-let-7f-5P, hsa-let-7e-5P, hsa-miR-
214-3P, hsa-miR-3154, hsa-miR-573, and hsa-miR-183-5P were
negatively correlated with TMPRSS2 expression (p < 0.05); hsa-
miR-31-5p, hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-181C-
5p, hsa-miR-636, and hsa-miR-320e were negatively correlated
with AGT; and hsa-miR-632, hsa-miR-330-5p, hsa-miR-200c-3p,
hsa-miR-141-3p, hsa-miR-632, hsa-miR-26b-5p, hsa-miR-149-
5p, hsa-miR-3125, hsa-miR-3143, hsa-miR-3187-3p, hsa-miR-
200c-3p, and hsa-miR-3065-5p were negatively regulated with
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FIGURE 6 | The miRNA network of ACE2 receptor-related regulators. A connection node between miRNA and one regulator represents miRNA regulation of a gene.

Node size is positively correlated to the node’s degree similar to networkD3, and edge width is defined by the absolute value of the correlation coefficient.

the expression of ACE2 (p< 0.05); hsa-miR-183-5p and hsa-miR-
377-3p were negatively regulated with the expression of SLC6A19
(p < 0.05); and hsa-miR-24-3p were negatively regulated with
the expression of ACE1 (p < 0.05). These results indicated that
the miRNA regulation network mediated ACE2 receptor-related
regulators, which may be involved in the progression of cancer in
patients with COVID-19.

Drug Sensitivity Analysis
Genomic aberrations influenced clinical response to treatment
and are potential biomarkers for drug screening in cancer.
To know the role of ACE2 receptor-related regulators on
chemotherapy or targeted therapy, drug sensitivity and gene
expression profiling data of cancer cell lines from the CTRP
were integrated. Spearman’s correlation analysis showed
that drug sensitivity toward vincristine, teniposide, ouabain,

docetaxel, doxorubicin, erlotinib, afatinib, AZD7762, and
AT13387 correlated with the expression of AGTR2, SLC6A19,
ACE2, and TMPRSS2 (negative correlation with IC50). Drug
resistance toward staurosporine correlated with the expression
of TMPRSS2, JW55, FGIN-1-27, BRD-K96431673, BRD-
K86535717, BRD-K75293299, and BRD-K49290616 (positive
correlation with IC50) (Figure 7). These results indicated that the
abnormal expression of ACE2 receptor-related regulators may
mediate sensitivity to chemotherapy and targeted drug therapy.

DISCUSSION

COVID-19 is a global health emergency problem with a large
number of confirmed cases and deaths that are much greater than
any infection in recent decades. Condition severity and mortality
have been identified as being significantly higher in patients with
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FIGURE 7 | Drug sensitivity analysis of ACE2 receptor-related regulators. The gene set drug resistance analysis from CTRP IC50 drug data. Spearman’s correlation

represented how the gene expression correlates with a drug. A positive correlation means that a gene with high expression was resistant to a drug, and vice versa.

other comorbidities, such as cancer (30–32). As care for chronic
conditions, such as cancer, still needs to continue during the
pandemic, it is necessary for healthcare providers to determine
which type of cancer will put patients at a higher risk of exhibiting
severe forms of the COVID-19 infection. Patients have also had
to balance the risks and benefits of cancer-directed interventions
within the context of the added risk of contracting COVID-
19. In this study, we comprehensively analyzed the genomic
and prognostic characteristics of six COVID-19 receptor-
related regulators, where we found that genetic and epigenetic
alterations, and an miRNA network of COVID-19 receptor-
related regulators, led to their abnormal expression, which
correlated significantly with the activation of cancer hallmark-
related pathways and clinical survival. Targeting these COVID-19
receptor-related regulators may be an important method to treat
cancer patients with COVID-19.

We firstly explored the genetic alterations and prognoses
of these regulators and found that the abnormal expression
was associated with clinical prognosis. Our results indicated
that there were 14 tumor types that differentially expressed
one or more of these regulators. The regulators were highly
expressed in normal mucosal epithelial tissue, such as kidney,

urinary bladder, and mucocutaneous and gastrointestinal tract,
which was consistent with ACE2 protein distribution. This
co-expression pattern further validated that the SARS-CoV-2
entry process requires the interaction of these regulators. By
tracking the genetic differences in these six regulators, we found
that missense mutations were the main mutation type in SNV,
with ACE1 having the highest mutation frequency in cancer.
In addition, ACE1 mutations in malignancies were distributed
across all exons of ACE1 with several hot spot mutation sites.
ACEmutations have been reported to be involved in a number of
lymph node metastases of gastric cancer (33) and associated with
a worse prognosis in prostate cancer (34). However, there was
also non-conformity between genomics alternation and clinical
prognosis. Thus, we speculated that genetic and epigenetic
alteration of the regulators may cause gene dysfunction and
promote tumorigenesis in certain contexts.

Further investigation into the biological function of the
regulators identified several pathways, including TSC/mTOR,
RTK, RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, EMT,
DNA damage response, cell cycle, and apoptosis pathways,
that were significantly enriched in cancers. In UCEC, different
ACE2 receptor-related regulators were associated with different
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cancer-related signaling pathways. For example, TMPRSS2 was
involved in the activation of the RTK pathway and AGTR2 was
associated with the inhibition of the cell cycle and the apoptosis
pathway. Recent studies identified that Ang II can also promote
cell growth and proliferation via the transforming growth factor-
beta (35), RTK (36), and mTOR pathways (37). Activation
of Ang II receptor in cancer cell lines resulted in increased
MAPK activation, JAK-STAT signaling, and cell proliferation
(38, 39). Thus, activation and inhibition of cancer-related
signaling pathways mediated by ACE2 receptor-related regulator
molecular networks played different roles in tumorigenesis
and prognosis.

In clinical applications, dexamethasone, which can reduce
inflammation, and remdesivir, which can inhibit viral replication,
have been widely used to decrease the mortality in cancer
patients with COVID-19 (40, 41). There are currently no
effective drugs for COVID-19. There is an urgent need for
therapeutic interventions, especially for cancer patients with
weakened immune systems. Our drug sensitivity analysis
identified that ACE2 receptor-related regulator expression
levels were also involved in drug sensitivity. Vorinostat is
an anticancer histone deacetylase (HDAC) inhibitor and has
previously been shown to have anti-fibrotic effects and can
reduce the risk of acute respiratory deterioration by upregulating
ACE2 expression (42, 43). Erlotinib, an epidermal growth
factor receptor (EGFR) inhibitor, has been reported to inhibit
endocytosis and intracellular trafficking of multiple viruses,
including hepatitis C, dengue, and Ebola, exerting broad-
spectrum antiviral effects by increasing ACE2 expression
(44). Thus, we speculate that targeting ACE2 receptor-
related regulators will become an ideal approach in cancer
treatment. However, variations of ACE2 receptor-related
regulators exist at all regulation levels, including genetics and
epigenetic alterations, mRNA expression, miRNA networks,
and pathway correlations. These variations may alter drug
effects, treatment responses, and patient survival. Thus, the
potential mechanisms of each drug’s effect on ACE2 receptor-
related regulator expression and cancer progression require
further investigation.

CONCLUSION

In conclusion, our findings indicate the need for precautions
for and protection of cancer patients during the COVID-19

pandemic. However, the balance between the risks and benefits
of cancer-directed interventions should be reassessed. Thus,
targeting ACE2 receptor-related regulators could be a promising
strategy against cancer patients with COVID-19.
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