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The low cost, simple, noninvasive, and continuous measurement of cerebral blood flow velocity (CBFV) by transcranial Doppler is
becoming a common clinical tool for the assessment of cerebral hemodynamics. CBFVmonitoring can also help with noninvasive
estimation of intracranial pressure and evaluation ofmild traumatic brain injury. Reliable CBFVwaveform analysis depends heavily
on its accurate beat-to-beat delineation. However, CBFV is inherently contaminated with various types of noise/artifacts and has
a wide range of possible pathological waveform morphologies. Thus, pulse onset detection is in general a challenging task for
CBFV signal. In this paper, we conducted a comprehensive comparative analysis of three popular pulse onset detection methods
using a large annotated dataset of 92,794 CBFV pulses—collected from 108 subarachnoid hemorrhage patients admitted to UCLA
Medical Center. We compared these methods not only in terms of their accuracy and computational complexity, but also for their
sensitivity to the selection of their parameters’ values. The results of this comprehensive study revealed that using optimal values
of the parameters obtained from sensitivity analysis, one method can achieve the highest accuracy for CBFV pulse onset detection
with true positive rate (TPR) of 97.06% and positive predictivity value (PPV) of 96.48%, when error threshold is set to just less than
10 ms. We conclude that the high accuracy and low computational complexity of this method (average running time of 4ms/pulse)
makes it a reliable algorithm for CBFV pulse onset detection.

1. Introduction

Cerebral hemodynamic impairment is prevalent in a wide
range of neurological disorders, including subarachnoid
hemorrhage, stroke, and traumatic brain injury [1]. In neur-
ocritical care, accurate assessment of cerebral hemodynam-
ics can help with effective planning of interventions and
treatments to reduce secondary brain injury [2, 3]. The
current gold standard for the measurement of cerebral blood
flow (CBF) is positron emission tomography, a complicated
and expensive modality which exposes patients to ioniz-
ing radiation [4]. Other neuroimaging techniques such as
magnetic resonance perfusion are less complicated, but they
cannot provide an assessment of cerebral hemodynamics in a
continuous fashion [5].

Transcranial Doppler (TCD) ultrasound is a noninvasive,
portable, and relatively inexpensive modality that allows for
the continuous bedside monitoring of cerebral blood flow
velocity (CBFV) as a surrogate measure of CBF. To obtain
CBFV signal, a low-frequency (≤ 2MHz) transducer probe is
used to insonate the basal cerebral arteries through thin-bone
trans-temporal windows [6]. Since its introduction in the
early 80s, TCD studies have beenwidely used to evaluate cere-
bral hemodynamics in various conditions including impaired
vasomotor function [7], sickle cell disease [8], subarachnoid
hemorrhage [9], brain stem death [10], and intraoperative
monitoring [11]. The analysis of CBFV pulse waveform
morphology canhelpwith the detection of vasospasm, hyper-
dynamic flow states, and increased cerebrovascular resistance
[3, 6, 12, 13]. Furthermore, several recent studies have also
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shown that intracranial pressure (ICP) could be estimated
noninvasively by relating the measurements of CBFV—and
arterial blood pressure (ABP)—to the ICP [14–20].

The analysis of CBFV signal is challenging, in general.The
cerebrovascular system is a nonlinear and nonstationary sys-
tem.Thus, application of many conventional time-frequency
analyses, developed based on the assumption of linearity and
stationarity, may be less reliable [21]. Furthermore, given the
difficulty of the insonation of the major cerebral arteries
through the bone plate of the skull (especially for those with
ticker temporal window), the quality of the collected CBFV
is highly dependent on the TCD technician’s competency
and understanding of the three-dimensional cerebrovascular
anatomy [6, 22]. Several other sources of noise and artifacts
could also contaminate theCBFV signal, e.g.,motion artifacts
(mainly due to a commonly handheld TCD transducer) and
cardiac and respiratory interferences [23]. These noises and
artifacts can result in random baseline drift and perturbation
of the CBFV pulse morphology. Thus, comparing to other
physiological signals such as ICP and ABP, the CBFV signal
has a relatively lower signal-to-noise ratio and less clear
temporal pattern [24, 25].

Accurate beat-to-beat delineation of a pulsatile signal
using its pulse onset (foot of the pulse) is an essential
step for extraction and tracking of the pulse waveform
morphology. Despite the existence of various pulse onset
detection methods for pulsatile signals such as ABP and
photoplethysmogram (PPG) signals [26–31], no method was
exclusively tested on or adapted for the CBFVonset detection
without additional information from other sources or signals
such as electrocardiogram (ECG). Our group recently pro-
posed a CBFV pulse onset detection method [32] based on
adaptive thresholding, a state-of-the-art pulse onset detection
originally developed for PPG signal [33]. We showed that
our proposed method (Let us call it Asgari method) achieves
a promising performance with true positive rate (TPR) and
positive predictive value (PPV) of above 90%. To further
enhance the performance of the CBFV pulse onset detection,
in this work, we study the adaptation of two other state-of-
the-art PPG onset detection methods (Chen method [27],
and Farooq method [29]) for the CBFV signal using a large
dataset of annotated CBFV pulses. To complete the study, we
compare the performances of these three methods in terms of
detection accuracy, computational complexity, and their sen-
sitivity to the selection of parameters values.The result of this
comprehensive analysis can enhance the automatic extraction
and tracking of CBFV pulse morphology for noninvasive and
continuous assessment of cerebral hemodynamics.

2. Materials and Methods

2.1. Patient Data. Our dataset consisted of more than 18
hours of CBFV and ECG data collected from 108 subarach-
noid hemorrhage patients (66 males; age range 30-64, age
average 48) that were admitted into Ronald Reagan UCLA
Medical Center. The patients consented for allowing their
data to be analyzed under the protocol as approved by the
UCLA Internal Review Board. Simultaneous cardiovascular

monitoring was performed using the bedside GE monitors
and CBFV was measured using TCD machine (Multi-Dop
X, Compumedics DWL, Singen, Germany). CBFV and ECG
signals were recorded at a sampling rate of 400 Hz using a
mobile cart at the bedside that was equipped with the Pow-
erLab TM SP-16 data acquisition system (ADInstruments,
Colorado Springs, CO). Note that ECG data in this study
was solely used to guide the accurate annotation of CBFV
pulse onsets. CBFV signal was segmented (into 92,794 pulses)
using the ECG R-peak locations and then foot of each pulse
was obtained as its minimum point. The average length of
the rendered pulses was 727 ±159 ms. A custom software was
developed in-house and used for visual inspection of each
single pulse and manual correction of its calculated onset, if
needed. The average value of the annotated onsets was 108
±34 ms.

2.2. Pulse Onset Detection Methods. Over the last decade,
various pulse onset detection methods have been proposed
for the pulsatile signals other than CBFV, for example, ABP
and PPG signals [26–31]. PPG signal (similar to CBFV) is
inherently contaminated with various sources of noise and
artifacts due to its measurement modality. Hence, in this
study, we adapt three PPG pulse onset detection methods to
obtain the onsets of the CBFV signal.

2.2.1. Chen Method. In [27], Chen et al. have outlined a pulse
onset detection method consisting of four major steps as
depicted in Figure 1:

Preprocessing. In this step, the outlier data points with
amplitudes more than 𝑜𝑐 times median of the signal lasting
for less than 𝑖𝑐 seconds are identified and linearly interpolated
to obtain signal 𝑤0.

Signal Smoothing and Baseline Establishment. Power spec-
trum analysis is conducted on the detrended signal to
estimate the heart rate frequency (𝑓𝐻𝑅). For this purpose,
the maximum power spectrum of the signal over the range
of 0.8-3.0 Hz (corresponding to normal heart rates from
50 to 180 beats/min) is obtained. Then a cascade of four
filtering techniques are employed to make the signal with
less noise and sharp spikes (𝑤1), fewer ectopic beats (𝑤2),
and an established baseline (𝑏). The first two filters are a
medianfilter and a centermoving-average filter, bothwith the
window sizes of 0.2/𝑓𝐻𝑅, to remove noise and sharp spikes
with frequencies above 5𝑓𝐻𝑅. The third filter is a 3rd order
low pass Butterworth filter with cutoff frequency of 1.5𝑓𝐻𝑅
to remove the ectopic beats. Finally, a center moving-average
filterwith thewindow size 1.5/𝑓𝐻𝑅 is applied to𝑤2 to estimate
a baseline 𝑏 of the signal waveform.

Peak Identification. The peak identification consists of three
steps:

(i) Peak detection: First, the peaks of signal 𝑤0 are
detected over the regions that auxiliary waveforms𝑤2
are above 𝑏.
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Figure 1: A block diagram of the major steps of Chen method.
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Figure 2: An example of pulse onset detection using Chen method.

(ii) Identification of potential false peaks: An adaptive
thresholding on the amplitude of the peaks and the
inter-beat time interval is employed to classify the
detected peaks into potential false peaks or true peaks.
A peak is labeled as potential false if its amplitude
is less than half of certain percentile (𝑝𝐶) of the
amplitude of all the peaks. Assuming that t is the
vector of peak-to-peak time interval and median
absolute deviation of the peak-to-peak interval is
𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|t−𝑚𝑒𝑑𝑖𝑎𝑛(t)|), peakswith intervals
deviating from the median interval by more than 𝑑𝐶
times𝑀𝐴𝐷were also labeled as potential false peaks.

(iii) Recover missed peaks: All the intervals between true
peaks that include the potential false peaks are iden-
tified and carefully reexamined through an iterative
procedure detailed in [27], in order to relocate the
potential false peaks and/or recover missing peaks.

Onset Detection. The onset of each pulse is detected by
analyzing the signal between the peak of the corresponding

pulse and its preceding one. For this purpose, the regions
where the signal𝑤0 is below both auxiliary waveforms𝑤2 and
𝑏 are identified (to ensure the independency of the detected
onsets to the selection of the baseline). In case of having
multiple ranges, they are ranked based on their lengths. Then
the rightmost range from the top two ranges (the one closer
to the peak) is selected. Finally, the onset is detected as
the minimum of signal 𝑤0 over the selected range. Figure 2
illustrates an example of pulse onset detection using Chen
method. In [27], the default values for the parameters of the
method were empirically set as 𝑜𝑐 = 20, 𝑖𝑐 = 0.2, 𝑝𝑐 = 2/3,
and 𝑑𝑐 = 2.

2.2.2. Asgari Method. In [32], we proposed a modified ver-
sion of a pulse onset detection method (Shin method [33]
originally developed for PPG signals) to adapt it for CBFV
pulses. The method is based on an iterative algorithm that
calculates the location of the proceeding pulse onset (𝑡𝑘+1)
based on that of the current pulse onset (𝑡𝑘) using an adaptive
detection thresholding. Figure 3 shows a flowchart of this
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Figure 3: A block diagram of the major steps of Asgari method.
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Figure 4: An example of pulse onset detection using Asgari method.

algorithm. First a band-pass filter (0.5-10Hz) is applied to the
signal to remove the noise and artifacts. Then a threshold line
is defined at 𝑡𝑘 with the slope of

𝑠𝑙𝑜𝑝𝑒 =
(𝑉𝑘

 + 𝜎) 𝑟𝐴
𝑓

, (1)

where𝑉𝑘 is the amplitude of the current onset (𝑘 = 1, 2, 3, . . .),
𝜎 is the standard deviation of the signal, 𝑟𝐴 is a constant
slope rate, and 𝑓 is the sampling frequency. As Figure 4
shows, this threshold line continues for at least a refractory
period of 𝜏 (to ensure that the detected onsets are at least 𝜏
seconds apart). As soon as the line passes above the signal

amplitude, the threshold starts to follow the signal amplitude
till a certain multiple number (𝑚𝐴) of average inter-beat
time interval has been passed from the time of 𝑡𝑘. Note that
average inter-beat time interval (𝜂) can be obtained as the
reciprocal of estimated heart rate frequency at which the
power spectrum of the signal is maximized (over 0.8-3Hz).
Then the algorithm searches for the local minimums of the
signal over the aforementioned searching range. In the case of
having oneminimum, that point is declared as the location of
the next pulse onset 𝑡𝑘+1. Otherwise, a center moving-average
filter with the window size of 𝛼𝐴 times 𝜏 is applied to smooth
out the signal over the searching range. Then location of the
first local minimum on the smoothed signal is identified. We
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Figure 5: A block diagram of the major steps of Farooq method.

hypothesize that this point is a good estimate for the location
of the true onset. Therefore, starting from this location, we
search for the minimum of the original (band-pass filtered)
signal within a window size 𝜏 and declare that minimum
point as the next pulse onset location 𝑡𝑘+1.

For the next iteration, a new threshold line with an
updated value of slope per (1) is defined at the location of
the newly detected onset (𝑉𝑘+1). The above procedure is then
repeated till the onsets of all the pulses (in the record) are
identified. Note that the refractory period 𝜏 is defined as
certain fraction (𝑡𝐴) of average inter-beat time interval 𝜂.

For the initialization step, the amplitude of the minimum
of the signal over the first second of the data (let us call this
amplitude 𝑉0) is obtained. Then the threshold line is defined
with the slope and intercept values of (|𝑉0|+𝜎)𝑟𝑎/𝑓and 0.2𝑉0,
respectively. In [32], default values for the parameters of the
method were empirically set as 𝑟𝐴 = 0.6, 𝑚𝐴 = 2, 𝛼𝐴 = 0.5,
and 𝑡𝐴 = 0.6.

2.2.3. Farooq Method. In [29], Farooq et al. have outlined a
pulse onset detection method which consists of three major
steps as depicted in Figure 5: signal preprocessing, peak
detection of the transformed signal, and onset detection of
the original signal. For the preprocessing, first the derivative
of the signal is calculated. Then a moving-average filter with
time length of 𝑙𝐹 seconds is applied. Finally, a rectifier is
employed to zero the negative values of the signal. The output
of the preprocessing step is a transformed signal with well-
defined pulse separation, prominent peaks, and a reduced
baseline wander (Figure 6).

At the next step, the peaks of the transformed signal are
determined as follows: A moving window is applied and the
maximum value of the transformed signal over each window
is obtained. If the maximum value of any window is less
than half that of the previous window, then the maximum
of the previous window is declared as a peak. Following
the determination of the peaks, the spurious peaks are
identified and excluded from further processing by applying
a dual adaptive thresholding on their amplitudes. Peaks with
amplitudes less than a percentage (𝑝𝐹) of a threshold base

value are excluded. Threshold base value is first initialized as
the average of the amplitude of the peaks over the first ten
seconds of data, and then it is made adaptive as the running
average of the amplitude of the previous eight peaks. If this
threshold fails to detect any peak, algorithm then searches
back in time using a lower threshold by decreasing 𝑝𝐹.

A refractory period of 𝛿𝐹 seconds is applied by excluding
peaks that are less than 𝛿𝐹 seconds away from their preceding
peak. Following the detection of the peaks on the transformed
signal, the pulse onsets are identified by searching the
transformed signal backwards starting from each detected
valid peak till one gets to the first zero-crossing. The onset
locations are then obtained by compensating for the delays
that are introduced in the preprocessing step. In [29], default
values for the parameters of the method were empirically set
as 𝑙𝐹 = 0.128, 𝑝𝐹𝑎 = 0.5, 𝑝𝐹𝑏 = 0.3, and 𝛿𝐹 = 0.25.

2.3. Data Analysis andValidation Protocol. All three methods
(Chen method, Asgari method, Farooq method) were imple-
mented in Matlab 2017b and applied to the CBFV data using
the default values of the parameters of the corresponding
methods as indicated in Section 2.2. The results of the
onset detection were compared to those of the reference
annotation and the following two performance benchmarks
were calculated for eachmethod: true positive rate (TPR) and
positive productivity (PPV):

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,

(2)

where true positive (TP) is a case when the detected onset is
within a threshold value of 𝑇ms of the reference annotation,
and a false positive (FP) case is when the algorithm falsely
detects an onset in a location where there is no onset
annotation.

To conduct a computational complexity analysis of the
methods, the average running times of eachmethod per pulse
for all the CBFV records were calculated and compared using
an Intel � core � CPU@ 3.5 GHz, 32 GB RAM, 64-bit OS.
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Figure 6: An example of pulse onset detection using Farooq method. (a) signal and detected onsets. (b) The auxiliary signals (derivative,
moving-averaged, rectified) used to find the zero-crossings corresponding to pulse onsets.

The sensitivity of the performance of each method to the
selection of the parameter values was analyzed by calculating
TPR and PPVwhen the value of each parameter was changed
over a specific range while keeping the remaining parameters
at their default values. Table 1 summarizes the definition of
each parameter, its default value, and its selected range of
change for the sensitivity analysis of each method.

3. Results

Figure 7 shows a sample case of CBFV onset detection results
for the three methods. While Chen method misses the iden-
tification of some of the onsets, Asgari method misallocates
few other onsets. On the other hand, Farooq method is able to
detect all of the onsets correctly.

Table 2 presents the results of CBFV onset detection in
terms of TPR and PPV for the methods using the default
values of their parameters for threshold values of 𝑇 = 30, 𝑇 =
20, and𝑇 = 10ms.We observe that for𝑇 = 30, Farooqmethod
achieves the highest accuracy of detection with TPR=98.08%
and PPV=97.75, while Chen method demonstrates the lowest
accuracy with TPR=87.24% and PPV=95.91%. Similarly, for
𝑇 = 20, Farooq method demonstrates a superior performance
relative to the other methods with both TPR and PPV of
above 95%. However, the detection accuracy of this method

substantially declines toTPR=65.36% andPPV=65.14%when
𝑇 = 10ms. In comparison to Farooq method, both Asgari
method and Chen method performances remain less variant
to the threshold value of 𝑇. Note that although the per-
formance of Chen method has the lowest variability to the
threshold value, it has the lowest TPR value relative to the
other methods. Nevertheless, Asgari method shows both a
reasonable level of accuracy in onset detection and a relatively
low variability of the performance to the threshold value.
In fact, for 𝑇 = 30, Asgari method achieves TPR= 93.15%
and PPV=93.30%, and it outperforms both Farooq method
and Chen method with TPR=90.32% and PPV=90.46%when
𝑇 = 10ms.

Table 3 summarizes the results of the running time
analysis for the three methods. We observe that while Chen
method has the shortest running time of 1.1± 0.4ms per pulse,
Asgari method’s running time is the longest (with a factor
of 14) at 14.3 ± 3.9 ms per pulse. Farooq method also has a
reasonable running time of 3.9 ± 1.5 ms per pulse.

Figure 8 presents the results of sensitivity analysis of all
three methods to the selection of their parameters values
(𝑇 = 10ms). We observe that the performance of Chen
method has the least sensitivity to its parameters. For Asgari
method, the accuracy of pulse onset detection relatively stays
the same for the majority values of 𝑚𝐴 and 𝛼𝐴 per Figures
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Table 1: Definition of each parameter, its default value, and its selected range of change ([minimum value, maximum value]) that were
employed for the sensitivity analysis of each method.

Method Parameter
(default value) Definition Range of

Change

Chen Method

𝑜𝑐 = 20
Signal outliers with amplitudes more than 𝑜𝑐 times

median of the signal lasting for less than 𝑖𝑐 second are
linearly interpolated.

[5 30]

𝑖𝑐 = 0.2
Signal outliers with amplitudes more than 𝑜𝑐 times

median of the signal lasting for less than 𝑖𝑐 second are
linearly interpolated.

[0.1 1]

𝑝𝑐 = 66%
Signal peak is labeled as potential false if its amplitude
is less than half of (𝑝𝐶) percentile of the amplitude of all

the peaks.
[55% 100%]

𝑑𝑐 = 2
Signal peaks with intervals deviating from the median
interval by more than 𝑑𝐶 times𝑀𝐴𝐷 are labeled as

potential false peaks
[1 5]

Asgari Method

𝑟𝐴 = 0.6 Constant slope rate in Eq. (1) [0 0.8]

𝑡𝐴 = 0.6
Refractory period 𝜏 is defined as certain fraction (𝑡𝐴) of

average inter-beat time interval 𝜂. [0.4 0.8]

𝑚𝐴 = 2

When threshold line passes above the signal amplitude
(after refractory period), the algorithm starts to search
for the next pulse onset till an interval time equal to
𝑚𝐴 × 𝜂 (from the current onset) has been passed.

[1 3]

𝛼𝐴 = 0.5
A moving-average filter with window size of 𝛼𝐴 × 𝜏 is
applied to smooth out the data over the searching range. [0.1 1.5]

Farooq Method

𝑙𝐹 = 0.128
A moving-average filter with time length of 𝑙𝐹 seconds

is applied to the derivative of the signal. [0.05 0.15]

𝑝𝐹𝑎 = 0.5
Peaks with amplitudes less than a fraction (𝑝𝐹𝑎) of a

threshold base value are excluded [0.35 0.8]

𝑝𝐹𝑏 = 0.3
If 𝑝𝐹𝑎 fails to detect any peak, algorithm then searches

back in time using 𝑝𝐹𝑏.
[0.1 0.45]

𝛿𝐹 = 0.25
Peaks that are less than 𝛿𝐹 seconds away from their
preceding peak are excluded from further processing. [0.1 0.4]

Table 2: Comparison of the performances of different CBFV onset detection methods in terms of TPR (%) and PPV (%) using the default
values of their parameters and for threshold of 𝑇 = 30, 𝑇 = 20 and 𝑇 = 10ms.

𝑇 = 30ms 𝑇 = 20ms 𝑇 = 10ms
Method TPR PPV TPR PPV TPR PPV
Chen method 87.24 95.91 87.05 95.70 86.91 95.55
Asgari method 93.15 93.30 92.81 92.86 90.32 90.46
Farooq method 98.08 97.75 95.96 95.63 65.36 65.14

Table 3: Comparison of the average running times of different
CBFV onset detection methods.

Method Chen Method Asgari Method Farooq Method
Average
running time
(ms/ pulse)

1.1 ± 0.4 14.3 ± 3.9 3.9 ± 1.5

8(g) and 8(h). In fact, when 𝑚𝐴 > 1.2 or 𝛼𝐴 > 0.7, the onset
detection achievesTPR andPPVof above 90%.As Figure 8(f)
shows when 𝑡𝐴 value increases, the performance of the onset
detection improves, however when 𝑡𝐴 > 0.7, TPR starts to
decrease slightly. As a result, Asgari method’s performance

will be optimized to above 90% for 0.6 ≤ 𝑡𝐴 ≤ 0.7. From
Figure 8(e) we observe that an increase in the value of slope
rate 𝑟𝐴 improves the TPR value at first, then TPR reaches a
relative plateau of above 90% for 0.2 ≤ 𝑟𝐴 ≤ 0.6. But then for
larger values of slope rate, both TPR and PPV start to decline.

As Figures 8(k) and 8(l) demonstrate, the accuracy of
onset detection for Farooq method has low sensitivity to
the choice of 𝑝𝐹𝑏 and 𝛿𝐹 parameter values. However, per
Figure 8(j), TPR slightly decreases for 𝑝𝐹𝑎 ≥ 0.7. On the
other hand, the length of the moving-average filter—applied
to the derivative of the signal—can have a considerable effect
on the performance of the onset detection. This is such that
although for moving window length of less than 90ms both
TPR and PPV stay above 92%, and when moving window
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Figure 7: A sample case of CBFV onset detection results for the three methods: (a) Chen method; (b) Asgari method; (c) Farooq method.

length increases above 100ms, the accuracy of onset detection
declines considerably. In fact, as we observed from Table 2
before, for the default parameter value of 𝑙𝐹 = 0.128, TPR and
PPV of Farooq method can be as low as 65%. Figure 9 shows
the results of onset detection for a sample CBFV signal using
Farooqmethod for window length of 128ms (Case 1) versus 60
ms (Case 2). From Figures 9(b) and 9(c), we observe that for
larger value of 𝑙𝐹, width of the peaks on the transformed signal
increases. Thus, the zero-crossings of the transformed signal
occur further away from the true onset annotations resulting
in higher level of error in localizations of the onsets.

Based on the results of sensitivity analysis, using the
optimal values of the parameters forAsgari method (𝑟𝐴 = 0.3,
𝑡𝐴 = 0.7, 𝑚𝐴 = 2, 𝛼𝐴 = 1) enhances the accuracy of
pulse onset detection to TPR=91.65% and PPV= 93.62% for
threshold 𝑇 = 10ms. However, by using the optimal values of
the parameters for Farooqmethod (𝑙𝐹 = 0.06, 𝑝𝐹𝑎 = 0.6, 𝑝𝐹𝑏 =
0.3, and 𝛿𝐹 = 0.25), the performance of onset detection
increases substantially to TPR=97.06% and PPV=96.48%.
These results indicate that by choosing appropriate parameter
values, Farooq method outperforms the other two methods
for the CBFV pulse onset detection.

4. Discussion

Low cost, simple, and noninvasiveness CBFV measurement
has become a valuable clinical tool to study autoregula-
tion with high temporal resolution. Furthermore, promising
results for the noninvasive estimation of intracranial pressure
have been recently obtained through the analysis of the CBFV
(and ABP) and their relations to ICP pulse [14–20]. A reliable
tracking of CBFV pulse morphology requires its accurate
pulse delineation. Various methods have been proposed for
the onset detection of the pulsatile signals other than CBFV.
To facilitate the accurate delineation of CBFV pulse, the
current work conducts a comprehensive comparative analysis
of three popular onset detection methods for CBFV signal.

Among the three methods, Chen method showed the
lowest accuracy in CBFV onset detection. The consistent
low TPR value of Chen method (TPR∼87% regardless of 𝑇)
reflects the prevalence of missing onsets in this method. On
the other hand, Farooqmethod showed the highest variability
in performance with respect to the threshold 𝑇. In fact,
while Farooq method achieved the highest performance for
𝑇 = 30, its detection accuracy substantially downgraded
when 𝑇 = 10 ms. This observation shows that although



BioMed Research International 9

0.4 0.5 0.6 0.7 0.8

0.8
0.85
0.9

pr
ob

1 1.5 2 2.5
0.88

0.9

pr
ob

0.5 1 1.5
0.2
0.4
0.6
0.8

pr
ob

0.2 0.4 0.6 0.8
0.8

0.9

pr
ob

Asgari method

TPR
PPV
default value

5 10 15 20 25 30
0.8

0.9

1
pr

ob
Chen method

TPR
PPV
default value

0.6 0.7 0.8 0.9
0.8

0.9

1

pr
ob

0.2 0.4 0.6 0.8 1
0.8

0.9

1

pr
ob

1 2 3 4 5
0.8

0.9

1

pr
ob

0.05 0.1 0.15
0.5

1

pr
ob

Farooq method

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

TPR
PPV
default value

0.1 0.2 0.3 0.4
0.645

0.65
0.655

0.66

pr
ob

0.1 0.2 0.3 0.4
0.645

0.65
0.655

0.66

pr
ob

0.4 0.5 0.6 0.7 0.8
0.64
0.65
0.66

pr
ob

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

oc

ic

pc

dc

rA

tA

mA

A

lF

pFa

pFb

F

Figure 8: Sensitivity analysis of the methods to the selection of parameters values: (a) Chen method 𝑜𝑐; (b) Chen method 𝑖𝑐; (c) Chen method
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Farooqmethod has the least number of missing onsets among
the three methods, it results in the highest error value
for estimation of pulse onset location (error is defined as
temporal separation between annotated and detected onsets).
In fact, an additional analysis revealed that average error
values for Chen method, Asgari method, and Farooq methods
are 3, 6, and 10 ms, respectively. Note that the average error of
10 ms for Farooq method is consistent with the observation
of having a TPR and PPV of around 65% for 𝑇 = 10ms
(Table 2).

Asgari method’s average running time (∼14 ms/pulse) was
substantially higher than that of the other two methods.
This is mainly due to the computationally expensive steps
of the method (e.g., moving-average filtering to find the
best minimum point on the searching range of each onset).
Although all three methods showed a reasonable computa-
tional complexity, Chen method and Farooq method may be
more appropriate choices for real-time applications in small
scale, standalone, ubiquitous devices.

Our analysis of the methods’ sensitivity to the selection of
their parameter values showed that Chenmethod achieves the
same level of performance regardless of the chosen values of
its parameters.On the other hand, small values of slope rate in
Asgari method make more of a flat threshold line which can
result in missing some of the onsets. Similarly, a large value
of the slope rate makes a steep threshold line that may cause
the false identification of the dicrotic notch as the pulse onset
[34]. Our results indicated that for 0.2 ≤ 𝑟𝐴 ≤ 0.6, Asgari
method achieves a TPR and PPV of above 90%. Since the
refractory period in Asgari method is defined as a fraction
of average inter-beat time interval (𝑡𝐴 × 𝜂), one can expect
that (similar to 𝑟𝐴) 𝑡𝐴 should be also within a specific range
for the method to perform well. In fact, our analysis revealed
that Asgari method’s performance will be optimized to above
90% for 0.6 ≤ 𝑡𝐴 ≤ 0.7.

For Farooq method, we observed that TPR of onset
detection decreases slightly when the adaptive thresholding
on the amplitude of the peaks are above 0.7. This could be
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Figure 9: An example of CBFV onset detection results using Farooq method for two different moving-average window lengths (𝑙𝐹 = 0.128
for case 1, 𝑙𝐹 = 0.06 for case 2): (a) Original signal; (b) transformed signal of case 1; (c) transformed signal of case 2.

justified by the fact that a higher threshold can result in
missing detection of peakswith lower amplitudes. Our results
also revealed that a window length of more than 100 ms for
the moving-average filtering applied to the derivative of the
signal considerably degrades the accuracy of onset detection.
A long window (longer than the initial upslope of a typical
pulse) can undermine enhancement of the upslope of the
pulse. Furthermore, a longer window can increase width of
the peaks on the transformed signal and as result, the detected
onsets (zero-crossings) will be further away from the true
onsets; i.e., the amount of error in onset detection increases.
As we mentioned previously, the average error for the default
value of 𝑙𝐹 = 0.128 was 10 ms. Note that while this level of
temporal separation between annotated and detected onsets
does not significantly affect number of TP cases for threshold
of 𝑇 = 30 and 𝑇 = 20ms, at least half of the detected

onsets will be disqualified to be counted as a TP case for
𝑇 = 10ms. This observation is consistent with the results of
Table 2 showing that while Farooq method’s onset detection
achieves a high accuracy for threshold of 30 and 20, it has
a substantial decrease in its accuracy (to almost 65%) when
threshold is set to 10 ms.

From the results of our sensitivity analysis, we realized
that by using more appropriate parameter values, Farooq
method can outperform the other two methods even for
threshold as small as 10 ms. The need for adaptation of new
parameter values for Farooq method is not surprising because
the default values of these parameters were originally set
for PPG onset detection in [29]. As the morphologies and
baseline fluctuations of PPG signal may not be the same as
those of CBFV, adjustment of the default values of parameters
for CBFV onset detection seems inevitable.
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Several limitations should be considered when inter-
preting the results of this study. The dataset used for our
analyses had a limited size and included CBFV signal of
only subarachnoid hemorrhage patients. Employment of a
larger dataset of CBFV signals from healthy controls as well
as different pathophysiology could enhance the reliability of
the results. Another limitation was the inherent challenge
of analyzing and identifying the ground truth for the onset
of noisy CBFV pulses. Although we used the ECG R-peak
locations to help with identification of foot (minimum point)
of each pulse, the indicated ground truth for someof the noisy
pulses might not be sufficiently reliable. These limitations
could have biased our results.

5. Conclusion

We conducted a comprehensive analysis of three state-of-
the-art pulse onset detection methods for CBFV signal.
Our analysis revealed the need for further adjustment of
the parameters of the methods to enhance the accuracy of
CBFV pulse onset detection. The results showed that the best
method (Farooqmethod) can achieve aTPR andPPVof above
96% for small error threshold value of 10ms.Thismethod has
a reasonable running time of less than 4ms/pulse.Thus, it can
be used reliably for the CBFV onset detection.
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[17] G. Brandi, M. Béchir, S. Sailer, C. Haberthür, R. Stocker, and J.
F. Stover, “Transcranial color-coded duplex sonography allows
to assess cerebral perfusion pressure noninvasively following
severe traumatic brain injury,” Acta Neurochirurgica, vol. 152,
no. 6, pp. 965–972, 2010.

[18] P. Xu, M. Kasprowicz, M. Bergsneider, and X. Hu, “Improved
noninvasive intracranial pressure assessment with nonlinear
kernel regression,” IEEE Transactions on Information Technol-
ogy in Biomedicine, vol. 14, no. 4, pp. 971–978, 2009.

[19] X.Hu,V.Nenov,M. Bergsneider, andN.Martin, “ADatamining
framework of noninvasive intracranial pressure assessment,”
Biomedical Signal Processing and Control, vol. 1, no. 1, pp. 64–
77, 2006.

[20] J.Wang, X. Hu, and S. C. Shadden, “Data-augmentedmodeling
of intracranial pressure,” Annals of Biomedical Engineering, vol.
47, no. 3, pp. 714–730, 2019.

[21] M.M. Placek, P.Wachel,M.Czosnyka,M. Soehle, P. Smielewski,
andM.Kasprowicz, “Complexity of cerebral blood flowvelocity
and arterial blood pressure in subarachnoid hemorrhage using
time-frequency analysis,” in Proceedings of the 2015 37th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), vol. 2015, pp. 7700–7703, Milan,
Italy, August 2015.

[22] H. A. Nicoletto and M. H. Burkman, “Transcranial doppler
series part II: performing a transcranial Doppler,” American



12 BioMed Research International

Journal of Electroneurodiagnostic Technology, vol. 49, no. 3, pp.
14–27, 2009.

[23] F. A. Sorond, N. K. Hollenberg, L. P. Panych, and N. D. Fisher,
“Brain blood flow and velocity correlations between magnetic
resonance imaging and transcranial doppler sonography,” Jour-
nal of Ultrasound in Medicine, vol. 29, no. 7, pp. 1017–1022, 2010.

[24] J. Noraky, G. C. Verghese, D. E. Searls et al., “Noninvasive
intracranial pressure determination in patients with subarach-
noid hemorrhage,” Acta Neurochirurgica Supplement, vol. 122,
pp. 65–68, 2016.

[25] R. B. Panerai, “Complexity of the human cerebral circulation,”
Philosophical Transactions of the Royal Society A: Mathematical,
Physical &Engineering Sciences, vol. 367, no. 1892, pp. 1319–1336,
2009.

[26] W. Zong, T. Heldt, G. B. Moody, and R. G. Mark, “An open-
source algorithm to detect onset of arterial blood pressure
pulses,” in Computers in Cardiology, pp. 259–262, IEEE, 2003.

[27] L. Chen, A. T. Reisner, and J. Reifman, “Automated beat
onset and peak detection algorithm for field-collected photo-
plethysmograms,” inProceedings of the 31st Annual International
Conference of the IEEE EMBS, pp. 5689–5692, Minneapolis,
Minn, USA, 2009.

[28] P. Xu, M. Bergsneider, and X. Hu, “Pulse onset detection using
neighbor pulse-based signal enhancement,” Medical Engineer-
ing & Physics, vol. 31, pp. 337–345, Apr 2009.

[29] U. Farooq, D.-G. Jang, J.-H. Park, and S.-H. Park, “PPG
delineator for real-time ubiquitous applications,” in Proceedings
of the 2010 32nd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBC’10, pp.
4582–4585, Argentina, September 2010.

[30] B. T. Ricardo Ferro, A. Ramı́rez Aguilera, and R. R. Fernández
De La Vara Prieto, “Automated detection of the onset and
systolic peak in the pulse wave using Hilbert transform,”
Biomedical Signal Processing and Control, vol. 20, article 672, pp.
78–84, 2015.

[31] D.-G. Jang, S. Park, M. Hahn, and S.-H. Park, “A Real-time
pulse peak detection algorithm for the photoplethysmogram,”
International Journal of Electronics and Electrical Engineering,
pp. 45–49, 2014.

[32] S. Asgari, N. K. Arevalo, R.Hamilton,D.Hanchey, and F. Scalzo,
“Cerebral blood flow velocity pulse onset detection using
adaptive thresholding,” in Proceedings of the 4th IEEE EMBS
International Conference on Biomedical and Health Informatics,
BHI 2017, pp. 377–380, USA, February 2017.

[33] H. S. Shin, C. Lee, and M. Lee, “Adaptive threshold method
for the peak detection of photoplethysmographic waveform,”
Computers in Biology andMedicine, vol. 39, no. 12, pp. 1145–1152,
2009.

[34] W. Karlen, K. Kobayashi, J. M. Ansermino, and G. A. Dumont,
“Photoplethysmogram signal quality estimation using repeated
Gaussian filters and cross-correlation,” Physiological Measure-
ment, vol. 33, no. 10, pp. 1617–1629, 2012.


