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ABSTRACT

Autophagy is essential for the maintenance of cellular
homeostasis and its dysfunction has been linked to
various diseases. Autophagy is a membrane driven
process and tightly regulated by membrane-associated
proteins. Here, we summarized membrane lipid compo-
sition, and membrane-associated proteins relevant to
autophagy from a spatiotemporal perspective. In par-
ticular, we focused on three important membrane
remodeling processes in autophagy, lipid transfer for
phagophore elongation, membrane scission for phago-
phore closure, and autophagosome-lysosome mem-
brane fusion. We discussed the significance of the
discoveries in this field and possible avenues to follow
for future studies. Finally, we summarized the mem-
brane-associated biochemical techniques and assays
used to study membrane properties, with a discussion
of their applications in autophagy.

KEYWORDS autophagy, membrane-associated
proteins, membrane-associated biochemistry assays, ATG2,
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INTRODUCTION

Autophagy is a process by which cells break down and
recycle their components. Autophagy occurs at a basal level
in all cells, but it can be upregulated during stress, starvation,
or infection. Autophagy is essential for the maintenance of
cellular homeostasis and its dysfunction has been linked to
various diseases, including cancer, neurodegeneration, and
immune diseases (Levine and Kroemer, 2019). Autophagy is

an intracellular degradation system that delivers cytoplasmic
materials to the lysosome via the double-membraned
autophagosome, which is highly conserved in the evolution
of eukaryotes and includes the following steps: 1) autophagy
initiation (signals activating autophagy) and nucleation of the
phagophore/isolation membrane (IM); 2) phagophore elon-
gation; 3) closure to form the autophagosome; 4) fusion
between autophagosome and lysosome; 5) degradation of
substrates in autolysosomes (Dikic and Elazar, 2018)
(Fig. 1). Extensive studies have focused on the molecular
mechanisms behind these processes, and our knowledge of
them is constantly updated with discoveries. So far, there are
many works reviewing autophagy from various angles. In the
past four years, there are review papers covering topics
including functions of autophagy in disease (Dikic and Ela-
zar, 2018; Thorburn, 2018; Levine and Kroemer, 2019),
selective autophagy (Gatica et al., 2018; Johansen and
Lamark, 2020), transcriptional/post-transcriptional regulation
in autophagy (Delorme-Axford and Klionsky, 2018), interac-
tion network and structure of autophagic proteins (Behrends
et al., 2010; Hurley and Young, 2017; Suzuki et al., 2017; Lai
et al., 2019), molecular mechanisms of autophagy (Hollen-
stein and Kraft, 2020; Melia et al., 2020; Nakatogawa, 2020),
and specific steps of autophagy, including autophagosome
formation (Carlsson and Simonsen, 2015; Dikic and Elazar,
2018; Mercer et al., 2018; Otomo et al., 2018; Yu et al., 2018;
Ktistakis, 2019; Lai et al., 2019; Osawa et al., 2019a; Osawa
and Noda, 2019; Otomo and Maeda, 2019; Graef, 2020;
Melia et al., 2020; Nishimura and Tooze, 2020), matura-
tion/fusion (Nakamura and Yoshimori, 2017; Reggiori and
Ungermann, 2017; Kriegenburg et al., 2018; Yu et al., 2018;
Kriegenburg et al., 2019; Zhao and Zhang, 2019), and
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Figure 1. Overview of autophagy with membrane-associated proteins highlighted. Cells go through the following steps to

complete a cycle of autophagy: 1) autophagy initiation (signals activate autophagy) and nucleation of the phagophore/isolation

membrane (IM, another name of the phagophore); 2) phagophore elongation; 3) closure to form the autophagosome; 4) fusion

between the autophagosome and lysosome; 5) degradation of substrates in autolysosomes. Autophagy begins when cells sense the

stimulation signals. The omegasome (a PI3P-enriched subdomain of ER where DFCP1 localizes through binding to PI3P) is the

platform for the nucleation of the phagophore. This step involves two important complexes, the ULK1 complex and the PI3KC3C1

complex. The ULK1 complex phosphorylates and activates the PI3KC3C1 complex. The activated PI3KC3C1 complex generates

PI3P from PI. Then, PI3P recruits WIPIs, which in turn recruit more autophagy machinery proteins. ATG12∼ATG5-ATG16L1 recruited

by WIPI2 catalyze ATG3-mediated conjugation of ATG8 family proteins with membrane resident PE, generating products like LC3II,

which is the characteristic signature of autophagic membranes and is involved in ATG9 vesicle sequestration of cargo. There are

multiple membrane sources of the autophagosome, including ER, Golgi, mitochondria, endosome, ERGIC, and plasma membrane.

There are few possible ways for lipid transport, including ATG9 vesicle-mediated transport, COPII vesicle-mediated transport, ATG2-

mediated lipid transport, etc. The cargos are sequestered while the autophagosomal membrane expands. Then, the sealing of this

membrane structure by scission proteins such as ESCRT and other regulators gives rise to a double-membrane structure called the

autophagosome. After becoming fully sealed, the autophagosome will recruit tethering proteins and SNARE proteins for fusion. Once

fused, the acidic hydrolases in the lysosome degrade the autophagic cargos, salvaged nutrients are released back to the cytoplasm

to be used by the cells, and the cis-SNARE complex is disassembled and recycled by NSF/αSNAP complex.
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recycling (Yu et al., 2018). Most of the steps in autophagy
are associated with membranes and are tightly regulated by
membrane-associated proteins (Lystad and Simonsen,
2016; Shatz et al., 2016), so here we review autophagic
lipids, membrane-associated autophagic proteins, and bio-
chemical/biophysical assays applied in this field. We will
emphasize three important membrane remodeling pro-
cesses in autophagy, including lipid transfer for phagophore
elongation, membrane scission for phagophore closure, and
autophagosome-lysosome membrane fusion. We will high-
light the discoveries in these processes, which provide new
information on long-standing and important questions about
autophagy and might direct future studies in this field.

MEMBRANE COMPOSITION OF AUTOPHAGY-
RELATED ORGANELLES

Each step in the autophagy pathway is defined by its
membranes; membranes in turn are defined by their lipid and
protein components, with PIs (phosphatidylinositols) and
Rab GTPases (guanosine triphosphates) providing the main
molecular determinants of organelle membrane identity in
cells. The different lipid types combined with particular ratios
and leaflet-specific asymmetrical distribution can give rise to
particular membrane properties such as fluidity, curvature,
and electrostatics. The lipid composition of autophagic
organelles has been grossly identified (Table 1), but is not
fully addressed, which is partly due to the difficulty of puri-
fying different autophagic organelles. The lysosome is the
only autophagic organelle that can be readily purified, and
the lysosomes in rat liver contain 39% PC (phosphatidyl-
cholines), 14% PE (phosphatidylethanolamine), 5% PI, 2%
PS (phosphatidylserine), 1% cardiolipin, 1% PA (phospha-
tidic), and 20% sphingomyelin (Wherrett and Huterer, 1972;
de la Ballina et al., 2020). Recently, the lipid composition of
Atg8 membranes in yeast, which might represent yeast
phagophore, autophagosome, and autolysosome, was
reported to contain 38% PC, 37% PI, 19% PE, 3% PS, 3%
PA, and are rich in unsaturation phospholipids. This is in
agreement with the dynamic property of the phagophore
(Schütter et al., 2020). Besides, compared to other cellular
organelles, Atg8 (autophagy-related protein 8) membranes
have a higher relative PI composition, which might be the
reason for its important functions in autophagy. The forma-
tion of and transitions between these membranes are regu-
lated by a series of membrane-associated proteins (Table 2),
the full roles of which are still coming into focus. One
important question that has been explored regarding the lipid
components of autophagy is the membrane sources of the
autophagosome.

It is generally agreed upon that phagophore is formed de
novo by nucleation on the ER (endoplasmic reticulum)
membrane compartment (Shibutani and Yoshimori, 2014).
Recently Martin Graef and his colleagues proposed a new
perspective on autophagosome biogenesis (Schütter et al.,

2020). They found that localized de novo synthesized
phospholipids from the ER are likely the main membrane
sources for phagophore expansion rather than lipids from
preformed organelle membranes. They proposed this might
help to maintain the integrity of existing organelles. Besides,
they found the Acyl-CoA synthetase Faa1 (long-chain-fatty-
acid-CoA ligase 1) is recruited to PAS (pre-autophagosomal
structure) upon autophagy initiation to activate fatty acids for
further synthesis of phospholipids on the ER, but it remains
unclear how Faa1 is recruited from the ER to the phago-
phore to activate the first step of phospholipid synthesis. It’s
generally accepted there are three possible ways to transfer
lipids for phagophore membrane extension: vesicle-medi-
ated delivery, lipid transfer protein-mediated delivery (e.g.,
ATG2, autophagy-related gene 2), and maybe direct extru-
sion from pre-existing organelles, all of which we are going to
discuss in the second part of this review paper.

Another outstanding question concerns the function of
different PIs. Among all the phospholipids, PIs are signaling
molecules that play important roles in autophagy, as they
can confer unique membrane identity and recruit particular
protein machinery with high spatiotemporal control. The
inositol ring of phosphatidylinositol can be phosphorylated
on three, four, and five hydroxyl groups in different combi-
nations to generate seven distinct PIs. There are works
specifically reviewing the roles of phosphoinositides in
autophagy in detail (Jang and Lee, 2016; Chung, 2019;
Palamiuc et al., 2020). During the biogenesis of the
autophagosome, PI3P (phosphatidylinositol-3-phosphate)
can be generated from PI on the omegasome, phagophore
and contact sites by the PI3KC3C1 complex (class III
phosphatidylinositol-3-kinase complex I) (Schu et al., 1993;
Russell et al., 2013). PI3P recruits the ATG16L1-
ATG5∼ATG12 complex through WIPI2 (WD repeat domain
phosphoinositide-interacting protein 2) for conjugating PE to
LC3 (microtubule-associated proteins 1A/1B light chain 3)
(Hanada et al., 2007; Fujita et al., 2008). PI4P (phos-
phatidylinositol-4-phosphate) and PI5P may act in an alter-
native function for PI3P when binding WIPI2 for
autophagosome biogenesis. During phagophore elongation,
PI3P recruits ATG2 via WIPI4 to transfer lipids for phago-
phore expansion (Osawa et al., 2019c; Tang et al., 2019;
Valverde et al., 2019). PI4P also mediates the exit of ATG9
vesicles from the Golgi complex to the phagophore and
promotes the expansion of phagophore (Mizushima et al.,
2011; Wang et al., 2012). Besides, both PI(3,5)P2 (phos-
phatidylinositol-3,5-phosphate) and PI(4,5)P2 (phos-
phatidylinositol-4,5-phosphate) can recruit machinery for the
expansion of phagophore (Ho et al., 2012; Wang et al., 2012;
Carroll et al., 2013; Knaevelsrud et al., 2013), such as
ATG16L1 and SNX18 (sorting nexin-18) (Ravikumar et al.,
2010; Knaevelsrud et al., 2013; Soreng et al., 2018). During
fusion, PI3P binds with TECPR1 (tectonin beta-propeller
repeat-containing protein 1) on the lysosome and promotes
autophagosome-lysosome fusion (Chen et al., 2012). On the
other hand, PI3P on the autophagosome and PI4P on the
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late endosome/lysosome can recruit HOPS (homotypic
fusion and protein sorting complex) to facilitate autophago-
some maturation (Bas et al., 2018) and promote the traf-
ficking of lysosome proteins to increase the degradative
capability of the lysosome (Miao et al., 2020). The conver-
sion between PI3P to PI(3,5)P2 and PI4P to PI(4,5)P2 are
both important for fusion events (Hasegawa et al., 2016; Li
and Zhong, 2016; Baba et al., 2019). After fusion, the con-
version from PI4P to PI(4,5)P2 is necessary for the autop-
hagic lysosome reformation from the autolysosome, where
PI(4,5)P2 can recruit clathrin to autolysosomes and may
control the fission of reformed tubules from autolysosomes
(Rong et al., 2012). Besides, the level of PI(3,5)P2 is a
marker of mature autophagosomes and may be required for
membrane recycling after fusion with lysosomes (Dove et al.,
2009).

Altogether, the lipid composition determines the property
of autophagic organelles and plays a critical function in
regulating autophagy. However, there are still many open
questions that need to be answered. For example, VPS34
(vacuolar protein sorting 34) is one source of PI3P, but PI3P
can also be generated by Class II PI 3-kinases and phos-
phatases (Nascimbeni et al., 2017). Whether the VPS34-
independent source of PI3P is important for autophagy is not
fully understood. A better understanding of the source of
PI3P can complete the model of the regulation of autophagy
and may give us new targets for drug discovery. Besides, it
will be helpful to complete the PI regulatory network in the
future for fully understanding the autophagy pathway,
including the autophagic binding proteins, the balance of PI
abundance, and their correlation with disease.

MEMBRANE-ASSOCIATED PROTEINS

Autophagy is a membrane-driven process and is spa-
tiotemporally regulated by a series of membrane-associated
proteins (Fig. 1). The initiation of autophagy starts when cells
sense stimulation signals. The omegasome (a PI3P-rich
subdomain of ER, marked by DFCP1 (double zinc-finger
FYVE domain-containing protein 1)) is the platform for pha-
gophore formation. This step involves two important com-
plexes: the ULK1 (autophagy activating kinase 1)/Atg1
complex (composed of ULK1/2, ATG13, ATG101, and
FIP200 (focal adhesion kinase family interacting protein of
200 kDa) in mammalian cells and Atg1, Atg13, Atg17, Atg29,
and Atg31 in yeast) and the PI3KC3C1 complex (composed
of Beclin1, ATG14, VPS34, VPS15, NRBF2 in mammalian
cells and Vps30, Atg14, Vps34, Vps15, Atg38 in yeast)
(Russell et al., 2013). It was recently found that the yeast
Atg1 complex might undergo phase separation for self-acti-
vation and the liquidation of PAS. This would facilitate the
incorporation of Atg9 vesicles, one of the initial sources of
autophagosomal membranes, possibly by heterotypic fusion
of vesicles (Hosokawa et al., 2009; Jung et al., 2009;
Ragusa et al., 2012; Karanasios et al., 2013; Fujioka et al.,
2020). The activated ULK1/Atg1 kinase complex triggers the

nucleation of phagophore by phosphorylating components of
the PI3KC3C1 complex (Sun et al., 2008; Fan et al., 2011;
Ragusa et al., 2012; Russell et al., 2013). Once activated,
the PI3KC3C1 complex can generate more PI3P on the
phagophore, which then recruits autophagic core machinery
through WIPIs (WD repeat domain phosphoinositide-inter-
acting proteins) (Petiot et al., 2000; Sun et al., 2011; Bas-
karan et al., 2012; Ma et al., 2017), such as ATG12∼ATG5-
ATG16L1 via WIPI2 (Kabeya et al., 2000; Nakatogawa et al.,
2007; Pankiv et al., 2007; Xie et al., 2008; Polson et al.,
2010) and ATG2 via WIPI4 (Chowdhury et al., 2018; Maeda
et al., 2019; Osawa et al., 2019b). Once the phagophore is
nucleated, it starts to expand to engulf cargo substrates. The
LC3 is then conjugated with PE to decorate the phagophore
membrane and plays a role in the recognition of substrates in
selective autophagy. The conjugation systems in autophagy
were extensively reviewed (Johansen and Lamark, 2020).
During membrane elongation, there are three possible
sources of membranes that will be discussed in the next
section (Mizushima, 2007). Then, the sealing of this pha-
gophore membrane structure by scission proteins ESCRT
(endosomal sorting complexes required for transport) and
other machinery gives rise to a double-layer autophagosome
(Takahashi et al., 2018; Takahashi et al., 2019; Zhen et al.,
2019; Zhou et al., 2019). Autophagosomes and lysosomes
are tethered by different tethering machinery, including Rab
GTPases, effector proteins of Rabs (e.g., HOPS), ATG14,
etc. (Jiang et al., 2014; Diao et al., 2015; Ding et al., 2019).
So far the signal for triggering autophagosome-lysosome
fusion is still unknown, but it is thought to be driven by
SNAREs (soluble NSF attachment protein receptors),
including STX17 (syntaxin 17)-SNAP29 (synaptosomal-as-
sociated protein 29)-VAMP8 (vesicle- associated membrane
protein 8), and STX7-SNAP29-YKT6 (Itakura et al., 2012;
Diao et al., 2015; Matsui et al., 2018). Once fused, acidic
hydrolases in the lysosome can degrade the autophagic
cargos and salvaged nutrients are released to the cytoplasm
to be recycled by cells (Rong et al., 2012; Yu et al., 2018;
Zhao and Zhang, 2019). The detailed molecular mecha-
nisms of these proteins regulating different steps in autop-
hagy have been recently reviewed in separate papers
(Carlsson and Simonsen, 2015; Nakamura and Yoshimori,
2017; Reggiori and Ungermann, 2017; Dikic and Elazar,
2018; Mercer et al., 2018; Yu et al., 2018; Lai et al., 2019;
Osawa et al., 2019a; Zhao and Zhang, 2019; Melia et al.,
2020; Nishimura and Tooze, 2020). In Table 2, we summa-
rized all of the known membrane-associated proteins, their
functions, and their membrane-binding mechanisms in all
steps of autophagy in a spatiotemporal way. The proteins
which are not yet reported to directly associate with mem-
brane are not listed. Viewing these membrane-associated
autophagic proteins in a spatiotemporal way can help us to
have a full insight of autophagy mechanism, and understand
the dynamic of proteins and lipids in autophagy, like when
and where a lipid or protein is recruited and when it leaves
the membrane. For example, STX17 is only recruited to
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closed autophagosomes (Itakura et al., 2012), and its co-
localization with LC3 can be used as an indicator for mature
autophagosome (Tsuboyama et al., 2016). Besides, the
spatiotemporal dynamic distribution information can help us
to find the possible sensors for autophagic membrane
shaping/sculpting in future study. Furthermore, we will dis-
cuss the discoveries and research trends of three important
membrane remodeling processes in the following section,
including phagophore membrane elongation, phagophore
membrane scission and autophagosome-lysosome mem-
brane fusion. These discoveries shed a light on the long-
standing questions in the autophagy field and might direct a
research trend for future studies.

PHAGOPHORE MEMBRANE ELONGATION

The phagophore membrane extends while engulfing sub-
strates destined for degradation. Upon stimulation,
macroautophagy probably needs to mobilize millions lipid
molecules per cell for autophagosome growth (Melia et al.,
2020). However, the molecular mechanism of how mem-
brane elongation works is not fully understood. There are
three possible ways to contribute to phagophore membrane
elongation, including vesicle-mediated delivery, direct
extrusion from pre-existing organelles, and lipid transfer
protein-mediated direct delivery (Melia et al., 2020).

For vesicle-mediated delivery, ATG9-containing vesicles
formed from recycling endosomes and the Golgi apparatus
(dependent on SNX18 and other proteins) (Reggiori et al.,
2005; Takahashi et al., 2011; Yamamoto et al., 2012;
Gómez-Sánchez et al., 2018; Mercer et al., 2018; Tang et al.,
2019) and COPII vesicles from ERGIC (ER-Golgi interme-
diate compartment) have been implicated in phagophore
elongation (Ishihara et al., 2001; Ge et al., 2013; Graef et al.,
2013; Ge et al., 2014; Stadel et al., 2015). It was observed
that during starvation, several Atg9 vesicles assembled
individually into the pre-autophagosomal structure and were
eventually incorporated into the autophagosomal outer
membrane (Yamamoto et al., 2012); ERGIC-derived COPII
vesicles functioning as a membrane template for LC3 lipi-
dation are recruited to forming autophagosomes (Ge et al.,
2013; Ge and Schekman, 2014; Ge et al., 2017) and
become part of autophagosomal membranes (Shima et al.,
2019). However, how these vesicles fused with pre-au-
tophagosomal structures is still elusive. SNAREs are the
core machinery driving membrane fusion in general and are
required for autophagosome biogenesis (Moreau et al.,
2011; Nair et al., 2011; Puri et al., 2013; Lemus et al., 2016),
but so far there is no direct evidence to show that the fusion
between the phagophore and ATG9 vesicles or COPII
vesicles is SNARE-driven.

Some studies have observed the direct connections
between the phagophore/IM and ER, which suggests the
cup-shaped phagophore might directly be extruded from the
ER (Hayashi-Nishino et al., 2009; Ylä-Anttila et al., 2009).
Besides, some studies demonstrated an LC3-positive

structure forming directly on extruded regions of the mito-
chondrial outer membrane, which suggest phagophore
growth by extrusion from mitochondria (Hailey et al., 2010).
However, this extrusion model is still under active debate
and how transmembrane proteins are excluded during
membrane utilization is unclear.

Another model is direct protein-mediated lipid transfer,
where the lipid can be transferred directly by lipid transfer
protein from the ER to the phagophore/IM. In the direct
transfer model, no fusion machinery is needed. In addition,
the influx of membrane proteins to the phagophore/IM can
be excluded as the phagophore membrane and ER are not
directly attached. Direct protein-mediated lipid transports for
autophagosome extension are intensive studied recently. At
least four lipid transfer proteins have been implicated in
autophagosome biogenesis, including ATG2, GRAMD1A
(GRAM domain-containing 1A), VPS13A, and TipC (putative
vacuolar protein sorting-associated protein 13C) (Muñoz-
Braceras et al., 2015).

Atg2 was first identified alongside 12 other ATG (au-
tophagy-related) genes from a screen of S. cerevisiae
autophagy defective mutants by the Oshumi group in 1993
(Tsukada and Ohsumi, 1993). Its function for autophago-
some formation in yeast and mammalian cells was estab-
lished by Oshumi group in 2001 (Shintani et al., 2001) and
Mizushima group in 2012 (Velikkakath et al., 2012),
respectively. The lipid-binding and membrane-tethering (MT)
activity of ATG2 was identified at earlier time, however, the
lipid transfer (LT) activity of ATG2 was not characterized until
recent studies. A series of in vitro biochemistry experiments
demonstrated that both mammalian ATG2A and ATG2B can
extract and unload lipids and transfer lipids between tethered
membranes in vitro, which suggests that ATG2 can mediate
lipid transfer between the ER and the phagophore (Maeda
et al., 2019; Osawa et al., 2019b, c; Valverde et al., 2019).
Both human and yeast ATG2 have an N-terminal Chorein
domain, and an X-ray structure of the N-terminal region (NR)
of yeast Atg2 co-crystallized with PE showed the acyl chain
of the phospholipid can be buried inside the hydrophobic
cavity of the N-terminal region. Disruption of the interaction
between PE and the hydrophobic cavity by mutagenesis
causes defects in phagophore/IM elongation in vivo and in
MT and LT activity in vitro (Osawa et al., 2019c). The
reconstituted structure of mammalian ATG2A by 3D cryo-EM
(cryogenic electron microscopy) showed an extended cavity
or a series of cavities along the length of ATG2A, which
might be a tunnel for the lipid to be transferred inside (Val-
verde et al., 2019). Besides, the Otomo group used negative
staining and CXL-MS to identify the interaction between the
CAD (cysteine-alanine-aspartic acid triad) tip of ATG2A and
blade 2 of WIPI4, whose blades 5 and 6 bind to PI3P on the
phagophore (Chowdhury et al., 2018) and their lipid transfer
assays showed that ATG2A can transfer lipids between
SUVs (small unilamellar vesicles) without WIPI4. However,
lipid transfer between LUVs (large unilamellar vesicles) by
ATG2A is dependent on WIPI4 (Maeda et al., 2019). So far,
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there are two possible lipid transfer models of ATG2 that are
generally accepted, one is the bridge model, and the other is
the ferry model (Fig. 2) (Maeda et al., 2019). In both models,
the CAD tip of ATG2 binds the phagophore through inter-
acting with the PI3P effector WIPI4. In the bridge model,
ATG2 stably tethers the phagophore to the ER membrane.
With its N-terminal region anchored on the ER membrane,
ATG2 takes lipids from the ER membrane and transfers
them through its hydrophobic tunnel. In the ferry model, the
N terminus of ATG2 is not stably anchored on the ER
membrane, instead, it dynamically swings between the ER
and phagophore without transferred lipids through the
hydrophobic tunnel. These theories inspire new possible
mechanisms for phagophore expansion, which can help us
to solve the puzzle of autophagy biogenesis, but many
questions remain to be answered. First, the cell need transfer
millions lipids in ∼10 min to complete one autophagosome
(Melia et al., 2020). The measured lipid transfer rate of ATG2
in vitro is about 0.017 lipid/ATG2 molecular/sec (Maeda et al.,
2019). It remains unknownwhether high local concentration of
ATG2, ATG2 conformational change and binding partners are
required toachievebiologicallymeaningful lipid transfer rate to
meet the need of autophagosome growth. Besides, it was
observed that lipid transfer by ATG2 is bi-directional in vitro,
which is different from the expectation that the lipid transfer
should be unidirectional fromER to phagophore in vivo. These
results suggest there are other proteins or factors functioning
together with ATG2 to maintain efficient lipid transfer and
provide the energy source for unidirectional transport.
Besides, what regulators drive lipid preference? An interac-
tion-based protein screening assay might provide a way to
look for possible regulators of ATG2. Furthermore, what is the
lipid transfer model for ATG2: bridge model, ferry model, or
another? Previously, it was observed that the N-terminal 1–
345 amino acid fragment of ATG2A is enough to rescue
autophagosome formation deficiency in ATG2A/B double
knockout cells,which suggestsATG2Acan functionwithout its
C-terminal domain. Finally, how does ATG2 cooperate with
ATG9 vesicle to transfer lipids? New tools for visualizing such
processes might be required to monitor lipid transfer in live
cells.

GRAMD1A (GRAM domain-containing 1A), also known
as Aster-A, is a cholesterol transfer protein (biochemical and
structure evidence) in the StART (steroidogenic acute reg-
ulatory protein-related lipid transfer) domain family (Be-
sprozvannaya et al., 2018; Naito et al., 2019). It contains a
transmembrane region, a phosphoinositide-binding GRAM
domain, and a cholesterol-binding VASt domain. Upon
starvation, GRAMD1A accumulates at autophagosome ini-
tiation site possibly through PI3P binding. The selective
inhibition of GRAMD1A or siRNA knockdown of GRAMD1A
inhibits autophagosome biogenesis (Laraia et al., 2019).
However, there is no direct evidence to show that this protein
transfers cholesterol for phagophore membrane extension.
Also, it is not clear whether GRAMD1B and GRAMD1C have
a similar function in autophagy.

VPS13 was identified as lipid transfer protein with a
“Chorein_N” domain at the N-terminus and an “ATG_C”
domain at the C-terminus (autophagy-related protein C-ter-
minal domain), similar to Atg2 (Kumar et al., 2018). VPS13
proteins localize to multiple membrane-contact sites. Human
VPS13A/VPS13C localizes on ER, tethering ER to mito-
chondria (VPS13A), to late endosome/lysosomes
(VPS13C), and lipid droplets (both VPS13A and VPS13C)
(Kumar et al., 2018). The tethering specificity was deter-
mined by adaptor proteins from different organelles. It was
found that Ypt35, Spo71, and Mcp1 can compete to recruit
Vps13 to endosomes/vacuoles/NVJ (nucleus-vacuole junc-
tion), the prospore membrane, and mitochondria, respec-
tively, in yeast (Bean et al., 2018). VPS13A was reported to
regulate autophagy in human HeLa cells. Downregulation of
VPS13A in HeLa cells caused the accumulation of autop-
hagic markers and impaired autophagic flux (Muñoz-Brac-
eras et al., 2015). Besides, TipC from Dictyostelium, highly
similar to the VPS13 family of proteins, is also reported to
regulate autophagy in Dictyostelium. Dictyostelium cells
lacking TipC displayed a reduced number of autophago-
somes and impaired autophagic degradation. However, so
far there is no evidence to show that TipC can transfer lipids
in vitro, even though it’s highly homology with human
VPS13A and VPS13C. Besides, there is no direct evidence
to show TipC function in phagophore membrane elongation.

Taken together, more studies are needed to fully char-
acterize these lipid-transfer models, including the lipid pref-
erence by key players within these models, and how these
lipid-transfer machinery coordinate with each other to com-
plete the phagophore membrane extension.

ESCRT-MEDIATED MEMBRANE SCISSION FOR
AUTOPHAGOSOME COMPLETION

According to the membrane topology, the phagophore with
one membrane must go through membrane scission to
generate the autophagosome with a double membrane. This
may occur via ESCRT, however, its function in phagophore
closure was not established until recently (Takahashi et al.,
2018; Takahashi et al., 2019; Feng et al., 2020). The ESCRT
complexes are groups of highly evolutionarily conserved
membrane remodeling machinery that act in many cellular
membrane scission processes, like cytokinetic abscission,
plasma membrane vesicle budding, and endosomal sorting.
15 of the ESCRT proteins were first identified as a subgroup
of VPS (vacuolar protein sorting) genes in yeast that are
required for protein sorting (Raymond et al., 1992; Odorizzi
et al., 1998). Together with other ESCRT proteins found later,
they can be classified into ESCRT-0, ESCRT-I, ESCRT-II,
ESCRT-III, and ESCRT-associated proteins (Komada and
Kitamura, 1995; Asao et al., 1997; Katzmann et al., 2001;
Babst et al., 2002a; Babst et al., 2002b). Based on a previ-
ous study in vitro using yeast proteins, it is generally
accepted that ESCRT-I, ESCRT-II, ESCRT-III, and ESCRT-
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associated proteins constitute the core of ESCRT machinery
(Schoneberg et al., 2017). ESCRT-I and ALIX (ALG2-inter-
acting protein X) form a super complex to act as specific
regulators to recruit ESCRT-III proteins to their scission site.

ESCRT-I and ESCRT-II co-localize at the necks of mem-
brane buds and recruit ESCRT-III to cleave the buds to form
an intraluminal vesicle (Wollert and Hurley, 2010). ESCRT-III
is also important for remodeling membranes as it can form
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to provide membrane sources for phagophore membrane elongation. ATG2 contains a CAD tip that binds to the PI3P interacting

protein WIPI4 and an N-terminal hydrophobic cavity that binds to lipids. Inside the protein, there is an extended cavity or a series of
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WIPI4, a PI3P effector on the phagophore and its N tip hydrophobic cavity binds to the ER. The lipids could transfer in the tunnel

inside ATG2 from the ER to the phagophore. In the ferry model, the CAD tip anchors on the phagophore membrane through WIPI4,

while the N tip hydrophobic cavity takes lipids from ER, and swings like a ferry boat between the ER and the phagophore to transfer

lipids. Simultaneously, ATG9-vesicles and COPII-vesicles can act in a vesicle-mediated membrane fusion to deliver lipids from many

cellular organelles to the phagophore for its elongation.
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membrane-interacting oligomeric filaments, flat spirals,
tubes, and conical funnels to remodel membrane shape, and
eventually scissor the membrane (Schoneberg et al., 2018).
The N-terminal residues of ESCRT-III proteins are positively
charged and provide the membrane-binding ability, while the
other residues of these proteins are negatively charged. It is
thought that the N-terminal parts provide the filamenting
ability while the C-terminal helices regulate its activity
(Schoneberg et al., 2018). After scission, the AAA+ ATPase
VPS4 forms a hexamer to disassemble and recycle the
ESCRT-III complex (Caillat et al., 2015; Schoneberg et al.,
2018). The function and mechanism of ESCRT-III has been
intensively studied, but the detailed mechanisms of scission
are not fully understood (Schoneberg et al., 2018; Gatta and
Carlton, 2019).

Recent studies on ESCRT provided some important clues
about its function on the phagophore to form a closed dou-
ble-membrane autophagosome (Takahashi et al., 2018;
Zhen et al., 2019; Zhou et al., 2019). Y. Takahashi et al.
developed a HaloTag-based autophagy assay to monitor the
closure of the autophagosome (Takahashi et al., 2018;
Takahashi et al., 2019) and found that CHMP2A (charged
multivesicular body protein 2A), VPS4, and VPS37A are
critical for this process. The ESCRT-I complex component
VPS37A can associate with the phagophore by its N-termi-
nal domain, which is critical for autophagosome completion,
but not for endocytosis. Further studies found that VPS37A
can recruit the ESCRT-I subunit VPS28 and the ESCRT-III
subunit CHMP2A to the phagophore (Takahashi et al.,
2019). Besides, using live-cell imaging Yan Zhen et al.
demonstrated that the ESCRT-III component CHMP4B is
recruited to an unsealed autophagosome, and the depletion
of the ESCRT-III disassembly regulator VPS4 results in the
accumulation of CHMP4 on autophagosomes for both
canonical and selective autophagy (Zhen et al., 2019). More
interestingly, another study on neurons shows that in neu-
rodegenerative diseases, MAPT/Tau (microtubule-associ-
ated protein tau) accumulation represses autophagy flux by
disrupting IST1 (increased sodium tolerance 1)-regulated
ESCRT-III complex formation (Feng et al., 2020). Over-ex-
pression of IST1 in mice reduced the level of MAPT aggre-
gation and ameliorated synaptic plasticity and cognitive
functions. The relationship between autophagy and neu-
rodegenerative disease has long been a mystery, especially
concerning the clearance of TAU protein aggregation from
neuron cells. It is believed that autophagy can be utilized to
clear TAU protein aggregates. ESCRT-III might be a link
between autophagy and MAPT/TAU in neurodegenerative
diseases. Besides, a study in yeast shows that RAB5
recruits Atg17 (FIP200 in mammals) to the nascent
autophagosome, and facilitates interactions between Atg17
and the ESCRT-III component Snf7 (CHMP4 in mammals)
(Zhou et al., 2019). According to the recent discoveries in
autophagy and combined with the general membrane scis-
sion mechanism established in other pathways, we pro-
posed a possible model for how ESCRT complexes function

in autophagosome closure (Fig. 3). All these studies shed a
light on how phagophores are sealed, indicating that ESCRT
complexes play a role in autophagy, most likely at scission
steps. The self-labeling tags and the membrane-permeable/
impermeable dyes used here are the key points for these
studies and have been summarized in a previous review
(Rusten and Stenmark, 2009), there are controversies about
the function of ESCRT in autophagy in yeast and other
organisms. For example, in a previous study, deletion or
functional loss mutantion of VPS4 caused the accumulation
of autophagosomes, but not unsealed autophagosomes in
yeast (Preiss, 2017). The different results might be explained
by the functional differences in the Vps proteins. In another
example, loss of Vps27, Snf7, or Vps4 increased lipid droplet
turnover in S. cerevisiae (Zhang et al., 2020), suggesting an
inhibitory function of ESCRT complexes in lipophagy rather
than acting as a positive regulator.

More studies are needed to answer these questions and
to draw a full picture of ESCRT in autophagy. Unlike in
endosome sorting, the biochemical activity of ESCRT in the
autophagic membrane is still unknown. An in vitro reconsti-
tution system needs to be established to fully address the
function of ESCRT in autophagy. Other questions include,
how is ESCRT machinery recruited at autophagy-specific
scission steps, and how are they regulated? Are there any
autophagy-specific regulators correlated with these autop-
hagic scission steps? How are ESCRT complexes triggered
to start scission on phagophore? A high-throughput
screening assay targeting genes involved in autophagosome
closure could provide a way to look for these regulators.
Besides, does ESCRT-mediated scission also work in other
steps of autophagy, such as the formation of isolation
membranes, generation of ATG9 or COPII vesicles for
delivering lipids, recycling of lysosomes after fusion, etc.
(Schoneberg et al., 2017). Our knowledge of the molecular
mechanisms of these processes is very limited, and more
work needs to be done to answer these essential questions.

AUTOPHAGOSOME-LYSOSOME FUSION

The autophagosome delivers engulfed substrates to the
lysosome for degradation via membrane fusion. To accom-
plish this fusion, first, the double-membraned autophago-
some is tethered to the single-membrane lysosome; then,
the outer membrane of the autophagosome fuses with the
lysosome membranes; and finally, the inner membrane of
the autophagosome is hydrolyzed by lysozyme and the
autophagosomal contents are degraded. The process of
membrane fusion is highly conserved in evolution. It is widely
accepted that membrane fusion in general is driven by the
zippering of the SNARE complex to form a four-helix bundle.
In mammalian cells, the first set of SNARE complexes
identified for autophagosome-lysosome fusion was STX17-
SNAP29-VAMP8 (Itakura et al., 2012). Structure biology
study showed that this complex can form a four-helix bundle
as the other SNAREs and in vitro biochemistry reconstitution
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showed that they can drive the fusion between two lipo-
somes (Diao et al., 2015), which we are going to discuss
more in the next section. A recent study showed that YKT6
can bind to autophagosomes through its N-terminal longin
domain. Together with SNAP29 and lysosomal STX7, a
YKT6-SNAP29-STX7 complex can drive fusion (Bas et al.,
2018; Matsui et al., 2018). However, more studies are
required to figure out the functional difference between these
two SNARE complexes. Furthermore, it was found that
ATPase NSF (N-ethylmaleimide sensitive factor) and
αSNAP (soluble NSF attachment protein) are required for

priming of autophagic SNAREs (Ishihara et al., 2001; Abada
et al., 2017), possibly by forming a super complex with the
cis-SNARE complex and using the energy released from
ATP hydrolysis to disassemble SNAREs as for neuro
SNAREs (Zhao et al., 2015; Huang et al., 2019). The details
of this mechanism still need to be investigated through bio-
chemical and structural analysis.

Beside SNAREs, other proteins are required to complete
fusion efficiently (Fig. 4), including tethering proteins, Rab
GTPases, SM proteins (Sec1/SM family proteins), and oth-
ers (Wickner and Rizo, 2017). Qing Zhong and his

Figure 3. Hypothetic model for ESCRT-mediated autophagosome pore closure. Phagophore pore closure model was plotted

according to the ESCRT-mediated membrane scission, as the pore closure might share the same regulators and mechanism with the

classic ESCRT model. The first step of phagophore closure is the recruitment of the ESCRT-I complex and other related machinery to

the phagophore pore. ESCRT-I recruits the ESCRT-II and ESCRT-III complex. ESCRT-III will form oligomeric filaments, flat spirals,

tubes, and conical funnels to remodel the membrane shape on the neck, and finally, scissor the membrane to form a closed double-

membrane autophagosome. After scission, the AAA+ ATPase VPS4 is recruited and forms a hexamer to disassemble and recycle the

ESCRT-III complex.
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colleagues demonstrated that cysteine-mediated oligomer-
ization of ATG14 promotes the fusion of autophagosomes
and lysosomes by tethering these two organelles and it can
assist STX17 to recruit SNAP29 to autophagosomes pro-
moting the assembly of SNARE complex (Diao et al., 2015).
Besides, from the genetic analysis, the HOPS complex also
plays a crucial role in the fusion between autophagosomes
and lysosomes, likely through tethering of these two orga-
nelles together with SNAREs, Rabs, and other tethering
related proteins such as PLEKHM1 (Pleckstrin homology
domain-containing family M member 1) (McEwan et al.,
2015), UVRAG (UV radiation resistance-associated protein)
(Liang et al., 2008), EPG5 (Ectopic P granules protein 5
homolog) (Wang et al., 2016), BRUCE (BIR repeat-contain-
ing ubiquitin-conjugating enzyme) (Ebner et al., 2018),
TECPR1 (Chen et al., 2012), GRASP55 (Golgi reassembly-
stacking protein 55) (Zhang et al., 2019), and etc. Together,

these proteins might behave as a template for SNAREs to
register and assemble on it, or to expand the fusion pore as
we learned from the biochemical studies of yeast vacuole
fusion (Liang et al., 2008; Jiang et al., 2014; McEwan et al.,
2015; Ding et al., 2019). However, the biochemical mecha-
nism of HOPS in autophagy remains elusive. In yeast vac-
uolar fusion, the HOPS complex interacts with Ypt7 (the
yeast homolog of human Rab7) to mediate vacuole fusion.
Interestingly, in mammalian cells, HOPS does not directly
interact with RAB7 (Ras-related protein Rab-7) (McEwan
et al., 2015) and how Rabs mediate the membrane associ-
ation of the HOPS complex to the autophagosome mem-
brane and the lysosome membrane is enigmatic. Emerging
evidence suggested that RAB2 (Ras-related protein Rab-2)
might be the Rab GTPase mediating the interaction between
HOPS and the autophagosome membrane (Ding et al.,
2019). Other Rabs mediate the direct interaction between

Figure 4. Model for SNARE-mediated autophagosome-lysosome fusion. Autophagosome-lysosome fusion is the key step of

autophagy and is highly regulated by SNARE proteins, tethering factors, Rab GTPase, SM proteins, and other proteins. The fusion

SNAREs identified so far for autophagy include STX17-SNAP29-VAMP8 and YKT6/SNAP29/STX7. Sealed autophagosome recruits

the SNARE binary complex together with lysosomal SNARE protein to form a four-helix bundle to mediate autophagosome-lysosome

fusion. Besides, tethering between autophagosomes and lysosomes can promote this fusion. Proteins involved in tethering include

ATG14, Rab GTPase, HOPS, PLEKHM1, UVRAG, EPG5, BRUCE, TECPR1, GRASP55, etc.
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lysosomes and HOPS are yet to be identified. So far there
are more than 60 human Rab proteins and 11 yeast Rab-
related Ypt proteins reported. It is not completely understood
how these Rab GTPases and their effectors discriminate
among different trafficking pathways, which may converge at
the same organelle but towards different goals. For example,
how does the tethering effector HOPS complex on lyso-
somes differentiate fusion targets among autophagosomes,
late endosomes, and AP3 (AP-3 complex subunit delta-1)
vesicles from the Golgi? Furthermore, it is highly likely that
HOPS and Rabs can coordinate with GEFs (guanine
nucleotide exchange factors), other Rab effectors, and
SNAREs to fulfill the complicated assignment of membrane
tethering and fusion in autophagosome maturation, the bio-
chemical details of which awaits to be further investigated.

MEMBRANE-ASSOCIATED TECHNIQUES APPLIED
IN AUTOPHAGY STUDIES

As autophagy is a biochemical process occurring on mem-
brane or associated with membranes, techniques and
assays developed to study membrane properties of orga-
nelles or membrane-associated proteins are required when
studying the molecular mechanism of autophagy. Here, we
summarized common techniques and assays to study
membrane/organelle properties as showed in Table 3. In
particular, we emphasized some successful applications in
the study of autophagy.

Lipid composition can affect membrane properties, such
as curvature, surface charge, and binding affinity with certain
proteins. There are many reviews discussing how lipid
geometry and charge can affect membrane properties (de la
Ballina et al., 2020). As it is important to determine lipid
composition when studying the organelles, usually lipi-
domics by mass spectrometry is applied to purified subcel-
lular fractions. This method has been applied successfully in
many kinds of organelles that are easily purified, such as
neuro vesicles from the brain tissue (Takamori et al., 2006).
Lysosomes can be readily purified by protocols (Cudjoe Jr
et al., 2017), but the other organelles relevant to autophagy
are difficult to purify (de la Ballina et al., 2020). Recently,
Martin Graef and his colleagues used anti-GFP (Green flu-
orescent protein)-magnetic beads to isolate the Atg8 vesicle
membranes from 2GFP-Atg8 expressing yeast cells to study
the lipidomics of autophagic membranes in detail, including
the abundance of phospholipids with different head groups,
chain length, and double bond numbers. They found that the
Atg8-containing autophagic membrane contains a very high
degree of desaturation lipids compared to other organelle
membranes, which is conducive to highly dynamic phago-
phore properties. Besides, another way to verify the pres-
ence of particular phospholipids, such as different kinds of
PI, is using their specific antibodies for immunofluorescence
localization (Di Paolo and De Camilli, 2006). This might
serve as a complementary approach when purifying certain

organelles which are difficult to do, such as autolysosomes.
Understanding the membrane composition of autophagic
organelles more comprehensively can help us to understand
the physiological functions of these organelles and to dissect
their biochemical function during autophagy. Thus, improved
techniques to purify autophagic organelles are required in
the future.

The dynamic properties of membranes include lipid
transfer, membrane fluidity, membrane tethering, membrane
fusion, and membrane scission. Fluorescent-tagging and
labeling are useful tools to be applied in these dynamic
processes. For example, FRET (fluorescence resonance
energy transfer) can occur between compatible fluorescent
molecules and provide information about intermolecular
distances. As previously discussed, lipid transfer is essential
for membrane elongation. To investigate lipid transfer
between two liposomes, a pair of FRET dyes can be engi-
neered on one liposome and lipid transfer and efficiency can
be calculated by measuring the fluorescence signal recovery
rate of donor dye upon lipid transfer between the FRET-
compatible liposomes and the blank liposomes. It’s worth
mentioning that, the membrane fusion can also result in the
change of FRET. The addition of dithionite after lipid transfer
can be applied to differentiate these two cases. Dithionite
oxidizes fluorescence dyes located on the outer leaflet of the
lipid bilayers without affecting the dyes on the inner layer. So,
the FRET donor signal will drop with the addition of dithionite
during lipid transfer, but not for the case of vesicle fusion.
Otomo et al. successfully applied this method to demon-
strate the lipid transfer properties of ATG2A (Maeda et al.,
2019). With FRET-based in vivo assays, the protein con-
centration needs to be of physiological relevance as high
protein concentration might cause aggregation, liposome
clustering, and delay of lipid transfer. A programmable DNA-
origami platform can be applied to fix the distance between
two liposomes and prevent the clustering of liposomes by
proteins that tend to aggregate (Bian et al., 2019). As the
direct visualization of in vivo lipid transfer has not yet been
achieved, in vitro lipid transfer assays combined with the
genetic studies became the primary method of assessing
lipid transfer ability of the lipid transfer proteins. However, the
reconstituted lipid transfer rate in vitro might be slow com-
pared to the need of living cells. Studies to complete this lipid
transfer pathway will emerge in large number. Once more
ATG2-interaction proteins found, the in vitro lipid transfer
assay will be applied to study how these proteins cooperate
with each other to achieve the efficient lipid transfer in cells.

The membranes of autophagosomes and lysosomes are
tethered before they fuse. How does the lysosome deter-
mine its tethering target in a membrane trafficking network?
There are many unknown pieces in this puzzle, including
Rab GTPases, GAPs (GTPase-activating protein), GEFs,
and effector proteins (e.g., HOPS complex). How do these
proteins cooperate to achieve the efficient and precise
tethering between the autophagosome and lysosome? The
membrane tethering assays no doubt can provide a good

Lipids and membrane-associated proteins in autophagy REVIEW

© The Author(s) 2020 535

P
ro
te
in

&
C
e
ll



tool to study this regulation mechanism. First, tethering can
be characterized by changes in vesicle size (Liu et al., 2016).
Usually, the dramatic size changes detected with DLS (Dy-
namic light scattering) indicate vesicular tethering, but the
possibility of vesicle fusion needs to be excluded. Usually,

the resultant liposome size of two fused liposomes is smaller
than the size of two tethered liposomes. Besides, proteolysis
of tethered proteins can rescue the size change observed in
DLS experiments, but not in the case of fusion. Second, the
morphology observation by EM is a direct way to visualize

Table 3. The summaries of biochemical technique/assays used to study properties of membrane in autophagy

Membrane
Properties to
study

Technique/assay to use Principle and observable(s) References

Lipid
composition

Lipidomics of purified subcellular
fraction by MS (Mass
spectrometry)

MS of lipids from purified organelles (Takamori et al., 2006;
de la Ballina et al.,
2020)

IF (immunofluorescence) of specific
PI probes

IF of specific PI targeting proteins (Di Paolo and De
Camilli, 2006)

Membrane
tethering

DLS Vesicle size change upon tethering or clustering (Diao et al., 2015; Liu
et al., 2016)

EM Morphology change of vesicles upon tethering or
clustering.

(Diao et al., 2015)

TIRF-based Single vesicle tethering
assay

Overlap of fluorescence labeled vesicles (Diao et al., 2015)

Lipid transfer FRET based lipid transfer assay FRET signal change upon lipid transfer (Maeda et al., 2019)

Membrane
fusion

Ensemble
average
assay

(Bulk assay)

Lipid mixing
assay: NBD/
Rhod or

DiI/DiD

FRET signal changes of FRET pairs upon lipid
mixing

(Weber et al., 1998)

Content mixing
assay:

SrB

Recover of self-quench high concentration
fluorescence signal upon fusion

(Ma et al., 2013; Diao
et al., 2015)

Simultaneous
lipid mixing
and content
mixing

NBD/Marine
blue and
PhycoE and
Cy5

FRETsignal changes of two FRET pairs. One pair
on the membrane, the other pair inside the
vesicles.

(Zucchi and Zick,
2011; Liu et al.,
2016; Liu et al.,
2017)

TIRF based
Single
vesicle
fusion
assay

Lipid mixing
DiI/DiD

TIRF fluorescence signal changes (Kyoung et al., 2011;
Diao et al., 2012;
Kyoung et al., 2013)

Content mixing
SrB or Cy5/Cy3

Membrane
scission

High resolution TEM Visualize the closure under EM (Zhen et al., 2019)

Optogenetic closure assay Photo
active release assay

Photo active to dissociation and association
LOVTRAP tag reversibly to monitor the closure
state of mitophagosome

(Zhen et al., 2019)

HaloTag based IF assay Utilizing membrane permeable and impermeable
Halo tag fluorescent substrate, visualize closed
autophagosome and unclosed phagophore

(Takahashi et al.,
2018; Takahashi
et al., 2019)

Optical tweezer-based force test Giant unilamellar vesicles pulled by optical
tweezer and measure the force changing upon
ATP release

(Schoneberg et al.,
2018)

Atomic Force Microscope based
visualization of In vitro ESCRT-III
contain membrane system

In vitro assemble ESCRT-III on lipid bilayers, and
visualize it by Atomic Force Microscope

(Chiaruttini et al.,
2015)
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the clustered vesicles. Third, TIRF (Total Internal Reflection
Fluorescence) microscopy can distinguish the overlap of two
vesicles with two different dyes. TIRF occurs within 100–200
nm of the cover glass, and TIRF observation can be
achieved by tethering one liposome with biotin-PE to the
cover glass through the Biotin-Streptavidin-Biotin interaction.
With the combination of these three methods, Qing Zhong
and his colleagues demonstrated that ATG14 can tether
membranes and bridge autophagosomes and lysosomes to
accelerate their fusion by SNAREs (Diao et al., 2015), and
that this tethering ability is dependent on its oligomerization.
It is worth emphasizing that single-vesicle experiments can
reveal large heterogeneities at the single vesicle level, which
are hidden in ensemble studies.

The fusion between autophagosomes and lysosomes
makes the lysozymes and other enzymes accessible to
substrates. This fusion represents a critical step in autop-
hagy but is still a largely undefined process. Many proteins
have been found to play a crucial role in this process via
genetic analysis, however, how they coordinate with each
other to achieve this fusion process remains elusive. To
study membrane fusion, both bulk assays and TIRF-based
single vesicle assays can be applied. The bulk assays are
advantageous in that they do not require an expensive TIRF
microscope, and can be set up to observe lipid mixing only,
content mixing only, or simultaneous lipid and content mix-
ing. It’s important to note that observations of lipid mixing
signals does not necessarily represent a full fusion (Jun and
Wickner, 2007). So, a content mixing assay in parallel is
necessary when studying membrane fusion. By monitoring
the FRETsignal built up from a pair of FRET dyes separately
encapsulated in previously distinct liposomes or by moni-
toring the fluorescence signal recovery from self-quenched
dye encapsulated in one liposome, content mixing can be
observed and quantified. Qing Zhong and his colleagues
successfully applied the DiI/DiD-lipid mixing assay and self-
quenched SrB (sulforhodamine B) content mixing assay to
discover the tethering ability of ATG14 to promote STX17-
SNAP29-VAMP8 driven fusion of autophagosomes and
lysosomes (Diao et al., 2015). When using SrB as an indi-
cator for content mixing in bulk assays, a careful control
experiment needs to be set in parallel because SrB tends to
leak from vesicles (Yu et al., 2013). Another content mixing
assay first designed by Wickner to study yeast vacuole
fusion can rule out the false-positive signals derived from
leaking dyes (Zucchi and Zick, 2011). This assay has been
applied successfully in the membrane fusion studies for
neurotransmitter release, carried by the Rizo-Rey group (Liu
et al., 2016; Liu et al., 2017; Sitarska et al., 2017; Xu et al.,
2017). This presents an alternative method to be used for
autophagic membrane fusion in the future. Besides, the
TIRF-based single vesicle assays for membrane fusion with
proper design can provide more information on individual
vesicles compared to ensemble assays (Kyoung et al., 2011;
Kyoung et al., 2013). The state of docking, hemifusion, and
fusion can be distinguished from each other and the fusion

rate of each docked vesicle pair can be monitored to get
quantitative fusion rates of all the vesicles within the sample.
This provides scientists a powerful tool to reveal the precise
function of proteins and which step of membrane fusion they
regulate. So far, the single-vesicle assays are more fre-
quently used to study membrane fusion in neurology, how-
ever, one day it will likely be implemented into the
autophagic membrane fusion field when more regulatory
proteins are identified in autophagosome-lysosome fusion.

The antithesis of membrane fusion is membrane scission.
Membrane scission plays an important role in many cellular
activities, including cytokinetic abscission, plasma mem-
brane vesicle budding, endosomal sorting, ER, Golgi com-
partment formation, autophagosome maturation, etc.
Previously, in vitro membrane scission was successfully
reconstituted by biochemists to study endosomal sorting.
Using optical tweezers and an integrated confocal micro-
scope, Johannes et al. measured the changing force and
imaged the membrane nanotubes pulled by the ESCRT-III
complex (Schoneberg et al., 2018), which biochemically
proved that ESCRT-III-mediated membrane scission
requires ATP and VPS4. Besides, by using atomic force
microscopy and TEM (transmission electron microscopy),
Nicolas et al. observed that ESCRT-III can polymerize into
spirals springs at lipid bilayers and the relaxation of loaded
ESCRT-III spiral springs can drive membrane deformation
(Chiaruttini et al., 2015). Recently, membrane scission by
ESCRT during autophagosome closure has been confirmed
by imaging-based methods described in the previous para-
graph. So far, autophagic membrane scission has not been
reconstituted in vitro, however, as more autophagy-specific
protein regulators in this scission reaction are identified, the
application of this reconstitution assay will be required soon.

DISCUSSION AND OUTSTANDING QUESTIONS

Autophagy is a conserved and essential degradation path-
way in cells. It is not only a housekeeping mechanism to
clean-up the aggregated proteins, damaged organelles, and
pathogens, but also maintains cellular homeostasis by pro-
viding nutrition. Autophagy occurs on membranes and is
driven by many membrane-associated proteins. With the
discoveries and characterization of these proteinaceous
regulators, we understand more about this important pro-
cess. However, its molecular mechanism regarding mem-
brane extension for phagophore elongation, membrane
scission for autophagosome formation, and membrane
tethering and fusion for autophagosome maturation are rel-
atively unknown compared to vesicle-plasma membrane
fusion for neurotransmitter release and vacuole fusion in
yeast. Many questions remained to be answered. What are
the autophagic-specific regulators of these membrane
remodeling processes that ensure these reactions happen at
the right time, at the proper membrane, and with the desired
speed? What are the cell signals that trigger or impact these
levels of regulation? How are these protein regulators
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transported? What is the biochemical mechanism behind
these regulations? A combination of powerful screening
assays like CRISPR-Cas9 or TAP-MS and genetic analysis
could be a good start to find the answers.

Besides, the quantitative analysis in autophagy research
is a trend that has grown in the past few decades. The
research mainly focused on the qualitative analysis of
autophagic regulators and which steps are rate-limiting steps
in autophagy is still under debate. For autophagosome bio-
genesis, recruitment of autophagic machinery, synthesis,
and transfer of phospholipids, phosphorylation of PIs,
recognition, and binding of cargo substrates, shaping of
membrane curvature, or phagophore membrane closure
might be the rate-limiting steps. Whereas for autophago-
some maturation, recruitment of tethering/fusion machinery,
the activity of lysosomes, disassembly/priming of SNAREs,
or substrates hydrolysis might be the rate-limiting steps.
Furthermore, in different tissues or organisms, the rate-lim-
iting steps in autophagy might be different. So, the devel-
opment of innovative technology, quantitative analysis in
autophagy is gradually emerging and badly required. Alto-
gether, it will be critical to know how to measure autophagy
and how it is precisely regulated, both for further study and
better translational clinical application, like drug develop-
ment, disease treatment, etc.
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