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Abstract 

Background:  The occurrence of out-of-hospital cardiac arrest (OHCA) is a critical life-threatening event which 
frequently warrants early defibrillation with an automated external defibrillator (AED). The optimization of allocating 
a limited number of AEDs in various types of communities is challenging. We aimed to propose a two-stage mod‑
eling framework including spatial accessibility evaluation and priority ranking to identify the highest gaps between 
demand and supply for allocating AEDs.

Methods:  In this study, a total of 6135 OHCA patients were defined as demand, and the existing 476 publicly avail‑
able AEDs locations and 51 emergency medical service (EMS) stations were defined as supply. To identify the demand 
for AEDs, Bayesian spatial analysis with the integrated nested Laplace approximation (INLA) method is applied to esti‑
mate the composite spatial risks from multiple factors. The population density, proportion of elderly people, and land 
use classifications are identified as risk factors. Then, the multi-criterion two-step floating catchment area (MC2SFCA) 
method is used to measure spatial accessibility of AEDs between the spatial risks and the supply of AEDs. Priority rank‑
ing is utilized for prioritizing deployment of AEDs among communities because of limited resources.

Results:  Among 6135 OHCA patients, 56.85 % were older than 65 years old, and 79.04 % were in a residential area. 
The spatial distribution of OHCA incidents was found to be concentrated in the metropolitan area of Kaohsiung City, 
Taiwan. According to the posterior mean estimated by INLA, the spatial effects including population density and 
proportion of elderly people, and land use classifications are positively associated with the OHCA incidence. Utilizing 
the MC2SFCA for spatial accessibility, we found that supply of AEDs is less than demand in most areas, especially in 
rural areas. Under limited resources, we identify priority places for deploying AEDs based on transportation time to 
the nearest hospital and population size of the communities.

Conclusion:  The proposed method will be beneficial for optimizing resource allocation while considering multiple 
local risks. The optimized deployment of AEDs can broaden EMS coverage and minimize the problems of the disparity 
in urban areas and the deficiency in rural areas.

Keywords:  Out-of-hospital cardiac arrest, Zero-inflated Poisson model, Basic statistical area, Bayesian analysis, Priority 
ranking
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Background
The occurrence of out-of-hospital cardiac arrest (OHCA) 
is a critical life-threatening event throughout the world 
[1, 2]. Approximately 424,000 persons experience an 
OHCA each year in the United States [3], as do 275,000 
in Europe [4], 60,000 in Japan [5] and 20,000 in Taiwan. 
Half of OHCA patients have no symptoms before the 
onset of arrest, and the survival rate is below 10  % [6]. 
Thus, the concept of the chain of survival is introduced to 
improve the chance of surviving OHCA [7]. In the chain 
of survival, prompt cardiopulmonary resuscitation (CPR) 
and early defibrillation are the primary factors in deter-
mining the survival from OHCA [8, 9]. Without CPR and 
defibrillation, the survival rate decreases by 7–10 %/min 
of delay [10].

As most cardiac arrest patients are experiencing ven-
tricular fibrillation (VF) [11], early defibrillation with the 
use of an automated external defibrillator (AED) is the 
primary determinant of survival. The AED is a device 
that can be easily used by nonprofessional rescuers. 
Therefore, the American Heart Association (AHA) has 
promoted the concept of publicly accessible AEDs [12, 
13], and the deployment of AEDs has also become an 
important part of emergency medical systems (EMS).

In Taiwan, the Department of Health (DOH) has imple-
mented a plan to make AEDs available in public places 
since 2013 under the Emergency Medical Services Act 
[14]. Currently, AEDs have been placed in public loca-
tions such as railway stations, shopping centers, schools 
and hotels. However, previous studies have shown that 
most cases of OHCA occur in residential areas [15, 16]. 
This causes a gap between the placement of AEDs and 
the locations with most frequent OHCA events, but the 
issue of how to allocate AEDs efficiently in communities 
is seldom discussed. To deploy a limited number of AEDs 
with high spatial accessibility, it is warranted to consider 
the spatial optimization of AEDs, especially in residential 
communities. Extending the coverage of AEDs will help 
enhance the timeliness of first-aid resuscitation and also 
expand the service areas of traditional EMS.

Spatial accessibility refers to the probable utilization 
of a service location, and is determined by the spatial 
distribution between supply and demand. The two-step 
floating catchment area (2SFCA) is a popular method 
and has been widely used in measurement of healthcare 
accessibility [17–21]. The 2SFCA is a special case of the 
gravity-based measure [22] and is implemented in a two-
step process to compute supply-to-demand ratio at each 
demand location. However, the 2SFCA assumes that all 
locations have equal access to supply locations within 
a catchment and no access to supply locations outside 
of the catchment. To address these shortcomings, an 
enhanced 2SFCA (E2SFCA) method [18] is proposed to 

introduce weights to differentiate travel time zones to 
account for stepwise decaying of accessibility within each 
catchment. Furthermore, the distance decay is improved 
to a continuous function by involving a kernel density 
[23] or a Gaussian function [24]. The service area of a 
catchment in 2SFCA also needs to vary based on the type 
of supply [25]. A variable 2SFCA (V2SFCA) method [26] 
is proposed to introduce an adaptive size of the catch-
ment determined according to the service capacity of 
the supply location. To consider the overestimation of 
demand on supply locations in the E2SFCA, the compe-
tition among supply locations is introduced in a three-
step floating catchment area (3SFCA) method [27]. The 
3SFCA assumes that probable demand is influenced by 
the availability of other nearby supply locations.

Before the location allocation analysis, the demand 
needs to be identified first. Demographic characteristics 
such as population density, age, gender, income and edu-
cation were related to higher frequency of OHCA events 
in previous studies [16, 28, 29]. Demand should there-
fore best assessed by a composite indicator rather than 
a single factor. Thus, we applied a regression model to 
account for multiple influencing factors, and estimate the 
potential risk as a demand factor in the computation of 
spatial accessibility. The supply factor is measured based 
on registered AEDs and EMS. The placement of AEDs 
can then be identified according to a two-stage modeling 
framework including spatial accessibility evaluation and 
priority ranking in this study. As for location allocation 
analysis, spatial accessibility needs to take into considera-
tion both supply and demand [30, 31]. We aim to identify 
the gaps between demand and supply of AEDs and prior-
itize the order of urgency geographically.

Methods
Ethics
The study was approved by the committee of the Insti-
tutional Review Board (IRB) at Academia Sinica (AS-
IRB01-14013). The databases we used were all stripped of 
identifying information and thus informed consent was 
not needed.

Data
The data used in this study can be divided into two cat-
egories including OHCA, and spatial and statistical data. 
This was a 3-year retrospective study during 2011–2013 
from a cardiac arrest cohort in the city of Kaohsiung, 
Taiwan. Kaohsiung covers 2947  km2 including both 
urban and rural communities. The total population 
of Kaohsiung was 2.64 million in 2012. The records of 
OHCA patients were obtained from the DOH, Kaohsi-
ung City Government. We enrolled all patients who suf-
fered an OHCA and were treated by emergency medical 
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technicians (EMTs) from January 1, 2011 to December 
31, 2013. Cardiac arrest was defined as the abrupt loss of 
heart function in a person as confirmed by EMTs. Their 
corresponding onset locations were geocoded by using 
the position service provided by the Ministry of the Inte-
rior, Taiwan.

Spatial data include the polygon of basic statistical 
areas (BSAs), land use data, and the location of existing 
AEDs and EMS stations. The BSA was developed by the 
Statistics Department of the Ministry of the Interior in 
2012. It is the basic spatial unit for official statistics. The 
major concerns are protection of privacy and size of the 
unit in terms of geographical space, the stability of the 
statistical units and attribute consideration [32]. There 
are 17,389 BSAs in Kaohsiung City. The land use data are 
derived from the National Land Surveying and Mapping 
Center, Ministry of the Interior (http://lui.nlsc.gov.tw/
LUWeb/). The latest update on the investigation of the 
land use data is December 2014, and the spatial scale is 
1:5000. The land use data are classified into a three-level 
hierarchical structure. There are nine categories includ-
ing agriculture, forest, transportation, water conserva-
tion, built-up land, public, amusement and rest, rock salt 
and others in the first level. The location of 476 AEDs 
was derived from the Taiwan Public AED Registry web-
site of the Ministry of Health and Welfare in October 
2014 (http://tw-aed.mohw.gov.tw/). In addition, we also 
include 51 EMS stations in Kaohsiung City. The statisti-
cal data contain the total and 65-and-older population of 
each BSA as of June 2012, and were downloaded from the 
Department of Statistics of Taiwan (http://segis.moi.gov.
tw/STAT/).

Data processing
Among 17,389 BSAs, there is one extreme value of pop-
ulation density which is 195 times higher than the aver-
age. To avoid inference bias from this outlier, we decided 
to remove this BSA from our whole analysis. Therefore, 
there are 17,388 BSAs included in this study. The onset 
locations of OHCA events were geocoded into BSAs. 
Due to missing or vague addresses, we excluded 308 
OHCA events (4.6 %) which were unable to be geocoded. 
In addition, the OHCA events located in nursing homes 
were also excluded. Since nursing homes are a kind of 
long-term care facility, appropriate medical equipment 
and AED are always installed. We treated these cases as 
in-hospital cardiac arrest, not cases occurring in com-
munities. The final number of observations for allocation 
analysis was 6135. After geocoding and using the spatial 
join function of ArcGIS 10.2 (ESRI Inc., Redlands, CA, 
USA), the OHCA events in each BSA can be counted. For 
an overview of the frequencies of OHCA events, a histo-
gram is given in Fig.  1. It shows that the OHCA events 

exhibit a large number of zeros in some BSAs. Thus, we 
need to choose a zero-inflated Poisson (ZIP) model to 
deal with this situation. From the first level of land use 
data, the categories of transportation (including air-
ports, railroads, roads and harbors) and public (includ-
ing governmental agencies, schools, medical health care 
facilities, social welfare facilities and public utilities) are 
considered risk factors, since the transportation and pub-
lic are categories of population clusters in the daytime. 
OHCA events also often occur in the transportation and 
public categories. In the second level from the built-up 
land, there are four subcategories, including commerce, 
housing, industry and others. Only the housing subcat-
egory is used, since the community is the main consid-
eration in this analysis. The housing category contains 
pure housing as well as residential buildings which are 
also partly used for industry and trade. Thus the content 
in the housing subcategory contains mixed uses. And the 
percentages of housing, transportation and public area in 
each BSA are calculated by ArcGIS using the intersection 
and frequency functions on the land use and BSA map. 
The demographic characteristics including the popula-
tion density and the percentage of 65-and-over popula-
tion were also calculated based on each BSA.

The multi‑criterion two‑step floating catchment area 
(MC2SFCA)
The multi-criterion two-step floating catchment area 
(MC2SFCA) is extended from the 2SFCA [22], which also 
considers interaction between demand and supply within 
a region. In MC2SFCA, the demand is accessed by a 
composite indicator rather than a single factor. The com-
posite indicator is regarded as the potential risk which 
can be estimated by the regression model with multiple 
influencing factors. The regression modeling is imple-
mented by spatial regression analysis to understand the 
relationship between OHCA incidence and possible risk 
factors. There are two kinds of risk factors considered in 

Fig. 1  Distribution of OHCA events in Kaohsiung City from 2011 to 
2013

http://lui.nlsc.gov.tw/LUWeb/
http://lui.nlsc.gov.tw/LUWeb/
http://tw-aed.mohw.gov.tw/
http://segis.moi.gov.tw/STAT/
http://segis.moi.gov.tw/STAT/
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the regression model. One is demographic characteris-
tics including population density and the proportion of 
65-and-older population, and the other is the percentage 
of land use classification including transportation, and 
public and housing areas. To analyze OHCA count data 
with excess zeros, the most well-known model is ZIP 
regression [33]. The ZIP model is a mixture of Poisson 
and degenerate distributions. This model assumes that 
the zero count consists of two types. The first one occurs 
with probability p and the observation is only zero, 
while the other occurs with probability (1 − p) accord-
ing to a Poisson distribution. We used Bayesian analysis 
of the spatial count data with the ZIP model to estimate 
and consider the spatial variability of their relationships 
based on BSA level.

In Bayesian statistics, unknown quantities are treated 
as random variables and can be described in terms of 
probability distributions [34]. This provides a more intui-
tive quantity rather than a fixed value in frequentist sta-
tistics. Our spatial regression model can be represented 
as follow:

yi was the number of OHCA incidents observed in the ith 
BSA, α is the model intercept, and the regression coef-
ficients β = (β1, . . . ,β5) quantify the effect of risk factors 
stored in x = (x1, . . . , x5). ui and vi denote spatial and 
independent error terms respectively. Thus, the purpose 
of the Bayesian statistics is to derive the posterior distri-
bution of parameters of interest. The Bayesian approach 
is increasingly adopted in spatial analysis [35–37], since 
it allows use of complicated models for spatial correla-
tion and use of Markov chain Monte Carlo (MCMC) 
simulation algorithms [34]. However, there remain com-
putational challenges in Bayesian computation for com-
plicated probability models, such as spatial data [38]. To 
improve the computational efficiency of Bayesian analy-
sis, the integrated nested Laplace approximation (INLA) 
approach has been developed to compute a fast and 
accurate approximation to the posterior distributions of 
the parameters in latent Gaussian models [39]. It can be 
implemented by an R package named R-INLA (http://
www.r-inla.org/). After regression of spatial count data 
with R-INLA, the posterior distribution of OHCA inci-
dence and its coefficients can be derived. The mean value 
of the posterior distribution of OHCA incidence is used 
as the risk value for the MC2SFCA method.

After regression modeling, the potential risk is used as 
the demand factor in the computation of spatial accessi-
bility. Spatial accessibility estimates the activities between 
locations in space, and thus is a classic issue for location 

yi = α +

5
∑

m=1

βmxmi + ui + vi

analysis [31]. To evaluate AED accessibility, a 2SFCA [22] 
is used. The floating catchment area method defines the 
service area of a location based on a threshold distance 
of travel time. The 2SFCA repeats the process of floating 
catchment twice, once on supply locations and once on 
demand locations. For demand locations, the risk values 
are derived from the result of R-INLA. For supply sites, 
two kinds of data with different service areas are consid-
ered. They are the existing AEDs and ambulances of EMS 
stations. To reach an existing AED, a witness has to go 
and return to the location of an OHCA patient, but an 
ambulance is dispatched from an EMS station directly to 
the location of an OHCA patient. Thus, the service areas 
for the existing AEDs and ambulances are different dur-
ing the same period. Since the use of AED within 4 min 
of cardiac arrest has been demonstrated to improve 
survival [40], the serving distance is 200 m for the exist-
ing AED and 3600  m for EMS based on the speed for 
an adult walking and ambulance speeds between about 
100  m/min [41] and 900  m/min [42] respectively. With 
increasing time to treat with AED, the chance of survival 
among OHCA patients is decreased. Thus, we also incor-
porated a continuously function as distance decay in the 
2SFCA to represent relative spatial access to AED. The 
Gaussian function proposed by Dai [24] is adopted as 
the decay function. The 2SFCA with Gaussian function 
is implemented in two steps. The first step is to search all 
demand locations k within the catchment area of supply 
location j, and the supply-to-demand ratio Rj of each sup-
ply location can be calculated by

where Sj is the capacity of supply at j, and Dk is the 
demand at location k within the catchment area, d0 is the 
catchment size, and dkj is the distance between demand 
location k and supply location j. G is the distance decay 
function based on the Gaussian function which is a 
smooth decay with increasing distance and can be for-
mulated as [24]:

The second step is to search all supply locations j that 
fall inside the catchment area of demand location i, 
and determine the spatial accessibility by summing up 
the supply-to-demand ratio Rj weighted with the dis-
tance decay function G. Then, the spatial accessibility at 
demand location i, Ai, is given by

Rj =
Sj

∑

k∈{dkj≤d0}
DkG
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http://www.r-inla.org/
http://www.r-inla.org/
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In the 2SFCA process, a supply-to-demand ratio is 
first estimated for each AED and EMS location. The total 
demand of each AED and EMS location is determined 
by the sum of risk value in the BSAs whose centroid falls 
within the 4-min arrival time catchment. In the second 
step, spatial accessibility of AED in each BSA is obtained 
by summing up the supply-to-demand ratios of AED and 
EMS locations within the catchment of the BSA.

Priority ranking
The spatial accessibility can be evaluated by processing 
the MC2SFCA method in the previous section. Then, 
the spatial allocation of AEDs can be determined based 
on the values of spatial accessibility of AEDs in each 
BSA. However, AEDs could not be deployed in all of the 
BSA with lower accessibility in practice because of lim-
ited resources. Ranking of priority among the BSAs with 
lower access to AED is needed. It is assumed that an 
OHCA patient can be sent to the nearest hospital within 
4  min. Among the BSAs with lower accessibility, the 
BSAs for which transportation time from the centroid of 
BSA to a nearest hospital is within 4 min are assigned a 
lower ranking. If the transportation time from the BSA 
centroid to the nearest hospital is over 4 min, the second 
priority ranking is based on the number of population in 
the BSA. In summary, the BSAs with longer transporta-
tion time to the hospital and with higher population are 
the first priority to deploy AEDs.

Results
As Table  1 shows, among 6135 OHCA patients, 3488 
(56.85 %) were older than 65 years old, and 4849 (79.04 %, 
Table  2) were in a residential area. Aside from residen-
tial areas, there were also 559 (9.11 %) and 167 (2.72 %) 
patients using transportation and in public areas respec-
tively (Table 2). In Fig. 2, contour lines identify areas with 
a greater number of OHCA events, and the map shows 
three different land use classifications including built-up 
land, transportation and public areas. It shows that the 
OHCA events were found to be clustering in southern 
Kaohsiung, which is the urban area.

Next, we applied the R-INLA to identify the effect of 
risk factors and possible clusters. After adjusting by two 
demographic characteristics—population density and 

proportion of elderly people—and three land use classi-
fications—transportation, housing and public—the pos-
terior density plots for spatial effects of the risk model 
are shown in Fig. 3. This indicates that the spatial effects 
including population density, the proportion of 65-and-
older population, and the percentage of transportation, 
public and housing area are positively associated with 
the OHCA incidence according to the result of poste-
rior means. The posterior means of OHCA incidents in 
each BSA for 2011–2013 are mapped (Fig. 4). The OHCA 
incidents were found to be concentrated in southwest-
ern Kaohsiung City, which was the metropolitan area, in 
contrast with the northeastern rural and mountainous 
areas of Kaohsiung City, where OHCA incidents are rare. 
To evaluate the fit of the Bayesian spatial regression, the 
residuals between the observed OHCA events and the 
expected values are shown on the residual map (Fig. 5). 
The global Moran’s I index was 0.0005 (p = 0.32) for the 
residual map. The spatial autocorrelation of the residuals 
was not statistically significant, which indicates there was 
no global spatial clustering after Bayesian spatial regres-
sion. The areas marked with dark blue and red represent 
the highest difference. Areas with dark blue indicate that 
the observed OHCA events are greater than the expected 
values, while areas with dark red show that the observed 
OHCA events are fewer than expected.

We then used the risk model as our demand, and the 
deployed AED as our supply. The spatial accessibility is 
evaluated by 2SFCA with the Gaussian function, and the 
result is shown in Fig. 6. Locations where the AED sup-
ply is less than demand is marked with red color when 
the accessibility value is lower than 1. The accessibility of 
deployed AED in most areas is lower than 1, especially 

Table 1  Age distribution of OHCA patients

Age (years) N

0-14 65 (1.07 %)

15–64 2494 (40.65 %)

65+ 3488 (56.85 %)

Unknown 88 (1.43 %)

Total 6135

Table 2  Distribution of OHCA incidents by land use classi-
fication

Classification N

Agriculture 34 (0.55 %)

Forest 8 (0.13 %)

Transportation 559 (9.11 %)

Water conservation 14 (0.23 %)

Built-up land 5240 (85.41 %)

 Trade 213

 Housing 4849

 Industry 121

 Other structural purpose places 57

Public 167 (2.72 %)

Amusement and rest 75 (1.22) %

Rock salt 0 (0.00 %)

Other 38 (0.62 %)

Total 6135
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Fig. 2  Contour map of OHCA incidents on different categories of land use in Kaohsiung City
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the areas in northern Kaohsiung City, which are the rural 
and mountainous area. From a comparison to the origi-
nal 2SFCA, we found that the pattern is similar through-
out the whole of Kaohsiung city. At a large scale in the 
urban area, the accessibility measure by Gaussian 2SFCA 
is smoother than the original 2SFCA. Counting the zero 
accessibility, the number increases from 2082 to 2109 
after the Gaussian 2SFCA is used.

After 2SFCA, the priority can be ranked according to 
the accessibility value. There are 2772 BSAs with zero 
accessibility. For priority ranking, the location of hospi-
tals is considered. There are 247 BSAs for which trans-
portation time from the BSA centroid to a hospital is 
within 4  min. Because the population size is the major 
consideration in deployment of EMS stations, the popu-
lation is adopted for second priority ranking in the BSAs 
for which the transportation time from the BSA centroid 
to a hospital is over 4 min. The higher the population is, 
the higher the ranking is. The result of ranking is shown 
in Fig.  7. The highest priority for AED locations is in 
northern Kaohsiung and marked with dark brown color.

Discussion
This paper presents a two-stage modeling framework 
including spatial accessibility evaluation and priority 
ranking to identify the priority area for locating AEDs. 

Spatial accessibility is widely used in finding optimal 
locations for health facilities [23, 43–45]. Both demand 
and supply are involved in facility location analysis. From 
the demand side, AEDs should be placed in high OHCA 
incidence areas [46]. In the traditional approach, we can 
only analyze the spatial clustering pattern of OHCA 
events and correlate them with certain risk factors sepa-
rately [16]. However, there is no single factor which could 
identify a suitable AED location [15]. Therefore, multi-
ple demographic characteristics are often considered in 
risk models [28, 47]. In addition to using demographic 
characteristics, the land use data used in this study, 
which provides a direct spatial relationship between the 
classification of land use and the distribution of OHCA 
events, can help us understand the community struc-
ture of OHCA incidents. Our proposed method can then 
compute one composite indicator from multiple criteria 
including spatial and non-spatial factors based on their 
spatial distribution. The indicator is a composite value 
rather than a single factor, and is utilized as a demand 
factor in the evaluation of spatial accessibility.

The limited resources may not fulfill the demand in 
areas with the highest risk, therefore a set of locations is 
usually selected for solving the location problem [48, 49]. 
From the supply side, the impact on OHCA survival with 
the use of onsite or dispatched AED has been discussed in 

Fig. 3  Posterior density for fixed effects of the risk model; the spatial risk factors are the proportion of 65-and-older population, population density, 
and the percentages of housing, transformation and public categories in BSA
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Fig. 4  Geographical distribution of risk adjusted by spatial risk factors including the proportion of 65-and-older population, population density, and 
the percentages of housing, transformation and public categories in BSA
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one previous study [50]. In our study, both onsite (existing 
AEDs) and dispatched (ambulance from EMS stations) AED 
are considered in the 2SFCA to evaluate spatial accessibility. 

Thus, all of the supply sites in the communities and public 
places can be considered simultaneously for evaluating spa-
tial accessibility with our approach in the future.

Fig. 5  The residual map between the OHCA incidents and the estimated mean of posterior distribution derived from R-INLA
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According to the type of supply location, the service 
areas of onsite and dispatched AED are different, as sug-
gested by Yang et  al. [25]. Within a large service area, 

the accessibility varies depending on the selection of the 
decay function, since the catchment size covers many 
demand locations and other supply locations [24]. In 

Fig. 6  Accessibility of onsite and dispatched AED services in Kaohsiung City by MC2SFCA
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contrast, there is no significant difference in accessibility 
with a decay function in a small service area. In our study, 
the mean distance between onsite AED and the center 

of BSA is about 140  m based on the catchment area of 
onsite AED, so that the service area only contains the 
close neighbor BSAs. Thus, the decay function has more 

Fig. 7  Priority ranking for deployment of AEDs according to the population count in BSA with zero accessibility



Page 12 of 14Lin et al. Int J Health Geogr  (2016) 15:17 

influence on accessibility in a dense area than in a sparse 
area.

AED deployed in public areas such as casinos [51], air-
ports [11] and convenience stores [48] have been shown 
to be an efficient use of resources for rescuing OHCA 
patients [28]. In Taiwan, the DOH has stepped up its 
plan to make AEDs available in public places nation-
wide. However, our study found that OHCAs frequently 
occur in housing areas of Kaohsiung city. Likewise, inter-
national studies have also observed that the majority of 
OHCAs occur in residential areas [15, 16, 52]. Thus, the 
deployment of AEDs in communities is an important 
issue in the overall emergency medical services system.

Disparity in the coverage of emergency medical ser-
vice has been found between urban and rural areas 
around the world [53]. Likewise, a significant difference 
was also shown in Kaohsiung City. From the perspec-
tive of spatial accessibility, we found that the disparity 
in the deployment of AEDs did not only occur between 
urban and rural areas. In southwestern Kaohsiung City, 
the subsets of metropolitan areas with lots of AEDs are 
scattered, which is marked with blue color in Fig. 6. This 
means that the supply is much greater than the demand, 
because many AEDs are concentrated in those areas. To 
eliminate the disparity and achieve equity, the analysis of 
spatial accessibility has to be involved in the strategy of 
AED deployment.

Aside from the disparity in urban areas, the deficiency 
and unevenness in rural areas of Kaohsiung City are 
even more serious than those in urban areas. The result 
shows that the spatial accessibility is low in rural areas 
because the number of deployed AED is small and the 
response time is longer. These areas are marked with red 
color (Fig.  7). The response time is an important factor 
related to survival rate in OHCA patients, especially in 
rural areas [54, 55]. To reduce the response time, previ-
ous studies have examined advanced life support by aero-
medical teams [56], and the use of AED by police officers 
[57] or by family members [58]. Likewise, the deployment 
of AED in rural areas is beneficial for OHCA patients in 
rural areas [59, 60], since the AED placement can extend 
to a wider EMS coverage and cut rescue response time to 
improve probability of survival.

Based on an analysis of spatial accessibility, the AED 
can be deployed in BSAs prioritized from low to high 
accessibility. The BSA was the smallest statistical unit in 
the study area, and represented an average of 300 peo-
ple in each unit. The use of BSA can reduce the spatial 
unit down to the community level, and help us to iden-
tify the AED locations more precisely. Our study shows 
that a large number of BSAs have low accessibility in 
Kaohsiung City. This means that the demand for AED, 
based on historical OHCA incidents, is much greater 

than the supply of AED. In reality, however, there is not 
enough money budgeted to provide the required num-
ber of AEDs. Under limited finances, the locations of 
deployed AED have to be efficiently chosen. Utilizing 
our priority rankings, we can find where the priority 
BSAs for deploying AEDs are, and the same method of 
ranking can also be used in each district. Both levels of 
analysis provide very useful information for government 
policymakers.

Limitations
This study had several limitations. First, about 3.1  % of 
addresses of OHCA events could not be geocoded, due to 
the incompleteness of the address database. These miss-
ing addresses do not influence the result, because the 
study is concerned with the spatial pattern in clustering 
of OHCA incidents. To improve the accuracy, commonly 
used address styles have to be considered in the database, 
such as intersection and point of interest (POI). Second, 
registration of installed AED locations is not mandatory, 
so the number of AED may actually be underestimated. 
Third, the parameters of response time, based on the 
speed of both an adult walking and ambulances, will vary 
under different conditions. In addition, we did not con-
sider the causes of OHCA events such as trauma events, 
or other demographic characteristics such as gender, 
income and education [15]. These factors might cause 
different results for the risk model. The service frequency 
data of onsite AED cannot be known because it is private 
property. When the data are released, we can use these 
data for analysis in a future study.

Conclusion
The two-stage framework including spatial accessibility 
evaluation and priority ranking can be beneficial for iden-
tifying the local risks and optimizing resource allocation 
in similar scenarios. The optimized deployment of AEDs 
can broaden EMS coverage and minimize the problems 
of the disparity in urban areas and the deficiency in rural 
areas.

Availability of data and materials
The cases’ data need IRB approval and apply the data 
from DOH, Kaohsiung City Government. The land use 
data need to apply from National Land Surveying and 
Mapping Center, Ministry of the Interior, Taiwan. The 
location of AEDs can be directly downloaded from the 
Taiwan Public AED Registry website of the Ministry of 
Health and Welfare (http://tw-aed.mohw.gov.tw/). The 
statistical data contain the total and 65-and-older popu-
lation of each Basic Statistical Area can be downloaded 
from the Department of Statistics of Taiwan (http://segis.
moi.gov.tw/STAT/).

http://tw-aed.mohw.gov.tw/
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