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Abstract Over the past two decades, the surge in warehouse construction near seaports and in economically
lower‐cost land areas has intensified product transportation and e‐commerce activities, particularly affecting air
quality and health in nearby socially disadvantaged communities. This study, spanning from 2000 to 2019 in
Southern California, investigated the relationship between ambient concentrations of PM2.5 and elemental
carbon (EC) and the proliferation of warehouses. Utilizing satellite‐driven estimates of annual mean ambient
pollution levels at the ZIP code level and linear mixed effect models, positive associations were found between
warehouse characteristics such as rentable building area (RBA), number of loading docks (LD), and parking
spaces (PS), and increases in PM2.5 and EC concentrations. After adjusting for demographic covariates, an
Interquartile Range increase of the RBA, LD, and PS were associated with a 0.16 μg/m³ (95% CI= [0.13, 0.19],
p < 0.001), 0.10 μg/m³ (95% CI = [0.08, 0.12], p < 0.001), and 0.21 μg/m³ (95% CI = [0.18, 0.24], p < 0.001)
increase in PM2.5, respectively. For EC concentrations, an IQR increase of RBA, LD, and PS were each
associated with a 0.021 μg/m³ (95% CI = [0.019, 0.024], p < 0.001), 0.014 μg/m³ (95% CI = [0.012, 0.015],
p < 0.001), and 0.021 μg/m³ (95% CI = [0.019, 0.024], p < 0.001) increase. The study also highlighted that
disadvantaged populations, including racial/ethnic minorities, individuals with lower education levels, and
lower‐income earners, were disproportionately affected by higher pollution levels.

Plain Language Summary Over the past 20 years, more warehouses have been built near ports and
in areas where land is cheaper. This has increased truck traffic and goods movement, which has worsened air
quality and affected the health of nearby communities that often lack resources and health services. From 2000
to 2019, our study in Southern California examined how this rise in warehouses has impacted air pollution,
focusing on very small pollution particles known as PM2.5 and a harmful component of these particles called
elemental carbon. Using satellite data to analyze pollution levels across different areas, we discovered that
larger warehouses, more loading docks, and increased parking spaces are associated with higher levels of
pollution. We also found that this rise in pollution particularly affects disadvantaged groups in these
communities, including racial/ethnic minorities, those with less education, and those with lower incomes. This
research underscores the long‐term trend of warehouse expansion and its effects on air pollution. It highlights
the urgent need for careful planning in warehouse construction and better protection for vulnerable
communities, particularly those most at risk from increased pollution.

1. Introduction
In the 21st century, the United States has seen a dramatic expansion in manufacturing and e‐commerce, leading to
a corresponding surge in warehouse construction to meet growing storage demands (Bluffstone & Ouder-
kirk, 2007). In distribution centers such as the Inland Empire, California, the scale of expansion stood out sub-
stantially, as the quantity of mega warehouses—defined as those with a rentable building area (RBA) greater than
100,000 square feet—increased by 166% from 2000 to 2022 (McGhee, 2022). As available land diminishes,
communities are gradually being infiltrated by newly built warehouses (Yuan, 2021). A multi‐state study reported
that an estimated 15 million people in the US live within a mile of warehouse facilities as of 2023 and are facing
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risks associated to daily operation of the warehouses, especially the diesel truck emissions attracted to the fa-
cilities (Nowlan, 2023).

Previous literature has established that the proliferation of warehouses has led to a significant amplification of
their associated environmental impacts (Fichtinger et al., 2015; Ries et al., 2017), affecting local communities to a
greater extent than in previous decades. Additionally, manufacturing industries and e‐commerce entities often
plan their facility constructions near sea ports and in neighborhoods with less urban development and lower land
costs (deSouza et al., 2022). These areas, with their reduced living expenses, have been attracting socio-
economical disadvantaged communities (Yuan, 2018, 2021), who now live in close proximity to potential
emission sources. The potential environmental impact that disproportionately affects disadvantaged groups
highlights warehouse expansion as a pressing issue of environmental injustice.

Among the various environmental challenges that warehouse expansion poses to surrounding communities, air
pollution is particularly substantial. The establishment of warehouses contributes to local emissions within the
immediate vicinity, encompassing a substantial release of pollutants that include particulate matter with an
aerodynamic diameter equal to or less than 2.5 μm (PM2.5). Operation of warehouses is directly linked to goods
movement via trains and heavy‐duty diesel trucks, which leads to increased emissions of elemental carbon (EC)
(Shearston et al., 2020). A study conducted before our study period, spanning from 1999 to 2001, observed an
increase in EC concentrations at their sites in Southern California, especially in Riverside County with massive
warehouse distribution centers, which, in their observation, are gradually becoming bigger in size over time
(Salmon et al., 2004). Although the association was not investigated in detail, it suggests that the massive
expansion of warehouses could potentially exacerbate the ongoing challenge of efforts to decrease air pollution in
urban cities. Recognizing the air pollution impacts associated with the expansion and operation of warehouses,
regulatory bodies have begun taking action. For instance, the South Coast Air QualityManagement district (South
Coast AQMD) recently adopted a rule, known as the Warehouse Indirect Source Rule 2305, to reduce air
pollution emissions and impacts associated with warehouses in Southern California. This rule requires ware-
houses to invest in zero and/or near‐zero emission technologies, using solar power, installing onsite charging, or
fueling infrastructure, or installing filtration systems in qualified buildings such as schools (AQMD, 2021).

There is extensive literature documenting the detrimental effects of PM2.5 and EC on human health. Previously
investigated health outcomes associated with PM2.5 include but are not limited to chronic pulmonary diseases
(Duan et al., 2020; Wang et al., 2022), exacerbated asthma (Orellano et al., 2017), cardiovascular diseases
(Vaičiulis et al., 2023), and cancers (Wong et al., 2016). EC, on the other hand, is partially responsible for an
increased risk of lung dysfunction among adults with asthma (Huang et al., 2019; McCreanor et al., 2007) and the
elderly population, particularly those with chronic obstructive pulmonary disease (Chen et al., 2017; Huang
et al., 2019; Pan et al., 2018). Additionally, EC consists of a unique structure with both carcinogenic compounds
on its outer layer (Cao et al., 2005) and a highly absorptive core (Oberdörster et al., 2005), enhancing its ability to
transport toxic substances into deeper lung tissues. These health outcomes are expressed disproportionately in
highly industrialized states such as California (Nunez et al., 2024). The American Lung Association reported that
nine out of the top 10 most polluted counties in the United States are located within CA (Smith, 2019), high-
lighting the necessity of effective interventions within the state. Specifically, the top three most polluted counties
—San Bernardino, Riverside, and Los Angeles—fall under the jurisdiction of the SCAQMD, which requires
special attention in air quality management (Smith, 2019).

The residents of these overburdened counties often face increased exposure to air pollution associated with
industrialization and their associated health outcomes. Among these residents, social determinants of health
further exacerbate environmental inequities (Jbaily et al., 2022; Liu et al., 2021). Previous studies identified
racial/ethnic minorities, communities of lower socioeconomic status, and those with lower levels of education to
face a higher risk of air pollution‐related health issues (Jbaily et al., 2022; Liu et al., 2021; Lu et al., 2022). While
numerous studies have examined the patterns of air pollution in Southern California (Chambliss et al., 2021), less
attention has been devoted to investigating the impact of the warehouse expansion, especially on disadvantaged
communities.

In this study, we aim to investigate the associations between satellite driven PM2.5 and EC concentrations and
warehouse presence and characteristics between 2000 and 2019 in Southern California. We identified the regional
effect of each warehouse capacity indicator on pollution concentrations and evaluated temporal trends of these
relationships. Additionally, we compared average pollution and demographic distributions between ZIP codes
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with and without warehouse presence. The findings of our study will enhance the understanding of the envi-
ronmental impact of warehouse expansion in context of the surge in e‐commerce, stress the need in developing
targeted interventions for vulnerable populations and underscore the importance of addressing environmental
justice into future air pollution research.

2. Methods
2.1. Study Domain

Our study domain (Figure 1a) is delineated by the jurisdiction of the South Coast AQMD, encompassing the
South Coast Air Basin and the Coachella Valley region, which is part of the Salton Sea Air Basin in Southern
California. The area is bordered to the west by the Pacific Ocean, including the major urban areas such as Los
Angeles, Riverside, and San Bernardino, and extending south to encompass all of Orange County. The area is
predominantly influenced by a Mediterranean and semi‐arid steppe climate, with a transition to a desert climate
moving toward the Coachella Valley region (EcoAdapt, 2016). We extended 10 km from the most Northern/
Southern/Eastern/Western points of the jurisdiction boundary and created a rectangular buffer area in order to
capture the impact of regional air pollution transport.

2.2. Warehouse Data

Warehouse coordinates and their associated variables, including rentable building areas (RBA) in square feet,
number of loading docks (LD), number of parking spaces (PS), county, and year of construction, were obtained
from the database of Costar Realty Information Inc. (Costar) to represent warehouse size, product loading ca-
pacity, and vehicle accommodation capacities, which are all potential contributors to the warehouse's emissions to
the environment. The data set contained 10,937 observations within the study domain. Any missing values in LD
and PS were filled by linear interpolation, using a linear trend between known values for each respective variable.

Figure 1. Warehouse and air pollution distribution in the study domain (a) shows the jurisdiction outline of South Coast Air Quality Management District, and the study
domain (black outlined rectangle). (b, c) Show the average concentrations of PM2.5 during 2000–2018, and elemental carbon during 2000–2019, respectively. (d) Shows
the spatial overlay of warehouse distribution over the ZIP codes within the study domain.
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The RBA values for the same year served as a key reference to ensure better prediction. For missing RBA values,
we used the median RBA of the same year across the entire spatial domain, as the median is less affected by
outliers and provides a robust estimate for the central tendency.

2.3. Air Pollution Data

We defined our study period as two decades before the COVID‐19 pandemic, which led to massive changes in
socioeconomic patterns and human activities. Annual and monthly mean PM2.5 concentrations at 1 km resolution
in California from 2000 to 2018 were estimated by a satellite‐driven ensemble machine learning model incor-
porating multiple predictor variables including satellite and meteorological factors, land‐use, chemical transport,
and elevation (Di et al., 2019). The 1 km resolution is sufficient to estimate air pollution concentrations at the ZIP
code level. This model, specifically for the Pacific region including the study domain, has a cross‐validation R2

value of 0.80, indicating good model performance. Annual mean EC concentrations at 1 km spatial resolution
from 2000 to 2019 were obtained from a separate satellite driven PM2.5 component model (Amini et al., 2023).
The model performance varies across urban and non‐urban areas but consistently demonstrates high performance,
with R2 values above 0.9. All pollution data were spatially aggregated to the ZIP code levels for our modeling
analysis. There are 576 ZIP codes included in the study domain.

2.4. Demographic Data

Demographic variables were obtained from the 2000 and 2010 U.S. Census, and the American Community
Survey for 2005–2012. Selected variables included ZIP code level percentage of the populations who were racial/
ethnic minorities (residents other than Caucasians), percentage of residents aged over 65, percentage of the
population with education less than high school, population, and median annual household income. The original
method for interpolating demographic data from various sources was performed by Ma et al., for their Medicare
study. The detailed method of data set assignment could be found at the GitHub repository: https://github.com/
schwartzgroup/ses‐imputation, where the authors adopted several methods involves several stages, including
crosswalks and interpolation techniques, to ensure accurate and consistent demographic data across different
years. The final step involved linear interpolation of missing years using weighted least‐squares regression
models, with the year as the predictor and the geographic characteristic as the response variable (Ma et al., 2022).

2.5. Statistical Analysis and Data Visualization

We developed linear mixed effect models to test the association between air pollution concentrations, de-
mographic variables, and warehouse characteristics. Warehouse characteristics variables included total RBA,
total number of LD and total number of PS, each analyzed independently. We built two models for each pollutant
mapping to each warehouse characteristic variable. Model 1 only considered the effect of a single warehouse
characteristic variable as the fixed effect and year as the random effect. Model 2 further controlled selected
demographic variables, as shown below.

Yij = β0 + u0j + β1warehouse variableij + β2raceij + β3incomeij + β4ageij + β5educationij + β6populationij (1)

where Y represents EC or PM2.5 concentration, i and j indicate grouping of the data. β0 is the overall intercept, β1 is
the regression coefficient of the individual warehouse variables, β2 to β6 are the regression coefficients of the
demographic covariates, and u0j represents the random intercept across the years. The covariates included in
Model 2 were tested for multicollinearity using the Variance Inflation Factor (VIF), and all variables showed VIF
values below 5, indicating low to moderate correlation that does not significantly affect the model.

Additionally, we stratified the data into 5‐year rolling intervals and used multiple linear regression models to test
the periodic change in the association between PM2.5 and EC concentrations and warehouse characteristics within
our study period. Each pollutant was mapped to a single warehouse capacity variable while controlling for de-
mographic variables, as shown below.

Y = β0 + β1warehouse variable + β2race + β3income + β4age + β5education + β6 population (2)
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Similar to Equation 1, Y represents each pollutant, β0 is the overall intercept, β1 represents the intercept of the
individual warehouse variables, and β2 to β6 are the slopes of the controlled demographic covariates. The model
was fitted for each 5‐year period and the beta coefficients were compared across the periods for interpretation.

We used another linear mixed effect model to investigate the relationship between demographic distribution and
presence of warehouse in ZIP codes. Presence of warehouses (0 or 1) was mapped to percent of racial minority,
percent of residents with education under high school, percent of residents with age above 65, and median
household income independently, with population served as an adjustor variable in the model. The equation of
this mixed‐effect model is shown below.

Yij = β0 +β1warehouse presenceij + β2populationij + (1
⃒
⃒Zipj) (3)

where Y represents each demographic variable, i and j indicate grouping of the data. β0 is the overall intercept, β1
and β2 is the regression coefficient of the binary warehouse presence variable and population variable, respec-
tively. (1|Zipj) represents the random intercept across the different Zip codes.

We further employed the Welch Two‐Sample t‐test to evaluate variations in pollution concentrations between the
ZIP codes containing warehouses (n = 331) and control ZIP codes without warehouses (n = 34) within the study
domain. The control ZIP codes were chosen based on similar median populations to the ZIP codes with ware-
houses. ZIP codes with a median population within the range of ±20% of the average median population of ZIP
codes with warehouses were included as control groups (Figure S1 in Supporting Information S1). Additionally,
we evaluated the monthly average concentration of PM2.5 and their mean difference across the ZIP codes with and
without warehouse presence. All statistical analyses were conducted using R version 4.3.0.

Additionally, we generated maps using satellite driven data for PM2.5 and EC at a 1 km resolution in ArcGIS Pro
3.1.0 to show the average levels of PM2.5 and EC across the study period. We also showed the locations of
warehouses within the study domain, identified any warehouse clusters, and compared their spatial relationships
to areas with higher air pollution.

3. Results
3.1. Warehouse Summary Statistics

Among the 10,937 warehouses included in the study domain, 2,038 were constructed during our study period
(2000–2019), constituting 18.64% of the total number and 27.64% of the total RBA of the entire data set (Table 1).
Of the warehouses built within the study period, the majority were constructed between 2000 and 2010. The year
with the most significant increase in warehouse count and RBA in the last two decades was 2000, with a count of
221 (2.02%) and an RBA of 20.6 million ft2 (2.87%) The temporal trends in warehouse characteristics by five
major counties were displayed in Figure 2. Between 2001 and 2010, the annual number of newly constructed
warehouses showed a trend of gradual decrease over time, except from 2005 to 2008 (Table 1). After 2010, the
number of newly constructed warehouses started to increase again, with a few years of exception, such as 2016
and 2019 (Table 1, Figure 2a). Similar trends were observed in the annual increase in RBA as well (Table 1).
While the annual trends of warehouse count and sum of RBA varied, the annual average of RBA demonstrated
substantial growth after 2010, especially in the San Bernardino and Riverside counties, which are part of the
Inland Empire (Figure 2c), the area characterized by a massive increase in product demands for outbound dis-
tribution (McGhee, 2022). We observed an increase in warehouse capacity, with the median and IQR of RBA,
LD, and PS showing a significant rise in 2012, followed by a gradual decline before reaching another peak in 2019
(Table 2). Additionally, Figure 1 also demonstrates dense clusters of warehouses in the Inland Empire region,
supporting the results displayed by Figure 2.

3.2. Demographic Variations

When the population variable was adjusted, the distribution between ZIP codes with warehouse presence and
those with no warehouse presence revealed significant differences across all selected variables (Table 3). Spe-
cifically, ZIP codes with the presence of a warehouse are associated with a 3.29% increase in the racial minority
percentage (95% CI = [1.91%, 4.67%], p < 0.001), a 1.90% increase in the percentage of individuals with ed-
ucation under high school (95% CI = [0.69%, 3.12%], p = 0.002), a 2.29% decrease in the percentage of
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individuals aged above 65 (95% CI = [3.33%, 1.25%], p < 0.001), and a $2,975 decrease in median household
income (95% CI = [$5,835, $133], p = 0.036).

3.3. Changes in PM2.5 and EC Levels

We identified notable trends when comparing changes in the annual average concentrations of PM2.5 and EC
across warehouse‐concentrated regions and the control region (Table 4). Overall, the annual concentrations of
PM2.5 and EC have been decreasing in warehouse‐concentrated areas and the control from 2000 to 2019 with a
few exceptions (Figures 3e and 3f). Notably, both pollution concentrations started to show a slight increase after
2016 across the regions (Figures 3e and 3f). Additionally, ZIP codes containing warehouses consistently
exhibited higher PM2.5 and EC concentrations (Figure 3, Table 4).

In the last two decades, the annual mean concentrations of PM2.5 and EC near warehouses
(meanPM=13.37± 4.57 μg/m³,meanEC=0.96± 0.37 μg/m³)were higher by 0.60 μg/m³ (p<0.05) and 0.11 μg/m³
(p < 0.001), respectively, compared to the control average (meanPM = 12.77 ± 4.15 μg/m³,
meanEC = 0.85 ± 0.31 μg/m³). The maximum and minimum values for annual concentrations of PM2.5 were
observed in 2001 and 2016, respectively, for both warehouse areas (max= 20.02 μg/m³, min= 8.90 μg/m³) and the
control (max = 18.73 μg/m³, min = 8.53 μg/m³) (Table 4). For EC in the comparable regions, maximum con-
centrations were both observed in 2000 (ECware = 1.33 μg/m³, ECcontrol = 1.17 μg/m³), and the minimum con-
centrations were both observed in 2016 (ECware= 0.68 μg/m³, ECcontrol= 0.60 μg/m³). Additionally, we found that
the concentration for PM2.5 in the study domain peaked in October. The differences in the monthly averages of
PM2.5 concentration between regional groups, however, were highest from November to January from 2000 to
2016 (Figure 4). We observed dense clusters of warehouses in the Inland Empire region aligning with areas
exhibiting higher concentrations of PM2.5 and EC from 2000 to 2019, which was consistent with the results of the
comparative analysis (Figure 1).

Table 1
Annual Summary Statistics of Warehouses (2000–2019)

Year Warehouses constructed (n) % Of total warehouses Rentable building area constructed (ft2) % Of total rentable building area

<2000 8,899 81.36% 515,530,557 71.93%

2000 221 2.02% 20,572,296 2.87%

2001 189 1.73% 16,041,421 2.24%

2002 170 1.55% 13,847,628 1.93%

2003 144 1.32% 10,485,707 1.46%

2004 144 1.32% 9,277,036 1.29%

2005 181 1.65% 14,031,346 1.96%

2006 150 1.37% 12,323,717 1.72%

2007 131 1.20% 9,477,016 1.32%

2008 142 1.30% 14,425,018 2.01%

2009 75 0.69% 5,283,899 0.74%

2010 16 0.15% 1,241,113 0.17%

2011 10 0.09% 1,292,578 0.18%

2012 16 0.15% 3,303,345 0.46%

2013 23 0.21% 4,775,833 0.67%

2014 43 0.39% 9,153,043 1.28%

2015 57 0.52% 11,211,134 1.56%

2016 51 0.47% 5,850,261 0.82%

2017 94 0.86% 11,113,155 1.55%

2018 117 1.07% 14,722,564 2.05%

2019 64 0.59% 12,761,454 1.78%

All 10,937 – 716,720,121 –
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3.4. Warehouse Characteristics and Pollutant Concentration

Our mixed‐effects models revealed statistically significant associations between warehouse capacity variables
and both PM2.5 and EC concentrations. Specifically, an interquartile range (IQR) increase in RBAwas found to be
associated with a 0.27 μg/m³ increase in PM2.5 concentrations (95% CI = [0.24, 0.30], p < 0.001,
IQR = 5,027,268) and a 0.035 μg/m³ increase in EC concentrations (95% CI = [0.032, 0.038], p < 0.001,
IQR = 5,055,969) in Model 1. After adjusting for demographic covariates, the beta coefficient decreased to 0.16
for PM2.5 μg/m³ (95% CI = [0.13, 0.19], p < 0.001) and to 0.021 μg/m³ for EC (95% CI = [0.019, 0.024],
p < 0.001) (Table 5).

An IQR increase in LDwas associated with a 0.15 μg/m³ increase in PM2.5 concentrations (95% CI= [0.13, 0.17],
p < 0.001. IQR = 414) and a 0.017 μg/m³ increase in EC concentrations (95% CI = [0.016, 0.019], p < 0.001,
IQR= 417) before controlling for demographic covariates (Model 1). After the addition of demographic variables
in the model, an increase of 0.10 μg/m³ and 0.014 μg/m³ were associated with a IQR increase in the number of LD
for PM2.5 (95% CI = [0.08, 0.12], p < 0.001) and EC (95% CI = [0.012, 0.015], p < 0.001), respectively.

In Model 1, an IQR increase in the number of PS was linked to a 0.26 μg/m³ rise in PM2.5 concentrations (95%
CI = [0.23, 0.30], p < 0.001, IQR = 5,692) and a 0.031 μg/m³ increase in EC concentrations (95% CI = [0.027.
0.034], p < 0.001, IQR= 5,790). After adjusting for demographic covariates, the beta coefficient changed to 0.21
for PM2.5 (95% CI = [0.18, 0.24], p < 0.001) and 0.021 for EC (95% CI = [0.019, 0.024], p < 0.001). Overall,
adjusting for covariates lowered the coefficient estimates for all models (population variable only lowered the

Figure 2. Temporal trends of warehouse characteristics from 2000 to 2019. The temporal change in warehouse characteristics by five major counties, specifically the
number of construction and rentable building area (RBA), are demonstrated in this figure. (a, b) Show the annual increase in the number of newly constructed
warehouses and their sum of RBA in ft2, while (c) displays the annual average of RBA increase.
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models for PS and not the others), yet the significant association between
warehouse capacity and pollutant concentrations persisted.

The linear regression models for 5‐year rolling intervals established signifi-
cant associations between an increase in all warehouse capacity variables and
elevated PM2.5 and EC concentrations for all time periods (Figure S2 in
Supporting Information S1). Specifically, we observed a consistent
decreasing trend in beta coefficients between warehouse variables and PM2.5

concentrations over time. The beta coefficient for the association between EC
and warehouses increased from 2003 to 2008, peaked at the 2004–2008
period, and began to decrease in the 2005–2009 period. The association be-
tween PM2.5 and EC and warehouses increased subtly during the 2011–2015
period for all characteristic variables.

4. Discussion
In this study, we explored the relationship between air pollution, warehouse
capacity, and their disparate impact on disadvantaged groups in Southern
California from 2000 to 2019. Our results revealed that increases in ware-
house capacity were associated with higher concentrations of PM2.5 and EC in
local communities, leading to elevated exposure for socially disadvantaged
groups residing near these facilities. First, our results supported the significant
contribution of warehouses to elevating pollution concentrations within the
ZIP codes in which they were located. Previous literature has identified a
positive relationship between the accumulation of the warehouse facility and
the increase in local air pollutant emissions (Shearston et al., 2020), primarily
attributed to the heavy‐duty diesel trucks and train emissions essential to
warehouse operations (deSouza et al., 2022; Grondys, 2019). With the
ongoing expansion of warehouse facilities, especially the disproportionate
increase in the Inland Empire region, major pollutants such as PM2.5 and EC,
a prominent byproduct of heavy‐duty diesel vehicles (Ji et al., 2019), are
anticipated to continue to adversely impact nearby environments. The results
of our mixed‐effect models were consistent with previous findings (deSouza
et al., 2022; Yuan, 2021) and indicated a positive relationship between in-

creases in all selected warehouse variables and elevations in both PM2.5 and EC across the study domain. Spe-
cifically, increases in RBA, the number of LD, and the number of PS would each individually lead to an increase
in the average PM2.5 and EC concentration within the study domain.

In addition to the effects of individual warehouse capacity, our comparative analysis further revealed that ZIP
codes with the presence of warehouses consistently exhibited higher levels of both PM2.5 and EC despite the
interannual variations. We also observed that from November to January, the difference of PM2.5 concentrations
between warehouse‐concentrated areas and ZIP codes with no warehouses increased significantly. Although the

regional average PM2.5 concentrations during these months are lower
compared to October, the differences across regional groups remained the
highest. These results highlighted the effect of warehouses on local pollution,
as the months with elevated differences in pollution concentration coincided
with major shopping seasons such as Thanksgiving, Christmas, and New
Year. These holidays corresponded to peak sales in e‐commerce and heavy
demands for product storage and shipping. Our results also recognized the
effectiveness of previous efforts in regulating diesel emissions, as the asso-
ciation between warehouse capacity and PM2.5 concentrations in 5‐year
rolling intervals has reduced over time. More specifically, the association
between warehouse capacity and EC started to decrease after the 2004–2008
period, which coincided with the EC regulation implemented in California in
2007 (Mousavi et al., 2018). The observed uptick in the 2011–2015 period
across the association between PM2.5, EC, and warehouse variables could be

Table 2
Annual Summary of Newly Constructed Warehouses, 2000–2019

Year

Rentable building
area (RBA) in ft2

Number of
loading docks

Number of
parking spaces

Median IQR Median IQR Median IQR

<2000 35,791 35,358 4.00 6.00 48.00 54.00

2000 54,493 81,014 6.00 15.00 81.00 96.00

2001 46,663 70,450 5.00 14.50 63.50 74.75

2002 41,461 44,702 4.00 13.00 60.00 58.00

2003 39,587 43,463 5.00 6.00 60.00 45.50

2004 32,313 31,866 4.00 4.75 56.00 60.00

2005 34,840 39,277 5.00 10.00 53.00 45.25

2006 41,819 69,851 4.00 17.00 68.00 82.00

2007 31,914 40,221 4.00 19.00 50.50 56.25

2008 45,867 73,641 14.00 20.00 60.00 74.00

2009 42,040 43,213 4.00 6.00 48.00 43.00

2010 31,767 32,748 6.00 9.00 50.00 65.50

2011 33,921 81,059 2.50 17.50 45.50 46.00

2012 162,564 270,290 51.00 58.00 112.00 127.50

2013 142,053 166,733 37.50 35.00 116.50 187.00

2014 96,408 161,447 16.00 28.00 76.00 78.00

2015 99,998 130,585 12.00 21.00 121.00 125.50

2016 85,042 90,914 14.00 13.00 66.00 78.00

2017 63,284 92,358 7.00 19.00 84.00 93.00

2018 63,654 78,951 6.00 11.00 86.00 80.00

2019 94,706 159,468 9.00 14.00 111.00 120.00

All 37,424 41,515 4.00 8.00 50.00 59.00

Table 3
Mixed‐Effect Models for Demographic Distribution and Warehouse
Presence

Warehouse presence

β 95% CI P value

% Racial/ethnic minority 3.29 [1.91, 4.67] <0.001*

% Education under high school 1.90 [0.69, 3.12] 0.002*

% Population over age 65 − 2.29 [− 3.33, − 1.25] <0.001*

Median household income 2,975 [5,835, 133] 0.036*

Note. This table used presence of warehouse in ZIP codes (0 or 1) to compare
the demographic distribution between regions. (*) Indicates p value < 0.05.
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attributed to a complex interplay of factors. This observation aligns with previous studies conducted at the Ports of
Los Angeles and Oakland, which also reported unexpectedly higher emissions in 2015 (Haugen & Bishop, 2018;
Preble et al., 2018). Both studies suggested that the significant deterioration of Diesel Particulate Filters in older
trucks, which were subsequently repaired or replaced in later years, could be a major factor influencing the overall
emission rates measured in the study area, given the overlap of the study domain and period (Haugen &
Bishop, 2018; Preble et al., 2018). Collectively, our findings suggest that expansion in warehouse capacity was
responsible for the increase in PM2.5 and EC levels regionally, especially during times of higher product demands.
Meanwhile, continuous efforts in diesel control programs have had potential mitigating effects on warehouse‐
associated emissions over the long term.

Furthermore, our linear mixed‐effect models for demographic variables and warehouse presence showed that ZIP
codes with warehouses had higher percentages of socially disadvantaged populations, which subjected them to
elevated air pollution. The issue of health inequity was identified as a critical concern in environmental health, as
social determinants of health pose exacerbating effects on the exposure levels for disadvantaged populations and
increase susceptibility to various health outcomes (Jbaily et al., 2022). Previous studies have demonstrated
existing disparities in air pollution exposure among socially disadvantaged populations (Bell & Ebisu, 2012;
Chambliss et al., 2021; Liu et al., 2021; Rosofsky et al., 2018). Our results aligned with previous findings and
identified that racial/ethnic minorities, those with lower levels of education, and those with lower median
household incomes were found to live in proximity to warehouses at higher percentages compared to others.
Many factors could potentially lead these socially disadvantaged groups to reside close to warehouse facilities. On
the one hand, the expansion of warehouses leads to an influx of job opportunities, attracting younger age groups
and lower‐income individuals to reside in proximity for better work access. On the other hand, racial, and ethnic

Table 4
Annual Average of PM2.5 and Elemental Carbon (EC) Concentrations

PM2.5 EC

Year Warehouse concentrated Control Warehouse concentrated Control

2000 18.79 17.31 1.33 1.17

2001 20.02 18.73 1.16 1.02

2002 18.75 17.48 1.00 0.89

2003 17.77 16.58 1.06 0.93

2004 16.27 15.80 1.05 0.93

2005 14.41 13.49 1.14 1.01

2006 13.33 12.35 1.14 1.00

2007 13.88 13.66 1.21 1.08

2008 12.71 12.27 1.12 0.97

2009 12.51 11.86 0.92 0.80

2010 10.23 10.09 0.93 0.81

2011 10.85 10.46 1.02 0.90

2012 11.03 10.82 0.83 0.74

2013 10.16 9.91 0.71 0.64

2014 10.03 9.48 0.74 0.65

2015 9.75 8.98 0.87 0.75

2016 8.90 8.53 0.68 0.60

2017 12.28 12.11 0.81 0.72

2018 12.96 12.77 0.68 0.62

2019 N/A N/A 0.82 0.73

Total mean 13.37 ± 4.57 12.77 ± 4.15 0.96 ± 0.37 0.85 ± 0.31

Note. The concentrations of PM2.5 and EC are both reported in μg/m³. PM2.5 and EC concentrations were compared between
ZIP codes with and without warehouse presence. The mean differences for both PM2.5 and EC during 2000–2018 were
statistically significant (p < 0.05 for PM2.5 and p < 0.001 for EC).
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minorities, who are more likely to face marginalization, often have limited choices in residential locations due to
factors such as housing prices, living expenses, and the presence of established communities that share their
similar social vulnerabilities in the regions. While our analysis revealed that warehouse‐concentrated areas have
higher percentages of vulnerable groups than other regions, we did not find a higher representation of individuals
aged over 65 in these areas. A possible explanation is that the elderly, who are typically retired and often prefer
serene living environments, are likely to choose residential locations away from highly industrialized areas
(Duncombe et al., 2003). Although fewer elderly people reside near warehouse‐concentrated areas, this popu-
lation should not be ignored given their increased susceptibility to urban air pollution‐associated diseases
(Delgado‐Saborit et al., 2021; Gong et al., 2005) and the effect of intersectionality, which becomes significant

Figure 3. Changes in annual average PM2.5 and elemental carbon concentrations from 2000 to 2019. PM2.5 concentrations were available through 2000–2018. Blue
shows the annual average for warehouse concentrated regions while orange shows which of the control regions. Blue and orange dash lines indicate trend lines for
warehouse group and control group, respectively. Panels (a, b) present annual trends for PM2.5, while (c, d) display annual trends for EC. Panel (e) compares PM2.5
trends between zip codes with and without warehouses, and panel (f) compares EC trends between these zip codes.
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when elderly populations also possess one of more other identified vulnerable characteristics (Alvarez
et al., 2022). Despite the emerging environmental injustice concerns associated with the warehouse boom, the
specific health impacts of warehouse‐induced air pollution remain understudied, particularly among vulnerable
populations. Further epidemiological studies are warranted to assess the susceptibility of socially disadvantaged
groups to health issues directly linked to air pollution from warehouses. Addressing this knowledge gap is critical
for developing targeted interventions and policies that protect the most vulnerable communities.

There are several strengths in our study. Previous studies exploring urban air pollution have identified many
limitations among current air quality monitoring systems in highly industrialized regions. For example, Shearston
et al. suggested the incapability of their ground monitors to provide sufficient spatial and temporal coverage of air
pollutant concentrations near warehouses, as their data were limited to a few sites and to the period when the

monitors were in operation (Shearston et al., 2020). A similar study by
deSouza et al. addressed this limitation by utilizing satellite driven data and
investigated effects of mega‐warehouses (>100,000 ft2) on local PM2.5

concentrations, but only covered a relatively short study period (2015–2017)
and in much broader perspective (deSouza et al., 2022). Our study went
further by utilizing long term satellite‐driven pollution data to capture spatial
trends for PM2.5 and EC, an important tracer of diesel emissions, within the
study domain for two decades, while incorporating warehouses of all sizes.
The consistent data sources and their broad coverage in space and time
allowed us to address the association between warehouse activities and
elevated local air pollution from a chronic perspective. By including 20 years
of data, we identified populations that have historically been and continues to
be more affected by warehouse associated air pollution.

Our study also has a few limitations. First, we assumed that all reported
warehouse capacities were accurately recorded and that their operational
statuses and air pollution emissions remained constant throughout our study
period. The Costar data set. although being the most extensive real estate
database recording warehouse information in the US, it does not provide any
quality assurance on the completeness of the data (Kerr et al., 2024). How-
ever, some warehouses constructed in earlier years might have closed or
altered their operations, potentially introducing biases into our analysis.
Additionally, our study lacks a comprehensive sensitivity analysis regarding

Table 5
Mixed Effect Models for Pollution Concentration and Warehouse
Characteristics

PM2.5 EC

β 95% CI P value β 95% CI P value

Rentable building area

Model 1 0.27 0.24, 0.30 <0.001* 0.035 0.032, 0.038 <0.001*

Model 2 0.16 0.13, 0.19 <0.001* 0.021 0.019, 0.024 <0.001*

Loading docks

Model 1 0.15 0.13, 0.17 <0.001* 0.017 0.016, 0.019 <0.001*

Model 2 0.10 0.08, 0.12 <0.001* 0.014 0.012, 0.015 <0.001*

Parking spaces

Model 1 0.26 0.23, 0.30 <0.001* 0.031 0.027, 0.034 <0.001*

Model 2 0.21 0.18, 0.24 <0.001* 0.021 0.019, 0.024 <0.001*

Note. This table used warehouse variables as exposures and PM2.5/EC as
outcomes. The β coefficients and 95% confidence intervals are reported in 1
IQR increase. (*) Indicates p value < 0.05. For PM2.5, IQR
(RBA) = 5,027,268, IQR (LD) = 414, IQR (PS) = 5,692; For EC, IQR
(RBA) = 5,055,969, IQR (LD) = 417, IQR (PS) = 5,790.

Figure 4. Monthly average of PM2.5 concentrations for ZIP code with and without warehouse presence were compared.
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the sources of PM2.5 and EC emissions. The data sets used, specifically from Di et al. (2019) and Amini
et al. (2023), include PM2.5 and EC emissions from all sources, not exclusively those associated with warehouse
activities. During the two‐decade study period, emissions from various source sectors, such as electricity gen-
eration and non‐warehouse related traffic emissions, have substantially reduced, while other sources, such as
wildfire related air pollution, remained in higher levels. Given the lack of specific data on the contributions from
these other sources over space and time, we were unable to evaluate the sensitivity of our mixed‐effect models to
changes in these sectors. To address this limitation to some extent, we compared PM2.5 and EC concentrations in
ZIP codes with warehouses to nearby ZIP codes without warehouses. While this comparison is not perfect, it
provides a current method for considering the impact of warehouses on air pollution. As a result, our conclusion
on the significance of warehouse emission on local air pollution should be interpreted with caution. It is possible
that other factors, such as seasonal variations (e.g., wildfires) and reductions in emissions from other sectors,
could have influenced the observed changes in air pollution levels. Additionally, the presence of strong positive
spatial autocorrelation in PM2.5 concentrations (Moran's Index = 0.93, p < 0.001), indicating significant clus-
tering that we were unable to fully account for in our models. This may lead to potential bias in our regression
estimates and affect the robustness of our regional analysis. Future research should aim to incorporate more
granular data on the contributions of various emission sources, as well as temporal and spatial variations, to
provide a more robust analysis. Despite these limitations, our findings contribute valuable insights into the as-
sociation between warehouse expansion and air pollution exposure, highlighting the need for further investigation
into this important issue. Incorporating epidemiological analysis, such as exploring the susceptibility of socially
disadvantaged populations to diseases associated with air pollution near warehouses, would further contribute to
understanding the effects of warehouse expansion from a population perspective.

This study's timeframe concludes prior to the onset of the COVID‐19 pandemic, which brought unprecedented
changes to many sectors, including e‐commerce and logistics. During the pandemic, quarantine measures and
social distancing mandates led to a significant surge in online shopping (Szász et al., 2022), thereby increasing the
demand for warehouse space and related activities. This heightened demand likely accelerated the expansion of
warehouse facilities to accommodate the increased volume of goods being stored and distributed. However, the
pandemic also posed challenges to warehouse operations. Lockdowns and health restrictions meant that work-
force availability was reduced, impacting the ability to maintain normal operational levels. This dual effect—an
increased demand for warehouse services but a constrained ability to operate fully—introduces complexities in
understanding the overall impact on air pollution during this period. Given these factors, it is essential to conduct
further research to explore how the COVID‐19 pandemic has influenced the relationship between warehouse
expansion and air pollution, thus develop a clearer understanding of the long‐term implications of the pandemic
on warehouse operations and associated environmental impacts.

5. Conclusion
In the present study, we used satellite driven data sets to investigate the association between warehouse capacity,
ambient PM2.5 and EC concentrations, and demographic characteristics in Southern California from 2000 to 2019.
Our results revealed that the presence of a warehouse is associated with a higher level of PM2.5 and EC con-
centrations in their proximity, especially from November to January. Vulnerable population groups living in
proximity to the warehouses, such as racial/ethnic minorities, those living under poverty, and those with lower
levels of education, were disproportionately exposed under higher air pollution. The evident association between
warehouse capacity and air pollution, along with its disproportionate impact on socially disadvantaged com-
munities, suggests the need for further interventions in emission managements, specifically in areas with a high
density of warehouses and near communities of vulnerable populations. Our research contributes to the ongoing
efforts to understand air pollution distribution in urban environments, provides evidence to support future in-
terventions for vulnerable populations, and promotes environmental justice in the context of urban air pollution
studies.
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Data Availability Statement
The data supporting the findings of this study are available from several sources under different access conditions.
Satellite‐driven estimates of annual and monthly mean PM2.5 concentrations at 1 km resolution in California from
2000 to 2016 are openly accessible as described by Di et al. (2019, 2021) at NASA Socioeconomic Data and
Applications Center (SEDAC) (https://sedac.ciesin.columbia.edu/data/set/aqdh‐pm2‐5‐concentrations‐contig-
uous‐us‐1‐km‐2000‐2016). The annual mean elemental carbon (EC) concentrations at 1 km spatial resolution
from 2000 to 2019 described by Amini et al. (2023) are also available at SEDAC (https://sedac.ciesin.columbia.
edu/data/set/aqdh‐pm2‐5‐component‐ec‐nh4‐no3‐oc‐so4‐50m‐1km‐contiguous‐us‐2000‐2019). Warehouse data
are available for purchase from the Costar Realty Information, Inc. (https://www.costar.com). The demographic
dataset was processed originally by Ma et al. (2022) and the directions are available at the repository (https://
github.com/schwartzgroup/census‐ses‐covariates). The data for PM2.5 concentrations on the ZIP code level from
2017 to 2018 and the code employed in this research is openly available at the Zenodo repository (Yang, 2024)
under an open‐source license.
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