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Abstract

spastic CP and controls at single CpG site resolution.

subjects with 73% accuracy.

epigenetic assay capable of distinguishing a CP cohort.

Background: Spastic cerebral palsy (CP) is a leading cause of physical disability. Most people with spastic CP are born
with it, but early diagnosis is challenging, and no current biomarker platform readily identifies affected individuals. The
aim of this study was to evaluate epigenetic profiles as biomarkers for spastic CP. A novel analysis pipeline was employed
to assess DNA methylation patterns between peripheral blood cells of adolescent subjects (14.9 + 0.3 years old) with

Results: Significantly hypo- and hyper-methylated CpG sites associated with spastic CP were identified. Nonmetric
multidimensional scaling fully discriminated the CP group from the controls. Machine learning based classification
modeling indicated a high potential for a diagnostic model, and 252 sets of 40 or fewer CpG sites achieved near-perfect
accuracy within our adolescent cohorts. A pilot test on significantly younger subjects (4.0 + 1.5 years old) identified

Conclusions: Adolescent patients with spastic CP can be distinguished from a non-CP cohort based on DNA methylation
patterns in peripheral blood cells. A clinical diagnostic test utilizing a panel of CpG sites may be possible using a simulated
classification model. A pilot validation test on patients that were more than 10 years younger than the main adolescent
cohorts indicated that distinguishing methylation patterns are present earlier in life. This study is the first to report an
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Background

Cerebral palsy (CP) is a complex group of conditions
that are difficult to diagnose [1-4]. Together, the CPs
represent the most common physical disability in child-
hood, with a prevalence of 1 in 323 children [5]. Spastic
CP is the most frequent type accounting for 77% of
cases [5]. Spastic CP affects movement and posture with
accompanying activity restrictions and disability that im-
part a very high burden on patients, families, and soci-
ety. Medicaid data show that annual medical costs are
10-26 times higher for children with CP [6], and prob-
lems continue into adulthood with poor access to care,
lower employment, absenteeism, disability, and
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premature death among CP patients having significant
impacts [7].

CP arises from a disturbance in the brain, which in most
cases occurs prenatally between 24 weeks gestation and
birth [2, 8]. Intervention during the early postnatal phases
of neuromotor maturation could significantly decrease CP’s
profound effects, but despite advances in developmental
monitoring, screening, and medical evaluation, the diagno-
sis of CP remains a considerable challenge [1-4]. In
addition, although CP starts in the brain, brain imaging
data do not correlate well with CP. Studies indicate that
20-33% of infants who developed CP lacked detectable
brain abnormalities on cranial ultrasound evaluation, and
MRI and CT imaging data suggest that at least 17% of
known CP patients have no detectable brain malformation
[9, 10]. Many children exhibit brain imaging indicative of
CP even though they do not develop CP [11], and although
imaging approaches have shown promise as prognostic

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2224-0&domain=pdf
http://orcid.org/0000-0001-9706-0752
mailto:robert.akins@nemours.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Crowgey et al. BVMIC Bioinformatics (2018) 19:225

tools for children with CP, imaging may not be a reliable in-
dicator of CP [12].

The potential benefits of biomarkers for CP are
well-recognized; unfortunately, several promising bio-
marker studies investigating umbilical cord serum con-
centrations of S100B, neuron-specific enolase, the total
soluble form of the receptor for advanced glycation
end-products [13], IL-8, IL-1p, and TNF-a [14], and um-
bilical cord blood magnesium concentration [15] were
unable to distinguish CP from non-CP patients within
statistical significance [13—15]. Genetic approaches have
also received attention, but genomic studies indicate sig-
nificant heterogeneity in CP with genetic variants having
a burden of 2-14% [16, 17], indicating gene sequence
analysis focused solely on variants may be of limited use
in the diagnosis of CP.

The onset of spastic CP has been associated with hyp-
oxia, infection, inflammation, and growth restriction
[18-20]. Current research indicates that hypoxic expos-
ure, bacterial infection, inflammation, growth restriction,
and early life trauma or stress are associated with alter-
ations in DNA methylation patterns [21-28]. Further-
more, sustained epigenetic pattern differences have been
identified after prenatal exposure to famine [29], sup-
porting the notion that stress on a developing fetus can
alter DNA methylation patterns long-term. Based on
these observations, we hypothesized that children and
adolescents with spastic CP have specific methylation
patterns that distinguish them from a non-CP cohort.

Typical DNA methylation sequencing platforms de-
pend on harsh chemical treatments to mutate unmethy-
lated cytosine bases, such as bisulfite oxidation, which
when applied to NGS for analysis leads to computational
complexities in aligning mutated sequence reads back to
a reference genome. Array based hybridization methods
are also commonly used because of their lower cost, but
arrays are restrictive in interrogating only a limited num-
ber of regions of interest by targeted probes. Here we
utilize a non-biased, methyl-sensitive restriction enzyme
approach coupled with rigorous statistical modeling for
reconstructing cytosine methylation status from NGS
data files to identify unique genome-wide DNA methyla-
tion patterns associated with a diagnosis of spastic CP.

Method

Subject enrollment and sample processing

Twenty-two subjects with a diagnosis of spastic CP and
21 control subjects were enrolled in an IRB-approved
study at the Nemours - Alfred I. duPont Hospital for
Children after informed consent/assent. Samples were
collected and banked from 2014 to 2016 by the
Neuro-Orthopedic Tissue Repository at Nemours. The
control cohort comprised children with an idiopathic
condition, a diagnosis that was unrelated to CP, or an
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injury. Subjects with a chromosomal disorder, degenera-
tive neurological disease, or muscular dystrophy were
excluded.

Blood collected in K,EDTA-containing Vacutainer
tubes (BD, Franklin Lakes, NJ) was centrifuged at
1300xg for 10 min and the entire white blood cell layer
was collected and stored at — 80 °C. Total white blood
cell populations without further cell purification were
used for DNA isolation. Genomic DNA was isolated
from the collected cells using Gentra Puregene Kits
(Qiagen, Valencia, CA). DNA quantity and purity were
assessed using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE) and an Agi-
lent 4200 Tapestation (Santa Clara, CA). All samples
had a DNA Integrity Number > 8.5 indicating substan-
tially intact DNA.

Library preparation and DNA methylation next
generation sequencing

DNA libraries were prepared from methyl-sensitive re-
striction endonuclease (MSRE) [30, 31] fragmented gen-
omic DNA (gDNA) using Hpall, which recognizes C
(CpG) G sites. A standard sequencing protocol was then
performed including randomized shearing (Covaris, Wo-
burn, MA) and synthesis of a gDNA fragment library
using Illumina TruSeq Nano library synthesis kits (San
Diego, CA). Next generation sequencing (NGS) was per-
formed on an Illumina x10 platform by Macrogen USA
(Rockville, MD). The protocol generated single end
reads (150 bp) with >20x coverage of the regions cap-
tured. FASTQ data files were processed to calculate the
probability of methylation at individual CpG sites
through a commercial bioinformatics pipeline and soft-
ware platform (Genome Profiling, Newark, DE). For
convenience, the term “CpG” in this paper refers to “C
(CpG) G” Hpall restriction sites. Validation of the Hpall
approach was carried out using “spike in” DNA se-
quences synthesized with known methyl-CpG compos-
ition (see Additional file 1: Figure S1).

Statistical analysis

Analysis focused on methylation at individual CpG sites.
Metrics were derived from the sequencing output files
(FASTQ) and utilized to derive a score proportional to
the probability that a specific CpG site was methylated
within the mixed population of peripheral blood cells
collected for each subject. Differential methylation pat-
terns between the groups were identified using a
non-metric multidimensional scaling (NMDS) ordin-
ation analysis [32]. Comparisons across samples were
used in a retrospective analysis to identify patterns that
were highly conserved within each group while also di-
verging between groups. The open-source statistical en-
vironment “R” (https://www.r-project.org/) was used for
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analysis including the module vegan, which contains ro-
bust ordination routines.

To identify the CpG sites contributing most significantly
to differences in methylation, we employed algorithms de-
signed for differential gene expression using a hybrid of
modules from the R-packages, edgeR and limma [33, 34] to
execute pairwise comparisons (control vs. CP) for each
CpG site. The smaller response scale of the methylation
data is well within the operational boundaries of the data
distributions (log-scale) of gene expression data sets and
the well-developed false-discovery rate calculations in these
expression packages are quite robust for the normally dis-
tributed linear data of methylation scores. Methylation dif-
ferences were compared for single CpG sites using tagwise
dispersion for site-specific false discovery rate correction
applied to each pairwise comparison. Statistical significance
was evaluated using a Likelihood Ratio Test with a one-way
ANOVA-like contrast (LRT-ANOVA).

To evaluate methylation profile shifts across higher gen-
ome structure scales, differential methylation load (AML)
was first calculated as CpG site specific differences be-
tween groups. These methylation differences were
summed across 1 Mbp intervals and normalized by the
total number of CpG sites present. Positive AML values
indicated more methylation in the control group; negative
values indicate more methylation in the CP group.

Gene annotations

Gene annotations were derived from the ENSEMBL
database with UniProt gene identifiers with their defined
promoters, 5° UTRs, exons, introns, and CpG Islands
(accessed through the UCSC Genome Browser at
https://genome.ucsc.edu/index.html). Annotated sites
were assigned to functional groups and pathways using
hierarchical levels defined in KEGG biological pathway
and GO gene ontology classification schemes. Here we
report primary results using the UniProtKB gene identi-
fiers with AML values calculated across the fully defined
gene body domain (inclusive of 2 kb upstream promoter
domains). Gene-level bioinformatics analysis of the data-
sets were carried out using the system biology tools
Cytoscape v3.3.0 [35] and the reactomeFI plugin (data-
base 2015) [36].

Results

Methylation patterns were analyzed in 32 genomic DNA
samples from peripheral blood cells: 16 subjects with a
diagnosis of spastic CP (13 males, 3 females; age = 14.7
+3.3) and 16 controls (15 males, 1 female; age = 15.0 +
2.2). There were no significant differences in differential
counts for nucleated blood cells between the CP and
control cohorts (p >>0.05). Whole genome methylation
patterns were acquired by NGS after methylation sensi-
tive restriction endonuclease (Hpall) digestion. The
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hg19 reference genome assembly from the University of
California Santa Cruz (UCSC) includes 2.29 M Hpall
target C (CpG) G motifs, which represent ~ 15% of the
14 M CpG sites in the haploid hgl9 genome. When the
Hpall restricted sites in our 32 samples were aligned,
1,468,477 sites were in common across all subjects.

To assess if discrimination between the CP and
non-CP groups was possible, an ordinate analysis tech-
nique of non-metric multidimensional scaling (NMDS)
was performed. NMDS is an iterative, rank-based ap-
proach that collapses complex, multi-dimensional data-
sets into a small number of components that represent
the differential relationships within the original data.
NMDS allows visualization of patterns that are con-
served within groups but that diverge between groups.
All potentially informative CpG sites (1 =61,278 out of
the 1,468,477), which were defined a priori as having be-
tween group methylation score differences of at least
10%, were integrated as one pattern. The two primary
ordinate axes showed a strong discrimination between
the CP and non-CP subjects (Fig. 1a).

To determine whether the methylation pattern differ-
ences between the groups were associated with specific
genetic regions, AML scores, which were calculated as
the mean difference between CP and control groups,
were mapped to high-level KEGG functional classifica-
tions and gene structure categories (Fig. 1b). There was
a striking prevalence of altered methylation in 5 un-
translated regions (UTR) and in upstream promoter
domains.

A volcano plot (Fig. 2a) shows the distribution of the
147 M CpG sites plotted as the log, of the
fold-difference between CP and control versus the nega-
tive log of the false discovery rate (FDR) corrected
p-values for each CpG site comparison (- 1*log, [FDR]).
Pairwise comparison of individual CpG sites using a
Likelihood-Ratio Test (LRT-ANOVA) revealed 6588 dif-
ferentially methylated CpG sites with significant p-values
after FDR correction (p [FDR]<0.05); 2809
hypo-methylated and 3779 hyper-methylated sites in the
CP cohort. The 200 top-ranked CpG sites (Additional
file 1: Table S1) were subjected to hierarchical clustering
and visualized using a heat map plot based on the %
methylation for each site (Fig. 2b), which revealed sets of
CpG sites with concordant methylation patterns. These
results support the notion that differences in DNA
methylation patterns between the two cohorts had dis-
tinguishable levels of organization (see also Additional
file 1: Figure S2). Of the 6588 differentially methylated
CpG sites, 2903 were located within annotated gene
bodies and 3685 were un-annotated (relative to the
UCSC Genome Browser defined gene bed file for hg19).

For additional visualization of high-level, genome-wide
methylation, Fig. 3 shows differential methylation loads


https://genome.ucsc.edu/index.html

Crowgey et al. BMIC Bioinformatics (2018) 19:225

Page 4 of 10

0.06-

Patients:

@ Control

Ocp
0.03-

0.00-

Ordinate Axis 2

-0.03-

-0.06- v
0.00
Ordinate Axis 1

number of genes scored in each category

Avg Gene Domain A-MetLoad
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(AML) across 1 Mbp segments mapped to chromosomal
locations for the top 200 individual CpG sites. Accentu-
ated AML differences were noted in chromosomes 9, 18,
19, and 22. In addition, at the level of individual CpG
sites, there was a distinct and apparently non-random
distribution of the top 200 sites concentrated in chromo-
somes 11 to 22.

Genes with demonstrable differences in methylation
load scores are presented in Additional file 1: Table S2.
Because the primary methylation signal being quanti-
fied pertains to circulating peripheral blood cells, there
is a prominent functional signal in the number of cyto-
kine signaling pathway components, which are catego-
rized as ‘olfactory signal pathways’ for genes originally
identified in small-molecule sensory transduction path-
ways. The majority of gene level methylation changes
can be traced to cell-surface signal reception and trans-
duction genetic components. Methylation loads at
higher levels of gene organization were assessed using
methylation densities, and pathway enrichment analysis
of the top 100 hypo and hyper differentially-methylated
genes identified six significantly (p-value < 0.05; FDR < 0.01)
impacted cellular signaling pathways: G-protein-coupled
receptors (GPCR) downstream signaling, olfactory
transduction, PI3K-Akt signaling pathway, signaling
by NOTCHI, signal recognition particle-dependent
co-translational protein targeting to membrane, and
protein export.

Given the strong separation signal evident in Fig. 1, and
the statistically significant differences seen in CpG site
methylation at multiple scales, we evaluated the potential
predictive value of differential CpG methylation as an epi-
genetic biomarker of spastic CP. An iterative, bootstrap
approach was constructed to sequentially evaluate CpG
combinations using linear discriminant analysis (LDA)
under the guidance of a machine-learning algorithm. We
developed an ML strategy that is similar to the way a ran-
dom forest walk would explore a response space, but with
the included dimension of an ensemble model approach
to integrate a multitude of predictive equations. Our goal
was to randomly select Cp@G sites for use in training and
test set samples from the main cohort (n =32, 16 CP and
16 non-CP) and to then execute a series of directed pre-
diction models that would be repeated sufficiently to sat-
urate the possible model response space.

For each model, a random set of between 15 and 40
CpG sites was selected from the top 200 CpG sites as
ranked by statistical significance in the LRT-ANOVA
pairwise tests (see Fig. 2). The 200th rank cutoff was
identified as a depth to which the most likely ‘best-pre-
dictors” would be found and to which the computational
complexity could be executed in a reasonable amount of
time (< 24 h) via distributed processing on a 36-core ser-
ver. CpG sites deeper in the list may still be relevant for
understanding the mechanism of action of the immune
system’s response to disease stress, but the predictive
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Fig. 2 CpG Statistical Comparisons Based on a Likelihood-Ratio-Test of a One Way ANOVA contrast. a Volcano plot with the frequency profile of p-values.
Data from the 147 million CpG sites in common across all samples are plotted. The x-axis is the log value for the fold-change (ratio) of CP to non-CP CpG
site methylation values and the y-axis is the log FDR value (gray = not significant, orange = p-value significant, and red = p-value after FDR significant). b
Heatmap Clustering of the top 200 CpG sites selected based on statistical p-value. There were 6588 CpG sites that were significantly different (p < 0.05
after false-discovery rate correction). Hierarchical clustering based on % methylationwas employed using the 200 CpG sites with the lowest p-values.
Quantitative differences in CpG site methylation by diagnosis were apparent. Each row represents the score for a single CpG site across all subjects

power of sites lower than the 200 cutoff would be un-
likely to improve the diagnostic power we have found
just using the top 200 sites. Eight controls and 8 CP sub-
jects were randomly chosen from the 32 adolescent sub-
jects to use as a training set for an LDA determination.
The remaining samples were used as the validation set
for scoring.

To factor out subject bias in the training and test set
selection, the LDA for each model was repeated 20 times
with different random subject selections. If the aggregate
sensitivity and specificity across all 20 replicates was >
98% and > 90%, respectively, that model set of CpG sites
was scored as a “good” model. At intervals (approx.
every 10,000 model evaluations), the performance of
CpG sites in the “good” models were ranked to increase
the selection of those sites in future tests. In this way,
potentially predictive models were developed from the
cohort of 32 adolescents. Overall, 6.8 million LDA runs
were evaluated on different CpG model sets. Despite the

potential confounding variables, we are confident that
the statistical approach primarily discriminated CP vs
non-CP differences because the accuracy of identifying
CP from non-CP subjects was not correlated with sex or
any other demographic variables available to us.

The approach yielded 252 sets of CpG sites that acted
as high-performing models with near-perfect internal ac-
curacy among the adolescent subjects in our original co-
hort. These machine-learning results strongly indicated
that diagnostic tests for spastic CP were possible using a
relatively small set (<40) of CpG sites. To test the pre-
dictive value of these CpG biomarker sets in
clinically-relevant samples, the LDAs for the 252 best
performing models were employed to “vote” on the iden-
tity of blinded samples from significantly younger sub-
jects closer to the age of typical diagnosis. 11 subjects, 6
CP patients (5 males, 1 female; age=3.7+1.5) and 5
control patients (4 males, 1 female; age = 4.2 + 1.4), were
evaluated.
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Fig. 3 CpG Methylation Load Ideogram Comparing CP and Control Cohorts. Mean differences in CpG methylation scores (AML; control minus CP)
were used to calculate a summation methylation load score at 1 Mbp intervals. AML is presented as the inside track using a scatter plot to show
higher methylation in controls (green), higher methylation in CP (red), and equivalent methylation in both (gray; abs|AML] is less than twice the
average AML for the whole genome). The particular "hotspots” that appear in chromosomes 9, 18, 19, and 22 could indicate allelic compositional
differences and potential gene targets for future functional and validation studies. The chromosomal locations of the top 200 CpG sites are
indicated in two rings by tick marks labeled with the gene name (or “NA” if there is no annotation) in which the CpG site is located. Those CpG
sites that had significantly higher methylation levels in the controls are in green. Those CpG sites that had significantly higher methylation levels
in the CP subjects are in red. The distribution of sites appears skewed toward chromosomes 11 to 22

A total of 5040 classification scores (20 LDA determi-
nations for each of 252 “good” CpG sets) were deter-
mined for the blinded samples. The probability
distributions of the polling LDA scores are shown in
Fig. 4a. In Fig. 4b, receiver operating characteristic
(ROC) curves are plotted from the actual true-positive
and false-positive rates observed in the patient classifica-
tion results of the younger cohort. A maximum theoret-
ical curve generated from saturated bootstrap sampling
of the older cohorts is also shown.

Discussion

Currently, the diagnosis of CP is based on the disruption
of normal development and movement and is therefore
limited in the ability to provide opportunities for early

intervention. A biomolecular screening assay that can
measure biomarkers in the blood, preferably collected at
the time of birth rather than the time of typical diagno-
sis, could allow for earlier diagnosis and intervention. A
major challenge with identifying such systemic markers
is the need to develop data-driven approaches that can
function without a priori knowledge. High throughput
genomic analyses provide opportunities for such ap-
proaches, but studies of CP cohorts have indicated sig-
nificant heterogeneity between subjects, and have
reported that genetic variants have a burden of 2-14%
depending on the study [16, 17]. Ultimately, gene se-
quence heterogeneity has limited the effective use of
genomic mutations as an early diagnostic of CP. To date,
DNA methylation assays have not been broadly applied
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in the study of CP biomarkers; however, recent studies
suggest that differences in the prevalence of CP in
monozygotic twins may be associated with alterations in
DNA methylation [37, 38], and numerous studies have
demonstrated that various stress stimuli, such as hyp-
oxia, infection, and inflammation, cause a long-lasting
change to DNA methylation patterns [22]. Utilizing a
novel epigenetic biomarker assay, this is the first report
demonstrating a retrospective model capable of identify-
ing CP samples based on blood DNA methylation
patterns.

Our approach utilized two primary analytic paths: or-
dinate based NMDS analysis of methylation patterns in
total, and site-paired, LRT-ANOVA-based contrasts for
individual CpG locations. In a retrospective,
pattern-level analysis, NMDS (Fig. 1 Panel a) revealed a
strong discrimination between the two cohorts, indicat-
ing that DNA methylation patterns were fundamentally
different between the spastic CP and non-CP groups.
The LRT-ANOVA analysis complemented those results
by identifying site-specific CpG % methylation changes
that drove the pattern differentiation between the groups
(Fig. 2). Plotting of the top 200 CpG sites (Fig. 2 Panel
b), revealed a distinct pattern between the cohorts ana-
lyzed and demonstrated consistent quantitative differ-
ences in CpG site methylation among related samples.
The volcano plot (Fig. 2 Panel a) shows the full distribu-
tion of observations in the data set with all comparisons

for the full set of 147 M CpG sites. The
statistically-significant CpG sites after false discovery
rate correction (7 =62,357; shown in red) include the
top 200 sites ranked by p-value that appear in the
methylation heatmap (Fig. 2 Panel b). These combined
results indicate that CpG methylation differences can be
resolved to individual CpG sites and that these may be
key in understanding how methylation patterns in CP
subjects may be associated with the presence of a disease
or stress state not present in control subjects. Under-
standing the cellular and biological antecedents of these
epigenetic changes could hold the key to utilizing epi-
genetic biomarkers in early disease diagnoses.

Assessing AML score (mean difference between CP
and control groups) demonstrated a prevalence of al-
tered methylation in 5° UTR regions for three of the
hierarchical KEGG functional categories (Fig. 1 Panel b).
Of interest, genetic information processing was one of
the three functional categories, suggesting that aberrant
DNA methylation patterns detected in the CP cohort are
disrupting fundamental processes, including transcrip-
tion, translation, and DNA replication and repair. The
chromosomal localization of the top 200 CpG site differ-
ences (Fig. 3) shows a skewed distribution of differen-
tially methylated sites concentrated across chromosomes
11 to 22. The particular “hotspots” that appear in 9, 18,
19, and 22 could indicate allelic compositional differ-
ences and reveal potential genes to target for future
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functional and validation studies. The approach of put-
ting CpG methylation events into both gene and
chromosomal contexts will likely help focus efforts to
understand why some epigenetic sites may be effective
biomarkers of spastic CP based on specific mechanisms
of action linked to disease onset, progression, or re-
sponse to disease stressors.

A simulated classification analysis, utilizing an iterative
boot-strap classification approach, strongly demon-
strated the power of methylation analysis with high sen-
sitivity and specificity (Fig. 4). Despite the small sample
size and > 10 year difference in subject ages between the
training sets and the validation set, the positive predict-
ive value (PPV) for the CpG-methylation biomarker test
was 67%, which outperformed the PPVs reported in
studies linking CP to movement assessment (24%), brain
imaging (32%), or combined movement plus imaging
measures (54%) [39]. In addition, a distinct classification
signal persisted with an overall accuracy of 73% and a
sensitivity of 100%. The sensitivity and overall accuracy
of the test were surprisingly strong given that the
LDA-based assessments were based entirely on much
older subjects despite potential effects of age on DNA
methylation patterns [40]. Thus, although the validation
testing on the younger cohort was not perfect and had
low specificity (40%) and an area under the ROC curve
of only 0.691, further refinement of the DNA methyla-
tion pattern approach to account for age differences is
expected to improve the specificity and the diagnostic
capability of the test.

Linking DNA methylation patterns in blood cells to spe-
cific health risks or diseases is an area of active research.
Recent studies describe blood cell epigenetic markers for:
pediatric cardiac risk [41], immune stress associated with
sclerosis [42], infant cerebral palsy markers in cord blood
[38], regulatory T cell imprinting as a marker for thera-
peutic efficacy [43], and immuno-profiling for specific dis-
ease / stress states [44]. These types of studies demonstrate
that information about past environmental exposures and
health/disease status are present in blood cell methylation
patterns and suggest that such alterations are present in the
hematopoietic stem cell populations that give rise to circu-
lating myeloid and lymphoid cells.

In the long-term, we seek to determine whether robust
and stable DNA methylation patterns exist in peripheral
blood that identify individuals with spastic CP early in life.
Such patterns in unfractionated blood cells would allow for
development of straightforward diagnostic approaches that
do not involve complex cell fractionation. Although not yet
definitive, the current results strongly support the possibil-
ity that a DNA methylation signal for spastic CP exists. The
methylation patterns detected in the peripheral blood sam-
ples used in the study likely arose from a combination of
early-life stress and the accumulation of other changes
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affecting hematopoietic stem cell populations over time. In
particular, blood stem and progenitor cells depend on
methylation for function but can also carry methylation
tags as a type of “epigenetic memory” [45]. We hypothesize
that the DNA methylation differences detected in the CP
cohort compared to the control cohort, resulted from in-
flammatory events associated with the onset of CP. Thus,
we suspect that the DNA-methylation fingerprint found in
the spastic CP cohort studied here was present earlier in life
and may represent a sustained biomarker for spastic CP.
This idea requires further investigation.

A limitation of the current study is our reliance of blood
samples from older children and adolescents. These sam-
ples were chosen for several reasons: the availability of age
matched controls presenting to the hospital for surgery,
the reliability of diagnosis in the cohort, and the limited
access to early-in-life blood samples. One of our future
goals is to screen subjects at time of birth using our devel-
oped method and mathematical modeling. Furthermore,
although this study was focused on spastic CP, analysis of
a broader range of CP phenotypes as well as samples from
subjects with other neuromotor and developmental condi-
tions is needed to assess the utility of the technical ap-
proach in broad clinical settings. Overall, however, the
described approach provides the first blood-based test to
distinguish reliably a cohort of subjects with spastic CP.

Conclusions

Overall, our early results strongly indicate that
potentially-diagnostic DNA methylation pattern differ-
ences may exist for spastic CP and that these differences
may persist across patient ages. A biomolecular screen-
ing assay based on blood biomarkers, preferably col-
lected at the time of birth rather than the time of typical
diagnosis, could allow for earlier diagnosis and interven-
tion than is currently possible. Although a full diagnostic
test will require significant development, our data indi-
cate that such a test may be possible based on the
analysis of peripheral blood cells utilizing advanced
epigenetic analyses.

Importantly, our genome-wide methylation analysis of
adolescent samples indicated that diagnostic models
with high specificity and sensitivity are possible and pro-
vided models that were able to distinguish young chil-
dren with spastic CP from controls. Implementation of a
clinical assay capable of distinguishing a subject at high
risk for CP at time of birth will enable earlier interven-
tion, which will hopefully impact disease progression.
Furthermore, the novel method described here for data
generation and analysis can be broadly applied to other
diseases. Implementing machine learning approaches for
high-scale genomics data is becoming essential, and will
drive our ability to robustly classify subjects into disease
and risk-stratification groups.
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