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Background: Adoptive transfer of genetically engineered T-cells to express antigen-specific T-cell receptor (TCR) is a feasible and
effective therapeutic approach for numerous types of cancers, including Epstein–Barr virus (EBV)-associated malignancies. Here,
we describe a TCR gene transfer regimen to rapidly and reliably generate T-cells specific to EBV-encoded latent membrane
protein-1 (LMP1), which is a potential target for T-cell-based immunotherapy.

Methods: A novel TCR specific to LMP1 (LMP1-TCR) was isolated from HLA-A*0201 transgenic mice that were immunised with the
minimal epitope LMP1166 (TLLVDLLWL), and LMP1-TCR-transduced peripheral blood lymphocytes were evaluated for functional
specificities.

Results: Both human CD8 and CD4 T-cells expressing the LMP1-TCR provoked high levels of cytokine secretion and cytolytic
activity towards peptide-pulsed and LMP1-expressing tumour cells. Notably, recognition of these T-cells to peptide-pulsed cells
was maintained at low concentration of peptide, implying that the LMP1-TCR has high avidity. Infusion of these engineered T-cells
revealed remarkable therapeutic effects and inhibition of tumour growth in a preclinical xenogeneic model. We observed
explosive ex vivo proliferation of functional TCR-transduced T-cells with artificial antigen-presenting cells that express co-
stimulatory molecules CD80 and 4-1BBL.

Conclusions: These data suggest that the novel TCR-targeting LMP1 might allow the potential design of T-cell-based
immunotherapeutic strategies against EBV-positive malignancies.

Significant progress in cancer immunology has been made in
understanding the roles of tumour-reactive T-cells that can
recognise and destroy malignant cells. Over the years, adoptive
transfer of antigen-specific T-cells, mainly cytotoxic CD8 T-cells,
has been applied as a safe and robust immunotherapeutic
procedure in patients to eliminate malignant cells and extend
survival without major complications (Riddell and Greenberg,
1995; Rosenberg et al, 2008).

Epstein–Barr virus (EBV) is associated with a broad range of
malignancies that are distinguished by three distinct patterns of

viral latency-related gene expression. Most successful clinical
outcomes were obtained with EBV-specific cytotoxic T-cells
against post-transplant lympho-proliferative disease, which
expresses the complete array of EBV-latency-III antigens in
transplant recipients (Gottschalk et al, 2005). However, EBV-
positive nasopharyngeal carcinoma, Hodgkin’s lymphoma (HL),
and NK/T-cell lymphoma typically express more limited and
weakly immunogenic EBV-latency-II antigens including latent
membrane protein 1 (LMP1) and LMP2. Particularly, LMP1 is a
transmembrane oncoprotein that mimics the tumour TNF receptor
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family members, capable of immortalising B-cells, and enhances
cell survival by increasing bcl-2 activity (Graham et al, 2010; Pratt
et al, 2012). Supported by this, although it is sometimes of low
expression or absent (Kanemitsu et al, 2012), LMP1 has been
proposed as an attractive target antigen for T-cell-based immu-
notherapy against EBV latency-II malignancies. Numerous reports
have shown that T-cells specific for the EBV-latency-II antigens in
patients are usually functionally impaired (Gandhi et al, 2007; Li
et al, 2007) or suppressed in tumour microenvironments
(Yamamoto et al, 2008; Fogg et al, 2013) and present in low
frequency (Fogg et al, 2009), but also possessing the therapeutic
potency and the capacity to be expanded with EBV-latency-II
antigens-loaded antigen-presenting cells (APCs) in vitro (Straathof
et al, 2005; Smith et al, 2006). Thus, several groups, including ours,
have developed in vitro stimulation protocols to facilitate the
generation of LMP1- and LMP2-specific T-cells and have
demonstrated objective long-lasting clinical responses (Bollard
et al, 2014; Cho et al, 2015b).

Despite their safety and apparent clinical effectiveness, there are
significant drawbacks for in vitro expansion of EBV-specific
T-cells, such as the relatively long manufacturing time, limited
availability, and comparably low avidity of effector T-cells.
Considering this, several groups have developed genetically
engineered T-cells with an extrinsic antigen-specific T-cell receptor
(TCR) or a chimeric antigen receptor (CAR) as an alternative
approach to rapidly manufacture large numbers of potent tumour-
reactive effector cells. Particularly, the clinical efficacy of TCR-
engineered T-cells has been successfully demonstrated in patients
with melanoma, synovial cell sarcoma, and multiple myeloma
using MART1- and/or NY-ESO1-specific TCR (Morgan et al,
2006; Robbins et al, 2011; Rapoport et al, 2015), similar to CD19-
targeted CAR-T-cells in patients with B-cell haematologic
malignancies (Porter et al, 2011; Lee et al, 2015). Likewise,
numerous groups have attempted to develop EBV-targeting
engineered T-cells, either with CAR targeting CD30 (Savoldo
et al, 2007) and CD70 (Shaffer et al, 2011), or with extrinsic TCR
specific to EBV nuclear antigen 3 (Schaft et al, 2006) and LMP2a
(Frumento et al, 2013; Xue et al, 2013; Zheng et al, 2015). However,
although LMP1 is considered as an attractive target to treat EBV-
positive malignancies, T-cells engineered with LMP1-specific TCR
have not been developed. Here, we report the functionality and
specificity of a novel murine TCR, which recognises an LMP1-
derived epitope presented by HLA-A*0201 molecules. Mainly, we
demonstrate that potent EBV-LMP1-specific T-cells can be
efficiently generated by TCR gene transfer and exponentially
expanded in vitro with artificial APCs regimen, suggesting
potential applications in T-cell-based immunotherapy against
EBV-associated diseases, including EBV-latency-II malignancies.

MATERIALS AND METHODS

Mice. Full-length HLA-A*0201-expressing transgenic (HLA-A2
Tg) mice (C57BL/6-Tg(HLA-A2.1)1Enge/J) and NSG mice
(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) were obtained from the
Jackson Laboratory (Bar Harbor, ME, USA). Animal experiments
were performed in accordance with our institutional animal care
committee guidelines.

Cell lines. K562, Jurkat, T2, and 293T cells were obtained from the
American Type Culture Collection (Manassas, VA, USA). EBV-
transformed B-lymphoblastoid cell lines (LCLs) were prepared
with EBV B95-8 strain and HLA-A subtypes were determined with
sequence-based typing. For K562-based transfectants, HLA-
A*0201, CD80, 4-1BBL, EBV-LMP1 (from EBV B95-8 strain),
and firefly-luciferase cDNA were cloned into the lentiviral vector
pCDH-EF1 (System Bioscience, Palo Alto, CA, USA). K562 cells

were first transduced with HLA-A*0201 (K-A2). Then, K-A2 cells
were transduced with EBV-LMP1 (K-A2LMP1) and sequentially
firefly-luciferase (K-A2LMP1/LUC). K-A2 cells were also transduced
with human CD80 and 4-1BBL for artificial APCs (K-A280/4-1BBL).
Stably viable clones were isolated with limiting dilutions, and gene
expression was verified by immunohistochemical analysis or flow
cytometry.

Peptides and reagents. Synthetic peptides representing CD8
T-cell epitopes WT1126 (RMFPNAPYL), LMP132 (LLLALLFWL),
LMP192 (LLLIALWNL), LMP1125 (YLLEMLWRL), LMP1159 (YLQ
QNWWTL), LMP1166 (TLLVDLLWL), LMP1167 (LLVDLLWLL),
and LMP1173 (WLLLFLAIL) at 485% purity were purchased from
A&A Labs (San Diego, CA, USA). Monoclonal anti-mouse CD40
(FGK45.5) was from BioXCell (West Lebanon, NH, USA). High
molecular-weight Poly-IC was from InvivoGen (San Diego, CA,
USA), and recombinant cytokines were from Peprotech (Rocky
Hill, NJ, USA). Fluorescence-conjugated antibodies were obtained
from eBioscience (San Diego, CA, USA).

Immunisation and T-cell clones. To generate LMP1166-specific
CD8 T-cells, HLA-A2 Tg mice were immunised intravenously with
2� 106 dendritic cells (DCs) pulsed with 10 mg ml� 1 LMP1166 for
18 h, and after 7 days, the mice received an intravenous TriVax-
immunisation. TriVax consists of a mixture of 150 mg LMP1166,
50 mg poly-IC, and 100 mg anti-CD40 antibodies. Eight days after
the booster-immunisation, intracellular IFNg-staining was per-
formed to measure the frequency of LMP1166-specific cytokine-
secreting CD8 T-cells. LMP1166-specific T-cell cloning was carried
out by following procedures with minor modification as described
(Chinnasamy et al, 2011; Rosati et al, 2014). Briefly, 1.5� 106 CD8
T-cells isolated from spleen were co-cultured with 5� 105

irradiated (6000 cGy) DCs pulsed with 5 mg ml� 1 LMP1166 in 24-
well plate. Seven days later, IFNg-EliSpot assays were performed.
Bulk cultured T-cells were cloned at single cells per well in
U-bottom 96-well plates with 3� 104 LMP1166-pulsed irradiated
(10 000cGy) T2 and 1� 105 irradiated (5000 cGy) splenocytes in
medium containing 50 IU ml� 1 IL-2 and 5 ng ml� 1 IL-7. Pro-
liferating T-cell clones were evaluated for responsiveness towards
LMP1166 using intracellular IFNg-staining.

Cloning of LMP1-specific, HLA-A*0201-restricted TCR. Total
RNA from T-cell clones was isolated using an RNeasy-mini kit
(Qiagen, Valencia, CA, USA), and TCRa/b genes were amplified
using SMART-RACE cDNA-amplification kit (Clontech, Moun-
tain View, CA, USA) according to the manufacturer’s instructions
with primers in the constant region of mouse TCRa and TCRb
chains (Chinnasamy et al, 2011) and sequenced. Amplified TCRa/
b genes were linked using two-step overlapping-PCR with primers;
TCRa-reverse; 50-cttccacgtcgccggcctgcttcagcagggagaagttggtggcgccg
ctgcctctcttcactctactggaccacagcctcagcgt-30; TCRb-reverse; 50-ttctcc
ctgctgaagcaggccggcgacgtggaagaaaaccctggcccc-30 encoding furin-
sensitive spacer RVKRGSG-P2A ribosomal-skip sequence
ATNFSLLKQAGDVEENPGP. The full-length modified TCR-
cDNA was cloned into pCDH-EF1 and sequenced.

Production and transduction of murine TCRs to peripheral
blood lymphocytes. The use of human material was reviewed and
approved by our Institutional Review Board. 293T-cells (8� 106

cells) were seeded in a 100-mm plate. Twenty hours later, 12 mg
cloned pCDH-EF1 and packaging plasmids (8 mg psPAX2, 4 mg
pMD2G) were simultaneously transfected using 50ml lipofecta-
mine-2000 (Invitrogen, Carlsbad, CA, USA), according to the
manufacturer’s instructions. Two days later, lentiviruses were
harvested and titrated into 293T cells. Peripheral blood lympho-
cytes (PBLs) were isolated from HLA-A2-positive healthy
volunteers. For pre-activation, 1� 106 PBLs were cultured with
anti-CD3/CD28-coated beads (1 : 1 ratio; Invitrogen) and
300 IU ml� 1 IL-2 for 2 days. Lentiviruses encoding murine TCR
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(MOI¼ 0.5) were added to the activated 5� 105 PBLs or Jurkat
cells, and centrifugation was performed at 2500 rpm for 1 h at
25 1C with 8mg ml� 1 polybrene (Sigma-Aldrich, St Louis, MO,
USA). Peripheral blood lymphocytes prepared identically without
transducing murine TCR were referred as a mock-transduced
control (PBLmock). Two days later, PBLs were evaluated for surface
expression and functional specificity of murine TCRs, and used in
most experiments.

Flow cytometry analysis. For HLA-A2:immunoglobulin (Ig)
dimer staining, Dimer-X reagent (BD Bioscience, San Diego, CA,
USA) was prepared; 1 mg dimer, 5 mg LMP1166, and 0.5mg
b2-microglobulin (Sigma-Aldrich) at 37 1C overnight. TCR-
transduced PBLs (1� 106 cells) were incubated with LMP1166-
loaded HLA-A2:Ig dimer for 40 min, and washed/stained with
anti-human CD8a, CD4, and anti-mouse IgG1 for 20 min.
For murine TCRs and in vivo persistence, 1� 106 viable cells
were stained with 0.5 mg indicated antibodies for 20 min.
Fluorescence was measured using a FACS Calibur (BD Bios-
ciences) and analyzed using FlowJo software (Tree Star, Otlen,
Switzerland).

Ex vivo expansion and evaluation of TCR-transduced cells.
TCR-transduced CD8 and CD4 T-cells were isolated using MACS
isolation kits (Miltenyi Biotec, Bergisch Gladbach, Germany), with
490% purity. TCR-transduced cells (1� 106 cells) were co-
cultured with 5� 105 peptide-loaded K-A280/4-1BBL with
500 IU ml� 1 IL-2. The artificial APCs were loaded with either
5mg ml� 1 LMP1166 or WT1126 for 6 h and irradiated (10 000 cGy)/
washed before co-culturing. For comparison, cells were incubated
with anti-CD3/CD28-coated beads (1 : 1 ratio). Growing cells were
split every 3–4 days and re-stimulated after a 7-day interval under
the same conditions. For cytokine-secretion, 5� 105 engineered
cells were co-cultured with irradiated (10 000 cGy) peptide-pulsed
targets (1 : 1 ratio). After 2 days, cytokines in the supernatant were
determined with an ELISA kit (eBioscience). For peptide-pulsing,
target cells were incubated with 1 mg ml� 1 peptide for 6 h at 37 1C.
For antigen recognition, IFNg-EliSpot assays were performed for
peptide-pulsed T2 target cells (Cho et al, 2015b). For cytotoxicity
determinations, conventional 5-h chromium-release assays were
performed using various target cells.

In vivo therapeutic antitumour experiments. NSG mice (6-8
weeks-old) were sublethally (300 cGy) irradiated on day -1. Each
mouse intravenously received 3� 106 K-A2LMP1/LUC tumour cells.
Seven days later, each mouse was three times intravenously infused
with 2� 107 engineered PBLs at every 2-day interval (on day 7, 9,
and 11). Intraperitoneal administration of IL-2 (1000 IU per
mouse) was given on days 7, 9, 11, 13, 15, and 17. Tumour growth
was monitored weekly by luciferase signal of bioluminescence
imaging using Xenogen in vivo imaging system (Caliper Life
sciences, Hopkinton, MA, USA). On day 20, peripheral blood
samples were analysed to assess in vivo persistence of infused cells.

Statistical analyses. Statistical significance for tumour growth by
bioluminescence intensity was determined using two-way ANOVA
test, and survival analysis was established by Kaplan–Meier curves
using log-rank tests. Results are representative of data obtained
from at least two independent experiments. All analyses were
performed and graphs were prepared using Prism 5.01 software
(GraphPad).

RESULTS

Isolation of HLA-A2-restricted LMP1166-specific murine TCR
from CD8 T-cell clones. First, we generated EBV-specific CD8
T-cells in HLA-A2-Tg mice with the minimal epitope LMP1166

(TLLVDLLWL) using a novel vaccination strategy with LMP1166-

loaded DCs followed by a mixture of LMP1166 peptides, poly-IC
adjuvant, and costimulatory anti-CD40 antibodies (TriVax).
TriVax immunisation was highly efficient in stimulating and
expanding antigen-specific CD8 T-cells that were primed with
antigen-loaded DCs in mice (Cho et al, 2015a). LMP1166-TriVax
booster-immunisation after priming with LMP1166-loaded DCs
yielded 0.5–1.5% IFNg-producing CD8 T-cells in spleen
(Figure 1A). To generate LMP1166-specific T-cell clones, purified
CD8 T-cells were co-cultured with LMP1166-loaded DCs for 7
days, and functional activity of in vitro stimulated T-cells was
evaluated. As shown in Figure 1B, HLA-A2-restricted CD8 T-cell
recognition was evident not only against peptide-pulsed T2 but
also against HLA-A2-positive LCLs (LCL-A2pos), where higher
levels of T-cell responses were observed against un-pulsed or
WT1126-pulsed LCL-A2pos than against LMP1166-pulsed HLA-A2-
negative LCLs (LCL-A2neg). Subsequently, CD8 T-cells were cloned
by limited dilution, and proliferative T-cell clones were examined
for LMP1166-specific IFNg-producing reactivity (Figure 1C). TCRa
and TCRb chains from each high level of IFNg-secreting T-cell
clones against LMP1166 were amplified. Since TCRs consist of
heterodimers, isolated TCRa and TCRb chains were linked with
furin-spacer RVKRGSG-P2A element to express as a single open
reading frame, and inserted into lentiviral vector. To examine the
surface expression of murine TCRs, Jurkat cells and pre-activated
PBLs were transduced with murine TCRs (named S4-1, S4-6, and
S4-12). Although each TCR gene was isolated from highly antigen-
responding T-cell clones, levels of transduced TCR expression
varied. Above all, Jurkat cells and PBLs transduced with TCR S4-
12, which comprises TRAV3D3*02 and TRBV26*01
(Supplementary Figure S1), exhibited more than 60% and 30% of
surface expression, respectively (Figure 1D). To examine TCR
functionality, engineered PBLs were co-cultured with LMP1166-
pulsed T2 and the concentration of cytokines in the supernatant
was measured. TCR S4-12-expressing PBLs secreted high levels of
IL-2 against LMP1166-pulsed targets in comparison to PBLmock,
which were identically prepared without transferring murine TCR
(Figure 1E). Jurkat cells transduced with TCR S4-12 also exhibited
comparable LMP1166-specific IL-2 production (data not shown).
Hence, TCR S4-12 was chosen for further studies.

Functional specificities of HLA-A2-restricted LMP1166-specific
murine TCR S4-12. Subsequently, we further investigated the
functional specificity of the novel murine TCR S4-12 after
manipulating HLA-A2-positive PBLs to express the TCR (referred
to PBLS4-12). Levels of TCR S4-12 surface expression in the
transduced PBLs were slightly different among donors, and elicited
25–35% transduction efficiency compared to that in TCR-non-
transduced PBLmock (data not shown). Initially, the engineered
PBLS4-12 were stained using LMP1166-loaded HLA-A2:Ig dimers,
which revealed comparable results with HLA-A2 tetramer assay for
the immunologic monitoring (Schneck, 2000; Woll et al, 2004).
The representative data presented in Figure 2A showed that PBLS4-

12 had high levels of LMP1166-specific TCR-transduced CD8 and
CD4 T-cells (B9% per each), whereas no significant LMP1166-
specific staining was found in TCR S4-6-transduced PBLs (PBLS4-

6), that was non-functional. Apparently, PBLS4-12 were not stained
with control peptide (WT1126)-loaded HLA-A2:Ig dimers
(Supplementary Figure S2). To assess the specific reactivity,
HLA-A2-restricted LMP1-derived peptides were pulsed onto T2
cells, and co-cultured with the engineered PBLS4-12. Interestingly,
PBLS4-12 were equipped to additionally recognise target cells pulsed
with LMP1167 (LLVDLLWLL), which is one amino acid-shifted
peptide from LMP1166, but not to other HLA-A2-restricted LMP1-
derived peptides including an irrelevant WT1126 (Figure 2B).
Moreover, PBLS4-12 were also stained with LMP1167-loaded HLA-
A2:Ig dimers, but in low frequency compared to that of LMP1166-
loaded HLA-A2:Ig dimers (Supplementary Figure S2).
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Subsequently, peptides were serially diluted and pulsed onto T2
cells to evaluate the functional avidity of TCR S4-12. The
engineered PBLS4-12 recognised LMP1166-pulsed targets, and
secreted IL-2 in a dose-dependent manner, at a concentration as
low as 1 ng ml� 1 of LMP1166, whereas PBLS4-12 recognition against
LMP1167 was rapidly reduced by 100 ng ml� 1 of LMP1167

concentration, implying that LMP1166 is a real or best antigenic
epitope that can be recognised by TCR S4-12. Of note, the same
was not observed for an irrelevant WT1126 (Figure 2C). As such,
antigen-specific recognition and cytolytic activity of PBLS4-12 were
validated compared with that of PBLS4-6. As shown in Figure 2D
and E, functional activity of PBLS4-12 was evident, which displayed
high levels of cytotoxicity towards LMP1166-pulsed targets, whereas
PBLS4-6 did not respond to the target cells.

Murine TCR S4-12 can recognise endogenous processed HLA-
A2/LMP1166 complexes. One potential concern with TCR S4-12
was whether PBLS4-12 could directly recognise endogenous LMP1-
expressing target cells, rather than exogenously peptide-provided
cells. DCs transfected with LMP1-RNA were applied as a target,
which enabled presentation of HLA-A2/LMP1166 complexes
(pHLA-A2/LMP1166) onto the cell surface by natural antigen-
processing pathways. As shown in Figure 3A, high level of PBLS4-12

responses were observed against LMP1-RNA-electro-transferred
DCs (DC/LMP1RNA), similar to those with LMP1166-pulsed DCs
(DC/LMP1166) that showed the presence of saturated exogenous
LMP1166. In contrast, in vitro generated LMP1-specific cytotoxic
T-cells that were stimulated with LMP1-RNA-transfected DCs
from a same EBV-seropositive healthy donor did not respond to
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Figure 1. Isolation of murine TCR specific to LMP1166 from CD8 T-cell clones. HLA-A2 Tg mice (n¼2) were immunised intravenously with 2�106

DCs loaded with LMP1166 peptide for priming; 7 days later, the mice received a booster immunisation with TriVax. (A) Eight days after the booster,
splenocytes were evaluated by intracellular IFNg-staining after co-culturing with LMP1166, or without peptide (No pep). Numbers in each
rectangular gate represent the percentage IFNg-positive cells of all CD8 T-cells. (B) After 7 days of in vitro stimulation with LMP1166-loaded DCs,
antigen-induced IFNg-secretion of CD8 T-cells was evaluated. T2, and HLA-A2-positive and HLA-A2-negative LCLs (LCL-A2pos, LCL-A2neg,
respectively) that were pulsed with LMP1166 or WT1126 were used as APCs. Peptides only without APCs (T-cells only) and un-pulsed APCs (No pep)
were used as controls. Results represent the average number of spots from triplicate wells with s.d. (bars) of the means. These experiments of (A)
and (B) were repeated thrice with similar results. (C) A representative T-cell clone established by limiting dilution cloning was verified for CD8
expression (upper panel) and antigen-specificity by intracellular IFNg-staining (lower panel). (D) The ex vivo-activated PBLs and Jurkat cells were
transduced with the murine TCRs isolated from LMP1166-specific T-cell clones (S4-1, S4-6, or S4-12). Surface expression in the transduced Jurkat
cells (upper panel) and PBLs (lower panel) was examined on day-2 post-transduction. TCR-non-transduced cells (mock) were used as control.
Numbers in each rectangular gate represent the percentage TCR-expressing cells of all human CD8 T-cells. (E) Antigen-specific functionality
of isolated murine TCRs. The TCR-transduced PBLs were co-cultured with peptide-pulsed T2 cells for 2 days, and the culture supernatants
were measured for IL-2 production using ELISA assay. Results represent the average amount of cytokines from two independent experiments with
s.d. (bars). LCL¼ lymphoblastoid cell lines; LMP¼ latent membrane protein; TCR¼T-cell receptor.
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the DC/LMP1166 targets (Supplementary Figure S3), indicating
that the functional reactivities of PBLS4-12 are due to endowing
TCR S4-12, not due to endogenous activities of EBV-seropositive
donor. Nonetheless, exogenous LMP1166-loaded LCL-A2pos were
recognised, resulting in production of a high level of IL-2, and were
efficiently lysed by PBLS4-12, whereas PBLS4-12 revealed relatively
low responsiveness towards un-loaded and WT1126-loaded LCL-
A2pos though LMP1 is known to be naturally expressed in LCLs
(Figure 3B and C). However, the functional reactivities of PBLS4-12

towards LCL-A2pos target cells were significantly reduced by HLA-
A2 blocking (Supplementary Figure S4), implying that the
LMP1166-specific recognition of PBLS4-12 is HLA-A2-restricted.
Apparently, LCL-A2neg targets were not attacked while LMP1166

were provided. To confirm the capability of TCR S4-12 to
recognise endogenously processed pHLA-A2/LMP1166 on target
cells, we established K562-derived stable transfectants that
expressed HLA-A2 alone (K-A2) and/or together with LMP1 (K-
A2LMP1). After selection, LMP1 expression was examined in K-A2
and K-A2LMP1 transfectants as well as LCL, results showed much
lower level of LMP1 expression in LCL than K-A2LMP1 cells (data
not shown). Likewise, PBLS4-12 were effective in recognising
K-A2LMP1 pulsed either with or without LMP1166 (Figure 4A),

whereas TCR-non-transduced PBLmock and TCR S4-6-transduced
PBLS4-6 did not respond to the target cells (Supplementary Figure
S5). In accordance, higher cytolytic activity of PBLS4-12 was
observed against K-A2LMP1 as compared to that with PBLS4-6

(Figure 4B). These data indicate that K-A2LMP1 presents pHLA-
A2/LMP1166 on the surface through intrinsic LMP1-processing
machinery.

We examined the composition of PBLS4-12 to clarify which
subsets of T-cells have effector functions. As shown in Figure 4C,
PBLS4-12 were mainly composed of CD8 T-cells (CD8 Ts4-12;
B25%) but CD4 T-cells (CD4 TS4-12; B10%) were also present,
which are crucial for the persistence of transferred CD8 T-cells and
long-term immunologic memory T-cell responses. Notably,
purified CD4 TS4-12 exhibited high levels of IL-2 production
similar to those with that of purified CD8 TS4-12 in response to
LMP1166-loaded targets including K-A2LMP1 (Figure 4D), as
specific HLA-A2:Ig dimer bindings were observed in CD4 T-cells
as well as CD8 T-cells (Figure 2A). Likewise, we manipulated cord-
blood lymphocytes with TCR S4-12, which can also be used as a
potential source of effector cells since the differentiation status of
TCR-engineered T-cells is a factor influencing long-term in vivo
persistence of infused cells. The engineered cord-blood
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lymphocytes exhibited high level of IL-2 secretion similar to that of
PBLs towards LMP1166-loaded and/or LMP1-expressing K-A2LMP1

and LCL target cells (Supplementary Figure S6). Overall, these
results indicate that TCR S4-12 has high affinity for the recognition
of the endogenously processed pHLA-A2/LMP1166 target, and that
functionality of TCR S4-12 is dependent on the degree of LMP1
expression in target cells.

In vivo therapeutic antitumour efficacy of PBLS4-12. Next, we
assessed whether adoptive transfer of PBLS4-12 would offer a
therapeutic benefit in vivo using a xenogeneic model, which was
systemically engrafted with luciferase-expressing K-A2LMP1 (K-
A2LMP1/LUC), and a bioluminescent imaging technique to monitor
tumour growth. Mice that were intravenously engrafted with
K-A2LMP1/LUC underwent adoptive infusion with PBLmock, PBLS4-6,
or PBLS4-12 on day 7 (Figure 5A). Mice treated with PBLS4-12 had a
reduced tumour progression as compared to those with PBLmock or
PBLS4-6, drawing significantly lower bioluminescent signal by day
42 (Figure 5B and C). As such, the adoptive transfer of PBLS4-12

revealed significantly increased median survival of the mice by
more than X2 weeks (Figure 5D), and the measurement of
genetically modified (mouse TCR and human CD45 double-

positive) cell numbers in blood at day 20 (2 weeks after cell
infusion) showed sustained high numbers of PBLS4-12, correlated
with the observed improved antitumour effects (Figure 5E),
indicating that TCR-transduced PBLS4-12 have potential for
substantial long-term engraftment in vivo after adoptive transfer.

Ex vivo expansion of CD8 TS4-12 and PBLS4-12. Additionally, we
investigated optimal conditions for ex vivo expansion conditions to
obtain sufficiently high numbers of TCR-transduced cells for
clinical applications, which is a prerequisite for the success of
adoptive immunotherapy. For these experiments, we established
K-A2-based APCs expressing co-stimulatory molecules CD80 and
4-1BBL (K-A280/4-1BBL), which can increase the survival of
activated T-cells. Subsequently, PBLS4-12 and CD8 TS4-12 were
expanded with LMP1166- or WT1126-loaded K-A280/4-1BBL and
compared with conventional anti-CD3/CD28-coated beads
(Figure 6A). In this setup, stimulation with LMP1166-loaded
K-A280/4-1BBL revealed expansion of distinct clear homogeneous
populations of CD8 TS4-12 (Figure 6B), which resulted in higher
absolute numbers of CD8 T-cells compared to those with anti-
CD3/CD28-coated beads (B400-fold versus B200-fold increase in
PBLS4-12 expansion); no significant T-cell expansion was found
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with WT1126-loaded K-A280/4-1BBL (Figure 6C). The ex vivo
expanded CD8 T-cells under all conditions for 3 weeks were
mainly composed of effector-memory-like CD45ROþ /CD62L�

phenotypes (Supplementary Figure S7). Moreover, antigen speci-
ficity of ex vivo expanded TCR-engineered cells was maintained
during 28-day culture (Figure 6D), indicating that our artificial
APCs can promote engineered cell proliferation with a homo-
geneously enriched population that maintained intact antigenic
functional specificity.

DISCUSSION

EBV-specific T-cells have been successfully applied to restore EBV-
specific immunity in patients with EBV-latency-III malignancies,
whereas they have been in limited use for the treatment of EBV-
latency-II malignancies, such as NK/T-cell lymphoma. Thus,
extension of current adoptive immunotherapies toward EBV-
latency-II malignancies demands more efficient immunotherapeu-
tic strategies to generate sufficient numbers of T-cells specific to
EBV-latency-II antigens, such as LMP1. Consequently, we and
other have developed ex vivo expansion protocols capable of

generating LMP1-specific T-cells using LMP1-expressing APCs
that were transduced with mRNA (Demachi-Okamura et al, 2006;
Cho et al, 2015b) or recombinant viruses (Gottschalk et al, 2003).
However, in the clinical realm, there are significant drawbacks for
reactivation of LMP1-specific T-cells because LMP1 is toxic when
expressed at high levels (Hammerschmidt et al, 1989), and the
precursor frequency of LMP1-specific T-cells is very low in healthy
EBV-seropositive individuals (Khanna et al, 1998). Here, we
explored the functional availability of genetically modified T-cells
to endow antigenic specificity towards LMP1, which is a recent
approach to rapidly manufacture large numbers of potent tumour-
reactive effector cells. To our knowledge, this is the first report
showing that T-cells engineered with LMP1-specific TCR enable
them to recognise and elicit specific cytotoxicity towards LMP1-
expressing tumour cells in vitro and in a xenogeneic allograft
model in vivo.

Over a considerable period of time, adoptive transfer of ex vivo-
engineered T-cells has been successful; particularly, anti-CD19-
CAR-T-cells have demonstrated objective clinical responses
towards B-cell malignancies, including complete remissions
(Porter et al, 2011; Lee et al, 2015). Despite spreading and
bypassing the HLA dependency, the CAR-T-cell-based approach
requires surface expression of antigens and risks development of
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tumour escape variants (Grupp et al, 2013; Anurathapan et al,
2014). In this respect, though it requires selection of patients with
appropriate HLA alleles, TCR-engineered T-cells provide an
effective therapeutic option for patients with CAR-T-induced
tumour variants due to their high sensitivity for naturally
processed antigenic peptides-HLA complexes (Corse et al, 2011;
Caruso et al, 2015). Recent clinical trials using T-cells engineered
with NY-ESO-1-specific TCR have shown objective responses in
patients with melanoma, synovial cell carcinoma, and multiple
myeloma (Robbins et al, 2011; Rapoport et al, 2015). In similar
strategies to develop EBV-specific TCR-based therapies, numerous

reports have shown objective EBV-specificities and in vivo
therapeutic efficacies of genetically modified T-cells with isolated
TCRs specific to HLA-A2- or HLA-A11-restricted LMP2 epitopes
(Frumento et al, 2013; Xue et al, 2013; Zheng et al, 2015).

Selection of target T-cell epitopes is critical for the development
of effective TCR-based T-cell immunotherapy. Here, we focus on
an HLA-A2-restricted LMP1166 epitope, which may be a
subdominant epitope from LMP1, although it could be rather
dominant in some situations. Khanna and colleagues have reported
HLA-A2-restricted LMP1 epitopes (Khanna et al, 1998), and
demonstrated that immunisation with recombinant viruses
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encoding multiple LMP1 epitopes (including LMP1166) induced
potent T-cell responses against LMP1-expressing tumours
(Duraiswamy et al, 2003). Although potential immune defects
against EBV infection are not fully understood, it is generally
accepted that persistent viral infection induces inefficient anergic
T-cells eliciting immune tolerance and therefore fails to eliminate
viral-infected cells in patients. Moreover, clonal T-cell anergy and
the related adaptive tolerance is likely to remove high avidity

T-cells specific for immune-dominant epitopes to a higher extent
than those for subdominant epitopes, and subdominant T-cell
epitopes are detected after immunisation with vaccines lacking
immunodominant peptides (Rodriguez et al, 2001). Thus, isolation
of TCRs specific for subdominant T-cell epitopes may be effective
to manipulate genetic engineering of T-cell immunity. In view of
this, our results show that T-cells engineered with LMP1166-TCR
could be specifically activated using a low concentration of
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peptides (Figure 2C), and these cells efficiently recognised peptide-
loaded LCL-A2pos and LMP1-transfected tumour cells (Figure 4).
These results imply that LMP1166-TCR could have high avidity for
antigen recognition and could be activated after a strong TCR
stimulus capable of initiating a signal transduction cascade.
Nonetheless, engineered cells exhibited relatively low responsive-
ness towards un-treated LCL-A2pos targets (Figure 3), in line with
previous reports that demonstrate no or low responsiveness of
T-cells transduced with TCR specific to EBV and HIV antigens
towards native antigen-positive cells (Orentas et al, 2001; Schaft
et al, 2006) and virus-infected targets (Ueno et al, 2004).
Particularly, CD28-CD3x domain-conjugate TCR specific to EBV
antigen enhanced cytokine-secretion responses towards antigen-
positive targets (Schaft et al, 2006), suggesting that properties of
isolated TCRs such as signalling capacity may be responsible for
TCR reactivity.

The clinical success of TCR-based therapies notwithstanding,
potential concerns have been raised over the use of isolated TCR,
because the pairing of transduced and endogenous TCR chains in
TCR-gene-modified T-cells may induce unknown and possibly
hazardous self-reactive side effects (Bendle et al, 2010; van Loenen
et al, 2010). To this end, several groups have explored to improve
transduced TCR pairing. Murine TCRs provide an alternative
source for high-affinity TCRs because the murine TCR repertoire is
non-tolerant to many human antigens (Chinnasamy et al, 2011;
Rosati et al, 2014). Rosenberg and colleagues have reported that
clinical trials using murine TCR-transduced cells demonstrated
substantial antitumour responses (Johnson et al, 2009; Parkhurst
et al, 2011; Morgan et al, 2013) and some patients with murine
TCRs developed antibodies against TCR-variable regions with no
effect on the clinical outcome (Davis et al, 2010). Furthermore,
murine-human hybrid-TCRs produced by substituting the human
constant region with the murine constant region showed a higher
expression of the receptor, increased cytokine secretion, and
enhanced antitumour activity mediated by improved TCR pairing
and CD3 stability (Cohen et al, 2006; Goff et al, 2010). Overall,
these studies support that the isolated murine LMP1166-TCR could
be applied in clinical trials with or without further genetic
modification to treat EBV latency-II malignancies.

The clinical efficacy of infused T-cells correlates with their
ability to sufficiently persist in vivo to exhibit substantial
antitumour responses. Several studies have demonstrated that
in vivo persistence and measurable antitumour immunity depends
on the differential status of effector T-cells (Morgan et al, 2006;
Hinrichs et al, 2009; Rosenberg et al, 2011). In view of this, a recent
study reported that cord-blood T-cells can be used as a potential
source for TCR-gene transfer because most of these cells belong to
naı̈ve T-cell subsets (Frumento et al, 2013). We also observed that
LMP1166-TCR-transduced cord-blood T-cells exhibit levels of
cytokine secretion similar to that of peripheral CD8 T-cells
towards LMP1-expressing targets (Supplementary Figure S6).
Likewise, CD4 T-cells also play a crucial role in the persistence
of transferred CD8 T-cells and generation of long-term memory
T-cells, and significantly contribute to tumour prevention in vivo
(Mitsuyasu et al, 2000). A previous report showed that TCR-
engineered CD4 T-cells can confer functional specificity and
subsequent antitumour immunity capable of preventing the
tumour growth in vivo (Xue et al, 2013). Our results also showed
the generation of TCR-engineered CD4 T-cells capable of
recognising LMP1-expressing tumours (Figure 4), suggesting that
pHLA-A2/LMP1166-restricted CD4 T-cells could improve prolif-
eration and memory development of adoptively transferred CD8
T-cells. The success of T-cell-based immunotherapy usually
requires large numbers of cells (X109) with intact effector
functions. Nevertheless, long-term ex vivo cultured T-cells possess
terminally differentiated properties, demonstrating low persistence
in vivo. Numerous groups have developed ex vivo T-cell culturing

protocols with anti-CD3/CD28-coated activator beads (Rasmussen
et al, 2010; Brimnes et al, 2012). Particularly, Butler and colleagues
have reported anti-CD3 antibody-expressing artificial APC-based
system for in vitro expansion of CD8 T-cells under autologous
assistance of CD4 T-cell (Butler et al, 2012). We have also
developed ex vivo engineered T-cell expansion regimes with
artificial APCs expressing HLA molecules and co-stimulatory
CD80 and 4-1BBL (Figure 6). Notably, the exponentially expanded
TCR-transduced T-cells could still maintain their functional
specificity with a homogeneously enriched CD8 T-cell population.

In summary, we describe a novel HLA-A2-restricted TCR that
specifically recognises LMP1166 epitope and provide the first
evidence that LMP1166-TCR engineered T-cells allow efficient
recognition to display potent cytotoxicity towards engineered
LMP1-overexpressing tumour cells in vitro and in vivo. Additional
studies for optimising the TCR avidity that affect the specificity of
TCR-transferred T-cells could facilitate clinical applications in the
treatment of EBV-associated diseases, including EBV latency-II
malignancies.
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