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Identifying and preventing modifiable risk factors for cardiovascular disease is very important. Vascular calcifica-
tion has been studied clinically as an asymptomatic preclinical marker of atherosclerosis and a risk factor for car-
dio-cerebrovascular disease. It is known that higher homocysteine levels are associated with calcified plaques and 
the higher the homocysteine level, the higher the prevalence and progression of vascular calcification. Homocyste-
ine is a byproduct of methionine metabolism and is generally maintained at a physiological level. Moreover, it may 
increase if the patient has a genetic deficiency of metabolic enzymes, nutritional deficiencies of related cofactors 
(vitamins), chronic diseases, or a poor lifestyle. Homocysteine is an oxidative stress factor that can lead to calcified 
plaques and trigger vascular inflammation. Hyperhomocysteinemia causes endothelial dysfunction, transdifferen-
tiation of vascular smooth muscle cells, and the induction of apoptosis. As a result of transdifferentiation and cell 
apoptosis, hydroxyapatite accumulates in the walls of blood vessels. Several studies have reported on the mecha-
nisms of multiple cellular signaling pathways that cause inflammation and calcification in blood vessels. Therefore, 
in this review, we take a closer look at understanding the clinical consequences of hyperhomocysteinemia and ap-
ply clinical approaches to reduce its prevalence.
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INTRODUCTION

Cardiovascular disease (CVD) is an important health concern, while 

heart attacks and strokes account for 85% of the total deaths and medi-

cal costs worldwide.1) Most CVDs can be prevented by eliminating be-

havioral risk factors, such as smoking, improper lifestyle (eating and 

physical activity), obesity, and alcohol abuse. However, since risk fac-

tors such as high blood pressure, diabetes, and hyperlipidemia are 

common within the population, it is important to identify and prevent 

them.2-4)

	 Therefore, countries with established preventive medicine are edu-

cating and discovering the importance of early detection of arterio-

sclerosis using noninvasive clinical tools. Representative examples in-

clude the ankle-brachial blood pressure index,5,6) non-contrast coro-

nary computed tomography (CT),7-9) and carotid ultrasound.10,11) The 

ankle-brachial index is a tool for predicting the degree of atherosclero-

sis in peripheral arterial vascular disease, carotid ultrasound for cere-

brovascular disease, and non-contrast coronary CT for CVD. However, 

coronary angiography CT can be used to determine the extent of vas-

cular stenosis; however, is considered inappropriate for screening due 

to the administration of contrast agents.

	 Recently, several histological and clinical studies have been con-

ducted on coronary artery and peripheral atherosclerosis, including 

studies on the relationship between coronary atherosclerosis and cor-

onary artery calcification (CAC) and biomarkers obtainable from 

blood samples. Blood tests for diabetes, hyperlipidemia, and renal 

function are performed as predictors of cardiovascular risk factors; 

however, these diseases cannot fully explain the incidence and pro-

gression of CVD. It is important to identify additional biomarkers in 

blood samples, as early intervention is expected to improve patient 

prediction and reduce mortality.

	 The high-sensitivity C-reactive protein is a marker for vascular in-

flammation; however, it is not suitable for screening purposes because 

its level increases rapidly in the pre-rupture stage of plaque, which is 

the acute stage of atherosclerosis. Additionally, research on various 

proteins and genetic factors is being performed. It has been reported 

that the serum homocysteine test is considered a predictable and sta-

ble test for vascular inflammation. The association between homocys-

teine and vascular calcification has long been studied. In one study, 60 

atheroma biopsies were obtained from vessels containing atheroscle-

rotic coronary arteries, and calcified plaques had higher homocysteine 

concentrations than noncalcified plaques. In addition, it was con-

firmed that the higher the concentration of homocysteine in arterial 

atheromas, the higher the calcium deposition in arterial atheromas.12) 

In this study, we focused on serum homocysteine as a predictor of vas-

cular calcification and further summarized some evidence on nutri-

ents for improving serum homocysteine levels and vascular calcifica-

tion.

HOMOCYSTEINE AND ITS METABOLISM

Homocysteine is a sulfur-containing amino acid that is produced as a 

metabolite of methionine, an essential amino acid in dietary proteins. 

It is an intermediate formed during the amino acid biosynthesis of 

methionine and cysteine. The biosynthesis and catabolism of homo-

cysteine is well balanced, and its physiological level is ideally main-

tained at 5–15 μmol/L, and is typically less than 10 μmol/L.13) More-

over, it is highly reactive and forms albumin-bound homocysteine via 

disulfide bonds with oxidized homocysteine (homocysteine: homo-

cysteine-homocysteine disulfide and homocysteine-cysteine disul-

fide). Since it is highly reactive, the body has a homocysteine metabol-

ic system, which metabolizes it in two ways: remethylation to methio-

nine, and transsulfuration to cysteine, with the help of three key en-

zymes: methionine synthase (MS), methylenetetrahydrofolate reduc-

tase (MTHFR), and cystathionine-beta-synthase (CBS). Remethylation 

pathways include folate-and vitamin B12-dependent and indepen-

dent pathways. In the vitamin B-dependent pathway, N-5-methyl tet-

rahydrofolate acts as a methyl donor and is catalyzed by the vitamin 

B12-dependent enzyme MS. Riboflavin (also known as vitamin B2) 

helps MTHFR by converting folic acid to the form required for remeth-

ylation. In the vitamin B-independent pathway, betaine, a choline de-

rivative, serves as a methyl donor in the methylation process and beta-

ine‐homocysteine S‐methyltransferase is required as an enzyme. An-

other pathway, transsulfuration, is catalyzed by the vitamin B6-depen-

dent enzymes CBS and cystathionine-γ-lyase (CES). CBS converts ho-

mocysteine and serine into cystathionine, and CES is responsible for 

producing cysteine.14,15) As described, homocysteine metabolism re-

quires folic acid, vitamin B12, and vitamin B6 (folic acid, pyridoxine, 

and cobalamin).

	 Homocysteine concentration varies according to age, sex, and ge-

netic and regional factors, and is also related to menopause, smoking, 

nutritional status, and medical condition.16) Hyperhomocysteinemia is 

mainly caused by genetic defects, nutritional deficiencies, lifestyle 

problems and certain medical conditions. Genetic factors are associ-

ated with the absence or lack of genetic defects in three key enzymes 

in the methionine-homocysteine and folate cycle (CBS, MS, or MTH-

FR). Nutritional and lifestyle problems include vitamin B complex de-

ficiency, excessive consumption of foods containing methionine, 

smoking, a sedentary lifestyle, and high alcohol intake. Medical condi-

tions include metabolic abnormalities found primarily in patients with 

diabetes and chronic renal diseases. Among these, genetic disorders of 

homocysteine metabolism are rare and can cause severe hyperhomo-

cysteinemia (>100 μmol/L).17)

	 In nutritional deficiency, the three enzymes (CBS, MS, and MTHFR) 

are highly dependent on cofactors derived from vitamin B6, vitamin 

B12, and folic acid; therefore, their deficiency can lead to the accumu-

lation of homocysteine. Deficiencies in cofactors can be caused by nu-

tritional imbalances such as anorexia, high alcohol intake, and chronic 

renal disease (renal loss). Methionine is abundant in a variety of foods 

such as meat, dairy, eggs, chicken, and fish and its excessive consump-
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tion upregulates the transsulfuration pathway.

	 It is natural to consider homocysteine as an independent risk factor 

for vascular disease. Elevated blood homocysteine levels promote ath-

erosclerosis, leading to vascular diseases, such as CVD, cerebrovascu-

lar disease, peripheral artery disease, and chronic renal disease.18)

VASCULAR CALCIFICATION AND CORONARY 
ARTERY DISEASE AND MORTALITY

Several large-scale studies have shown that CAC scores are correlated 

with atherosclerotic cardiovascular risk and mortality.7,19) A prospec-

tive study was conducted with 6,000 individuals, including four ethnic 

groups, with a follow-up period of 3.8 years. Coronary events were 

7.73-fold higher in the group with a coronary calcium score of 101–300 

and 9.67-fold higher in the group with a coronary calcium score of 300 

or greater compared to the group with a calcification score of 0.19) An-

other prospective study demonstrated that CAC is a predictor of car-

diovascular risk, independent of existing cardiovascular risk factors in 

asymptomatic groups. The higher the CAC score, the higher the occur-

rence of coronary events. Compared with a calcium score of 0–100, the 

incidence of coronary events was 3.1-fold higher in the score range of 

101–400, 4.6-fold higher in the score range of 401–1,000, and 8.3-fold 

higher in scores >1,000.7) A very low cardiovascular risk is expected in 

an asymptomatic population without vascular calcification. Addition-

ally, as the calcification area (not density) increases, so does the car-

diovascular risk. To determine the risk of coronary events in a healthy, 

clinically asymptomatic population, atherosclerosis test, coronary cal-

cium score, or carotid ultrasonography could be performed.20) Al-

though the two clinical tools are comparable in terms of the risk of 10-

year atherosclerotic CVD, a non-contrast coronary calcium score is 

more useful in the prediction of CAC.

	 Microcalcification is defined as a small calcium deposit (<5 μm) ob-

served within the high-risk lipid core of unstable plaques. Conversely, 

the healing process of these necrotic or apoptotic plaques results in 

stable plaques containing macrocalcifications (>5 μm).21) Macrocalci-

fication is not a simple accumulation of microcalcification. Microcalci-

fication and macrocalcification have different meanings: one is an un-

stable plaque and the other is a stable plaque, respectively.22) This is 

because they are composed of macrophages with different properties. 

Microcalcification is induced by typical M1-polarized macrophages, 

and macrocalcification is produced by alternative M2-polarized mac-

rophages.22) Microcalcification, also called spotty calcification within 

the enriched lipid pools, implies sustained inflammation by M1 mac-

rophages that secrete pro-inflammatory cytokines such as tumor ne-

crosis factor-(TNF-α) and interleukin-6 (IL-6).20) Pro-inflammatory 

macrophages (M1) evoke calcified vesicles and apoptotic bodies 

through macrophage apoptosis and matrix vesicles from osteoblast-

like cells, resulting from vascular smooth muscle cell (VSMC) transdif-

ferentiation. As a result, calcium phosphate is secreted and causes vas-

cular mineralization.23) At the same time, inflammatory mediators are 

exposed to the vascular lumen, allowing plaque progression and 

plaque instability.24) However, contrarily, fibrous caps were reported to 

be at a lower risk of plaque formation even though they were rich in 

calcification.25) M2 macrophages secrete the anti-inflammatory cyto-

kine IL-10 and promote macrocalcification. The calcification also con-

sists of mineralization from stromal vesicles of osteoblast-like mature 

VSMCs.22) Statin therapy has anti-inflammatory effects on plaque and 

is thought to facilitate plaque regression and increase macrocalcifica-

tion through the action of M2 polarizing macrophages.26-28) In this re-

gard, patients with calcified plaque identified on cardiac CT should 

have a low risk of plaque rupture and CVD; however, clinically, CAC 

increases the risk of CVD and progresses further. Although calcifica-

tion is associated with inflammation, the exact mechanisms of micro-

calcification and macrocalcification remain unclear.

	 A coronary calcium score represents the atherosclerotic burden; 

however, the presence of plaque is not definitive.29) Therefore, a coro-

nary artery calcium score is recommended to evaluate the asymptom-

atic population and can be used to subclassify the CVD risk groups. 

For example, a CAC score of 0 indicates a very low-risk group and has 

a CVD risk of 0.1% per year.30,31) Therefore, CAC 0 can be used as a neg-

ative risk marker and patients with such a score rarely need follow-up. 

If the CAC score is 100 or higher, the 10-year cardiovascular risk can be 

estimated to be >10%, and patients with such a score need additional 

cardiovascular examinations such as echocardiography, coronary CT 

angiography, or intravascular coronary angiography.

	 When the CAC score exceeded 300, the risk of major coronary events 

was significantly higher than that of calcium score of 1–100 (hazard ra-

tio [HR], 6.84; 95% confidence interval [CI], 2.93–15.99; HR, 3.89; 95% 

CI,1.72–8.79).19) As demonstrated in several large-scale studies, CAC 

scores are known to indicate increased CVD risk and lower survival 

rates. In the Multiethnic Study of Atherosclerosis cohort, calcium 

scores were independently and gradually associated with adverse cor-

onary events over 3.8 years of follow-up.21) In the Rotterdam Coronary 

Calcification Study, coronary calcification is an independent predictor 

of coronary heart diseases (CHDs) and is inversely correlated with new 

cardiovascular event-free survival.7) Other large-scale observational 

data suggest that CAC is an independent incremental risk factor of 

CVD and mortality during a mean follow-up of 6.8 years32) and over a 

median of 11.4 years.33) Meta-analysis also shows that coronary calcifi-

cation increases the adverse cardiovascular events and mortality.18)

	 The quantitative method for vascular calcification is to calculate the 

calcium score on CT. Since microcalcifications and macrocalcifica-

tions are pathologically and clinically different, additional basic re-

search is needed. Calcification volume has an independent positive 

correlation with CHD and CVD risk; however, calcification density is 

inversely proportional to CHD and CVD risks.34) The Agatston score 

was weighted with higher calcium density, but did not mean the actual 

number of calcified plaques in the CAC volume scoring system. On 

the contrary, volumetric calcification scores are more accurate than 

standard Agatston scores when volume is considered. Agatston scores 

were used in most studies, and the results may have been diluted or 

overestimated due to the presence of macrocalcification.
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MECHANISM OF VASCULAR CALCIFICATION

Vascular calcification is ectopic calcium phosphate deposition in the 

arterial wall. It is an old concept that vascular calcification is a passive 

process resulting from aging, or occurs as a simple calcium deposition 

in the extracellular environment of an abundant environment of calci-

um and phosphorus products.35) Nowadays it is considered an active 

and regulated process wherein calcification activators and inhibitors 

act, such as in bone mineralization.36)

	 Intima and medial calcifications are single spectra and continuous. 

Based on clinical and histological findings, there are no distinguishing 

characteristics between intima and media calcification.37) In addition, 

calcifying-related proteins that are crucial for bone homeostasis, in-

cluding osteoprotegerin, receptor activator of nuclear factor (NF)-kap-

pa Β ligand (RANKL), TNF-related apoptosis-inducing ligand (an in-

ducer of apoptosis), and messenger RNAs expression patterns, are 

similarly found in both intima and media calcification.38) Calcification 

in both the intima and media is related to VSMCs degeneration and 

apoptosis, and the matrix vesicles of VSMCs and pericytes are the ma-

jor initial loci for calcium deposition.39,40)

	 Calcification is the summation of hydroxyapatite, which consists of 

calcium phosphate (hydroxyapatite, Ca10(PO4)6(OH)2). This basic form 

of calcification is not a simple form of bioapatite crystal. Calcification 

occurs in matrix vesicles derived from living VSMC and apoptotic bod-

ies of dying cells.41,42) Matrix vesicles are 20–200 nm-sized small spheri-

cal bodies,43) and are the initial nucleation sites for calcium mineral 

formation. Matrix vesicles bud from cells, serve as ‘cargo’, and consist 

of phosphatidylserine and annexins displaying hydroxyapatite crystals 

on the inner membrane within the lumen, and/or on the outer mem-

brane of the vesicle.44) Alkaline phosphatase (ALP) within the mem-

branes (also tissue-nonspecific alkaline phosphatases or TNAP) gen-

erates inorganic phosphate in the extravascular space, and leads to an 

influx of phosphate and calcium into the vesicle via ion channels. Nu-

cleation of hydroxyapatite is facilitated by an annexin-phosphatidyl-

serine complex, which facilitates calcium influx and mineraliza-

tion.43,45,46)

	 Matrix vesicles from VSMCs are similar to those in osteogenesis and 

bone mineralization, the vesicles are detached from chondrocytes. 

Osteoblasts, chondroblasts, and transdifferentiated vascular cells have 

a substantial overlap in mineralization mechanisms and gene expres-

sion. Vascular calcification and bone mineralization have in common 

mineralization-promoting proteins and matrix vesicles derived from 

osteogenic cells. Paradoxically, osteoporosis patients present with vas-

cular calcification, leading to the assumption that mineralization in 

the vascular walls and loss from bone occur simultaneously.47) In an-

other study, patients with chronic kidney disease had lower bone min-

eral density and higher CAC with an increased incidence of frac-

tures.48)

	 Several mineralization activators and inhibitors have been proven 

in in vitro studies. Mineralization activators include an overload of Pi 

and Ca, RANKL, osteopontin (non-phosphorylated), and bone mor-

phogenetic protein-2 (BMP-2), which include matrix γ-carboxyglu

tamic acid (Gla) protein (MGP), pyrophosphate, fetuin-A, osteoprote-

gerin (OPG), and osteopontin (phosphorylated).49) These inhibitors 

are localized in matrix vesicles from VSMC or circulate in blood ves-

sels. Matrix vesicles normally contain components of mineralization 

inhibitors; however, concentrated pre-formed basic calcium phos-

phate and mineralization activators are found in environments with 

increased calcium and phosphate levels.50) Noncalcifying vesicles con-

tain inhibitors of calcification, such as fetuin-A and MGP. In contrast, 

calcifying vesicles contain osteogenic markers, such as runt-related 

transcription factor 2 (Runx2), Smad1, osterix, TNAP, chaperones, and 

pro-inflammatory factors.51,52)

	 Moreover, these bone-related proteins are expressed not only in 

matrix vesicles but also in atherosclerotic plaques. In-vitro studies are 

proving the activity of these bone-related proteins, including BMP-2,36) 

osteopontin,53,54) MGP,55) and OPG.56) These proteins act through the 

RANKL/OPG pathway which is the main mechanism of mineraliza-

tion both in osteoporosis and vascular calcification.57) BMPs are a sub-

class of transforming growth factor-beta superfamily, and BMP-2/4 

can induce mineralization and local inflammation. On the contrary, 

BMP-7 delays vascular calcification. Runx2 is a key osteogenic tran-

scription factor downstream of BMP-2, which controls severe osteo-

blastic differentiation-related proteins such as osteocalcin (OC), osteo-

pontin, and type 1 collagen.58)

	 Homocysteine, mostly associated with vascular calcification, is 

thought to induce early endothelial dysfunction, thereby regulating 

several genes and proteins previously described, ultimately leading to 

apoptosis, which is thought to regulate the production and composi-

tion of matrix vesicles. Apoptosis preceding vascular calcification and 

apoptotic bodies derived from VSMCs initiate vascular calcification, 

which serves as the nucleation core.41,59)

HOMOCYSTEINE AND OXIDATIVE STRESS AND 
INFLAMMATION

The overall content of the subheading is diagrammed in Figure 1. Ho-

mocysteine is easily oxidized and produces hydrogen peroxide and 

superoxide radicals, which in turn oxidize low-density lipoprotein 

(LDL) cholesterol and proteins. Homocysteine is an indicator of oxida-

tive stress, indicating that hyperhomocysteinemia induces abundant 

reactive oxygen species (ROS). One of the highly reactive compounds, 

homocysteine thiolactone, is a byproduct of homocysteine auto-oxi-

dation, and its production is usually low at the physiological level of 

homocysteine; however, it is easily produced under hyperhomocyste-

inemia conditions. Homocysteine thiolactone is a highly reactive mol-

ecule that can react with LDL or proteins,60) resulting in protein acyla-

tion (homocysteinylation) of lysine residues and LDL oxidation after 

homocysteinylation. Homocysteine thiolactone induces endothelial 

cell apoptosis independently from the caspase pathway.61)

	 Hyperhomocysteinemia also increases ROSs differently by decreas-

ing the activity of antioxidant enzymes, such as GPx1 and superoxide 
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dismutase.62) Hyperhomocysteinemia increases the uncoupling of en-

dothelial nitric oxide synthase, resulting in a decreased production of 

nitric oxide (NO). NO is a protective gaseous lipophilic messenger 

against endothelial dysfunction.63) ROSs combine with NO and inacti-

vate it through the resulting peroxynitrite (ONOO-), which is a potent 

oxidizing agent that accelerates lipid and protein oxidation64) by in-

creasing reactive oxygen and nitrogen intermediates, resulting in en-

dothelial dysfunction.65)

	 In addition to NO, studies on H2S, a protective gas that affects endo-

thelial function, have been recently published. The level of H2S is asso-

ciated with homocysteine levels and is produced during homocyste-

ine metabolism. H2S dysfunction is also caused by hyperhomocystein-

emia. Homocysteine and H2S concentrations are regulated by each 

other, and their imbalance is closely linked to CVDs. H2S and homo-

cysteine are related to the level of endothelial dysfunction and inju-

ry.66,67) H2S has a protective effect against hyperhomocysteinemia-in-

duced endothelial injury.68) It is produced by vascular cells and exhib-

its antioxidant, anti-apoptotic, anti-inflammatory, and vasoactive 

properties. Hyperhomocysteinemia induces decreased H2S produc-

tion as observed in cell- and animal-level studies.69-71)

	 Homocysteine induces mitochondrial dysfunction and apopto-

sis.61,72) Mitochondria, small organelles inside cells, are crucial for the 

energy factory and electron transport system, which is the main source 

of ROS.73) In a normal physiological environment, ROS formation and 

antioxidant activity are well balanced. Homocysteine is an unstable 

amino acid that is easily auto-oxidized to produce free oxygen radicals. 

Homocysteine and increased free oxygen radicals inhibit cellular anti-

oxidant systems. Therefore, hyperhomocysteinemia is the main cause 

of oxidative stress. In the case of increased ROS or decreased antioxi-

dant activity, mitochondrial oxidative stress occurs.74) ROS participates 

in several steps of the mitochondrial apoptotic process,75) and homo-

cysteine is the reactive molecule of the vessels, causing ROSs such as 

hyperglycemia, hyperlipidemia, and uremia. Mitochondrial DNA is 

susceptible to damage by ROS, and this accumulated mitochondrial 

DNA damage results in the release of inflammatory cytokines and ab-

normal proliferation and apoptosis of VSMCs.76,77) Homocysteine alters 

mitochondrial (electron transport chain) gene expression,78) function, 

and structure. Damaged mitochondria accelerate oxidative stress, in-

ducing VSMC calcification via the induction of Runx2 expression.79)

	 These ROSs also convert LDLs to oxidized LDLs, and oxidized LDLs 

induce inflammatory responses by upregulating adhesion molecules 

(vascular cell adhesion molecule for monocyte adhesion; and mono-

cyte chemotactic protein 1 and monocyte chemoattractant protein1 

for monocyte penetration into subendothelial tissue). Monocytes at-

tach to and penetrate the endothelium and are converted to macro-

phages, which can engulf a large amount of oxidized LDLs, which are 

then converted to foam cells. Oxidized LDLs and foam cells accumu-

late to form a fatty streak and release pro-inflammatory cytokines, 

such as TNF-α, IL-6, IL-12, and IL-1β.80-83) They are produced by mac-

rophages (M1) within the progressing plaque lesions and promote mi-

crocalcification. From this point of view, vascular calcification is a 

compensatory response to chronic inflammation in atherosclerosis. In 

Endoplasmic reticulum stress

Endothelial dysfunction

Low-grade inflammation

Mitogenic effect to VSMCs

Transdifferentiate effect to VSMCs

Apoptotic bodies

Calcified matrix vesicles

TRAP

MAPK

IL-6

TNF-�

Foam cell

M1 macrophage

CaMKII

NF- B�

JNK

?
RANKL

BMP2

Runx2

MGP

High

homocysteine

level

Calcium apatite

deposition

(mineralization core)

Ox LDL

Homocysteine

thiolactone

GPx1

SOD

NO

peroxynitrite

(ONOO-)

ROS overproduction

Apoptosis

Figure 1. Effects of high homocysteine levels on inflammation and calcification. Hyperhomocysteinemia induces reactive oxygen species (ROS) production in endothelial cells 
and vascular smooth muscle cells. This results in apoptosis and inflammation through multiple cellular signaling pathways that create endoplasmic reticular stress and 
endothelial dysfunction. In addition, ROS allow vascular smooth muscle cells to differentiate with mitotic and osteo-like features in the mitogen-activated protein kinase (MAPK) 
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muscle cells. GPx1, glutathione peroxidase 1; SOD, superoxide dismutase; NO, nitric oxide; Ox, low-density lipoprotein; CaMKII, Ca2+/calmodulin-dependent protein kinase II; 
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addition, homocysteine levels could be a marker of chronic intravas-

cular inflammation. After the resolution of chronic inflammation, 

macrophages (M2) produce anti-inflammatory cytokines (IL-10) and 

induce osteogenesis, leading to plaque macrocalcification and stabili-

zation, as well as plaque regression.22,84) Vascular calcium scoring 

through X-ray or CT scans detects only macrocalcification, which is 

found in stabilized and regressed plaques. Statin therapy could reduce 

atheroma, but could lead to an increase in the calcium score by in-

creasing the macrocalcification.28,85,86) The initiation and propagation 

of calcium deposits are accelerated in increased homocysteine, repre-

senting a high oxidative stress and low-grade inflammation in the in-

travascular environment.

	 Oxidative stress induced by hyperhomocysteinemia also regulates 

the osteoblastic differentiation of vascular cells. Although homocyste-

ine contributes more to intima calcification than media calcification, it 

also initiates media calcification in the same manner. ROS upregula-

tion and inflammation induce VSMC differentiation into osteoblast-

like cells. IL-1β secreted by macrophages stimulate VSMC calcifica-

tion,82) and IL-6 induces VSMC to transdifferentiate into osteoblast-like 

cells.80) VSMCs transform through the expression of calcification regu-

lator Runx2 which induces RANKL expression.87) RANKL-receptor ac-

tivator of NF-kappa Β binding induces TNAP expression which hydro-

lyzes pyrophosphate ions, which are potent mineralization inhibitors, 

and creates phosphate entrapment for mineralization.88) The Runx2 

expression can be induced by BMP-2 upregulation in endothelial cells 

initiated by hypoxia,89) ROS,90) inflammation,91) and BMP-4 upregula-

tion in foam cells caused by oxidized LDL.92,93)

	 Increased homocysteine, oxidized LDL, and oxidative stress can 

lead to a chronically activated unfolded protein response (UPR).94) 

Chronic UPR and direct oxidative stress induced by hyperhomocyste-

inemia can activate the endoplasmic reticulum (ER) stress pathway.95) 

Activation of the UPR in macrophages, VSMC, and pericytes leads to 

increased cytoplasmic calcium and activation of calcium/calmodulin-

dependent protein kinase II, resulting in the amplification of apopto-

sis.95)

	 Vascular calcification is a result of matrix vesicles from the cell apop-

totic bodies; in short, the apoptosis process controls vascular calcifica-

tion.41) Hyperhomocysteinemia mediates VSMC and endothelial cell 

apoptosis via the ER stress pathway and ROS production.96) Hyperho-

mocysteinemia also induces inflammation through the activation of 

NF-kB and its downstream pro-inflammatory mediator.97,98) Moreover, 

hyperhomocysteinemia upregulates pathogenic genes and downregu-

lates protective genes by impairing methylation and increasing homo-

cysteinylation of proteins.99) Both enhancements of ROS production 

and apoptosis induce endothelial dysfunction and initiate vascular 

calcification by apoptotic bodies and matrix vesicles as a nucleating 

structure for calcium crystal formation.100) Increased mineralization is 

derived by matrix vesicles, calcification regulatory proteins such as 

OC, BMP-2, and uncarboxylated MGP. Additionally, clues to VSMCs 

transforming into osteoblast-like cells include BMP-2, osteopontin, 

Msh homeobox 2 (MSX2), and ALP.101)

	 Vascular calcification is a consequence of low-grade chronic inflam-

mation in atherosclerosis, which is due to high ROS formation and sig-

nal transduction induced by hyperhomocysteinemia. One way to re-

duce inflammation by hyperhomocysteinemia is to block the activity 

of NF-kB as a control for other underlying diseases, while another 

method is to block hyperhomocysteinemia, which causes oxidative 

stress.102)

HOMOCYSTEINE LOWERING BY NUTRITIONAL 
SUPPLEMENTS

High homocysteine levels are strongly associated with the develop-

ment of various vascular diseases related to atherosclerosis and are in-

dependent predictors of uremia, hyperglycemia, and dyslipidemia.103) 

The CVD risk is 3 times higher in the top 5% of homocysteine levels 

compared to the low 90% of homocysteine levels.104) A high level of ho-

mocysteine increases the mortality associated with coronary artery 

disease and acute myocardial infarction and increases the all-cause 

mortality.105) Since homocysteine levels can be easily lowered with vi-

tamin supplementation, homocysteine itself is expected to function as 

a modifiable risk marker.

	 Thus, it is natural to assume that lowering homocysteine levels may 

help lower the risk of CVD. Many interventional studies have been 

conducted to lower homocysteine levels by replenishing the nutrients 

related to homocysteine metabolism.

	 The randomized controlled trials (RCTs) and prospective studies 

showing that homocysteine levels are lowered by supplementation 

with B vitamins, which are cofactors in the metabolic pathway of ho-

mocysteine, revealed statistically significant results.106-112) After 6 weeks 

of folic acid supplementation alone, homocysteine levels decreased 

significantly.107) When folic acid, vitamin B6, and vitamin B12 were ad-

ministered together, there were no significant differences in homocys-

teine levels compared to those provided by folic acid alone, and in 

other results, homocysteine levels were significantly reduced com-

pared to when folic acid and vitamin B12 were taken together.110) Sup-

plementation with vitamin B6 alone for 12 weeks did not lower the ho-

mocysteine level regardless of the dose. Taking vitamin B6 in combi-

nation with folic acid and vitamin B12 lowered the homocysteine lev-

els by 32% of the baseline.111) In addition, the higher the concentration 

of folic acid taken, the lower the homocysteine levels. Additional ho-

mocysteine reduction was found when folic acid was administered 

with vitamin B12, but not with vitamin B6.112) In patients with acute 

myocardial infarction, homocysteine levels decreased after 6 weeks of 

folic acid supplementation, and there was no difference between folic 

acid dosages of 2.5 mg and 10 mg.107) Even in the general population 

other than those suffering from heart disease, when 0.5–5 mg of di-

etary folic acid108) or folic acid fortified (folic acid greater than about 0.5 

mg) grains are ingested,109) the plasma homocysteine levels are low-

ered, and can be lowered to approximately 25%, at which the level of 

homocysteine is about 9 μmol/L.108)

	 The desirable total homocysteine level is estimated to be 9–10 μmol/
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L. The overall mortality was lower in the case of plasma homocysteine 

<9 μmol/L than in the case of 15 μmol/L or more.105) According to the 

results of the Vitamin Atherosclerosis Intervention Trial, the homocys-

teine concentration of 9.1 µmol/L is too low to induce vascular calcifi-

cation or subclinical atherosclerosis. If fasting homocysteine is 9.1 or 

higher, supplementation with B vitamins can be considered.113) Al-

though this is a small observational study conducted in Koreans of 

Asian ethnicity, the correlation between homocysteine levels and vas-

cular calcification was confirmed, and the cut-off value of homocyste-

ine, which can predict the presence of vascular calcification, was esti-

mated to be 9 μmol/L.114,115)

	 Does lowering homocysteine levels in the vitamin B group lower the 

risk of vascular diseases? Unfortunately, there is insufficient evidence 

to corroborate whether vitamin supplementation lowers homocyste-

ine levels and, as a result, lowers the incidence or risk of vascular dis-

ease.

	 Several studies have reported on whether supplementation with B 

vitamins can suppress the occurrence or progression of vascular calci-

fication by lowering the homocysteine levels. At the observational lev-

el, in populations with diabetes or vascular disease at high risk for car-

diovascular events, lower folate concentrations were associated with 

plaque calcification. When homocysteine and folic acid were divided 

into quartiles, it was confirmed that the higher the homocysteine level 

and the lower the plasma folic acid concentration, the higher the ca-

rotid calcification score was observed to be statistically significant. In 

this study, it was concluded that there was no association between vi-

tamin B6 and B12 concentrations, and that low folate concentrations 

(7–36 nmol/L) were associated with increasing calcification scores.116) 

A RCT studied the relationship between high doses of B vitamins (folic 

acid 5 mg, vitamin B12 0.4 mg, vitamin B6 40 mg) for 3 years and ca-

rotid intima-media thickness (IMT) along with aortic and coronary 

calcium. In patients with homocysteine levels above 9.1 μmol/L, vita-

min B supplementation decreased the progression of carotid IMT, but 

in patients with homocysteine levels less than 9.1 μmol/L, vitamin B 

supplementation had no significance in slowing IMT progression. The 

coronary artery calcium score was lower in the vitamin B group (1.2) 

than in the placebo group (3.9), and the incidence of calcium was low-

er, but the difference in incidence was not statistically significant.113)

	 Additional cofactors that participate in the homocysteine metabo-

lism are riboflavin and betaine. Riboflavin supplementation can lower 

the homocysteine concentrations and blood pressure levels in specific 

groups.117,118) Betaine also reduces homocysteine; however, there is not 

enough evidence that choline supplements affect the CVD risk. Ho-

mocysteine is lowered by the supplementation of the vitamin B com-

plex with pyridoxine (100–200 mg/d), folic acid (5 mg/d), and vitamin 

B12 (intermittent hydroxocobalamin injection) in cystathionine beta-

synthase deficiency.119) In pyridoxine non-responders, the homocyste-

ine levels are not lowered even if pyridoxine is administered. However, 

addition of 6–9 g of oral betaine (trimethylglycine) could lower the ho-

mocysteine concentration. Additionally, although choline intake low-

ered the homocysteine levels,120,121) choline and betaine intake did not 

lower the risk of CVD.122,123) Notably, the CVD risk increases when be-

taine levels are insufficient.124)

	 Other nutrients that do not appear to be related to homocysteine 

metabolism have also been reported to lower the vascular calcifica-

tion, including vitamin D. The group with low vitamin D levels is esti-

mated to have a higher risk of CVDs; however, there is still insufficient 

research on whether vitamin D supplementation can lower CVD 

events.

	 Homocysteine and vitamin D are inversely related to each other.125) 

Similar to the results seen with vitamin B supplementation, vitamin D 

supplementation significantly lowers serum homocysteine levels. In 

an RCT trial targeting women of reproductive age with obesity, vitamin 

D3 supplements (50,000 IU/wk) for 2 months decreased their homo-

cysteine levels and increased their serum 25-hydroxyvitamin D 

(25(OH)D), calcium, and phosphorous levels.126) However, the trial re-

sults did not include the CVD risk or vascular calcification. A prospec-

tive study showed that vitamin D deficiency is associated with CAC.127) 

The relationship between CAC and vitamin D levels has been exam-

ined for polymorphisms in vitamin D-associated genes. After 3 years 

of follow-up, the incidence of newly developed CAC was 3.3 times 

higher in patients with vitamin deficiency (25(OH)D <20 ng/mL), and 

1.8 times higher in patients with vitamin insufficiency (25(OH)D <30 

ng/mL).

	 Vitamin D is a fat-soluble vitamin that can be ingested via food; 

however, most of it is synthesized in sun-exposed skin. Subsequently, 

through hydroxylation in the liver, 25(OH)D is mainly circulated in the 

blood vessels and converted into 1,25-dihydroxy vitamin D 

(1,25(OH)2D), which is calcitriol, the most active form converted in 

the kidney. The main role of vitamin D is to regulate calcium metabo-

lism by increasing calcium absorption in the intestine, and several 

studies have shown that vitamin D supplementation is necessary not 

only to prevent osteopenia and osteoporosis, but to also prevent calci-

um deposits in tissues other than bones, typically blood vessels. Calci-

um supplementation alone prevents osteoporosis but increases the 

risk of vascular diseases such as MI and stroke.128,129) Vitamin D is 

known to be a protective factor for CVD, and low vitamin D is known 

to be a CVD risk factor.130) However, no clear clinical evidence has been 

obtained for lowering CVD risk with vitamin D supplements.131) Vita-

min D deficiency is associated with a pro-inflammatory status associ-

ated with dyslipidemia and oxidative stress,132) and vitamin D regulates 

the gene expression of proteins related to homocysteine metabo-

lism.133)

VITAMIN K SUPPLEMENTATION AND VASCULAR 
CALCIFICATION

Although its relationship with homocysteine has not been studied, vi-

tamin K is a nutritionally important nutrient that is involved in vascu-

lar calcification. Vitamin K is essential for MGP to function as an in-

hibitor of vascular calcification.134) Vitamin K is a fat-soluble vitamin 

and exists in two dominant forms: vitamin K1 (phylloquinone), mainly 
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in green vegetables, and vitamin K2 (menaquinone), mainly produced 

in fermented milk products and by intestinal lactic acid bacteria.135) Vi-

tamin K1 is transported to the liver to regulate the production of coag-

ulation factors, and vitamin K2 regulates the activities of MGP and OC 

(bone Gla protein) in the extrahepatic organs and blood vessels.136) 

These two proteins are vitamin K-dependent proteins and require car-

boxylation to function, which requires vitamin K2 as a cofactor.137) 

When vitamin K2 is deficient, MGP and OC remain in uncarboxylated 

form (inactivate form), blood vessels are at risk of CVD, and bones 

have reduced bone mineral density and are at a risk of osteoporosis.138) 

Several observational studies have shown that vascular calcification 

progresses less, and the risk of CVD is lowered when inactive MGP 

(uncarboxylated MGP) levels are low.139) Supplementation of K2 

(menaquinone), not vitamin K1 (phylloquinone), is associated with 

reduced CVD outcomes, while vitamin K2 supplementation and CAC 

are inversely correlated.140-143) Increasing the menaquinone intake re-

duces and retards the progression of vascular calcification, while phyl-

loquinone has no such effect.142-144) and is known to lower the risk of 

CVD with high vitamin K intake.139,142)

	 In the presence of sufficient vitamin K2 (menaquinones), carboxyl-

ation of MGP is accelerated in vascular calcification and OC in bone 

mineralization. Carboxylated MGP inhibits calcium deposits, and car-

boxylated OC promotes calcium deposits. As described before, vita-

min D ensures that calcium is absorbed easily from the food we con-

sume, and vitamin K2 (MK-7) activates the protein OC, which inte-

grates calcium into the bone. Vitamin K2 (MK-7) activates MGP to 

bind excess calcium and promotes arterial flow and flexibility. In a vi-

tamin K-rich environment, VSMCs possess a natural contractile func-

tion and synthesize MGP, which is a carboxylated form. However, in 

the presence of oxidative stress, such as hyperhomocysteinemia and 

uremia, the phenotype of VSMCs changes to proliferating and synthe-

sizing calcification.145) If vitamin K levels are sufficient in such stressful 

situations, the transdifferentiation of the VSMCs is prevented and min-

eralization is prevented by the formation of calcified matrix vesicles.146) 

It is thought that MGP may be involved in the mechanism of reducing 

calcification by inhibiting BMP-2 and BMP-4.147) However, if vitamin K 

is insufficient, VSMCs are changed to an osteoblast-like cell pheno-

type, and osteoblastic VSMCs reduce the MGP production and pro-

duce bone-related proteins (such as ALP)148) and MGP is changed to 

the uncarboxylated form.

CONCLUSION

There is no doubt that high serum homocysteine levels cause endo-

thelial dysfunction and initiate atherosclerosis. Numerous studies 

have shown that calcified atherosclerosis is associated with a higher 

homocysteine concentration than non-calcified atherosclerosis, and 

that vascular calcification indicates the degree of inflammation in ath-

erosclerosis. In addition, recent studies on the gene and protein levels 

have shown that homocysteine is related to ROS production, oxidative 

stress, and ER stress, inducing endothelial dysfunction, causing in-

flammation and cell necrosis, and transforming VSMCs into osteo-

blast-like cells. From this perspective, the incidence and progression of 

vascular endothelial damage caused by homocysteine and the contin-

uation of hyperhomocysteinemia may be related. Therefore, serum 

homocysteine levels can be considered a biomarker of vascular calcifi-

cation.

	 If a large-scale clinical trial comparing vascular calcification and ho-

mocysteine is conducted, it will be helpful from a preventive point of 

view to shed light on their relationship and predict the fraction of hy-

perhomocysteinemia in cardiovascular risk. Moreover, it could be 

used to predict the degree of calcification in major blood vessels (coro-

nary, cerebral, and peripheral arteries) by examining the homocyste-

ine concentration in blood at the health examination stage along with 

predicting the 10-year cardiovascular risk.
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