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A B S T R A C T   

Accurate detection and segmentation of multiple sclerosis (MS) brain lesions on magnetic resonance images are 
important for disease diagnosis and treatment. This is a challenging task as lesions vary greatly in size, shape, 
location, and image contrast. The objective of our study was to develop an algorithm based on deep convolu
tional neural network integrated with anatomic information and lesion-wise loss function (ALL-Net) for fast and 
accurate automated segmentation of MS lesions. Distance transformation mapping was used to construct a 
convolutional module that encoded lesion-specific anatomical information. To overcome the lesion size imbal
ance during network training and improve the detection of small lesions, a lesion-wise loss function was 
developed in which individual lesions were modeled as spheres of equal size. On the ISBI-2015 longitudinal MS 
lesion segmentation challenge dataset (19 subjects in total), ALL-Net achieved an overall score of 93.32 and was 
amongst the top performing methods. On the larger Cornell MS dataset (176 subjects in total), ALL-Net signif
icantly improved both voxel-wise metrics (Dice improvement of 3.9% to 35.3% with p-values ranging from p <
0.01 to p < 0.0001, and AUC of voxel-wise precision-recall curve improvement of 2.1% to 29.8%) and lesion- 
wise metrics (lesion-wise F1 score improvement of 12.6% to 29.8% with all p-values p < 0.0001, and AUC of 
lesion-wise ROC curve improvement of 1.4% to 20.0%) compared to leading publicly available MS lesion seg
mentation tools.   

1. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating 
disorder of the central nervous system with progressive axonal and 
neuronal loss (Haider et al., 2016; McDonald, 2000). MS has been a 
leading cause of long-term non-traumatic disability in young adults 
(Dobson and Giovannoni, 2019). Magnetic resonance imaging (MRI) is 
the standard imaging technique for detecting new MS lesions and 
monitoring lesion load, which provides useful information for diag
nosing and informing medical treatment (Filippi et al., 2016). 

MS lesions can be visually detected and segmented on MR images by 
human experts, but the process is time-consuming, tedious, and prone to 
intra- and inter-reader variability (Carass et al., 2017). Numerous 
automated lesion segmentation algorithms have been developed to 

address this problem, which can be categorized as unsupervised or su
pervised. Unsupervised algorithms, including geometry constrained 
iterative threshold adjusting (Codella et al., 2008), atlas-based topology 
preserving anatomic segmentation (Shiee et al., 2010), probabilistic 
classification growth lesion segmentation tool (Schmidt et al., 2012), or 
dictionary learning sparse coding (Weiss et al., 2013), rely on carefully 
selected image features or brain tissue priors and can be useful but often 
have limited detection accuracy and slow speed. 

Supervised algorithms, especially those based on deep convolutional 
neural networks (CNNs), have emerged as more powerful alternatives to 
unsupervised methods. In recent years, CNNs have found promising 
applications in medical imaging segmentation, including brain tumor 
segmentation (Kamnitsas et al., 2017), myocardium segmentation (Ma 
et al., 2021), white matter hyperintensity segmentation (Zhang et al., 
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2021c), and MS lesion segmentation (Zhang et al., 2019a; Aslani et al., 
2019). Most existing CNN methods for MS lesion segmentation can be 
categorized into one of the following three classes: patch-based, 2D 
slice-based, and 3D volume-based. Patch-based models suffer from 
repeated computation and insufficient contextual information. 
Cascaded architecture (Valverde et al., 2017) and densely-connected 
network (Huang et al., 2017) with asymmetric loss (Hashemi et al., 
2018) are patch-based algorithms that have achieved good performance 
on the ISBI-2015 MS Lesion Segmentation Challenge dataset (denoted as 
ISBI-2015 dataset) (Carass et al., 2017), but fall behind recently devel
oped fully convolutional network based models (Long et al., 2015; 
Ronneberger et al., 2015). Slice-based methods, such as Multi-branch 
network (Aslani et al., 2019) and Tiramisu network with numerous 
layers (Zhang et al., 2019a), offer improvements over patch-based 
methods by balancing training efficiency and utilizing contextual in
formation. 3D volume-based CNN models, in which 3D spatially 
invariant convolution kernels are used to extract the image features, can 
dramatically reduce redundant computations compared to patch-based 
methods, and have richer contextual information compared to 2D 
slice-based methods. These methods include the U-Net like 
encoder-decoder network (Brosch et al., 2016; Çiçek et al., 2016), 
multi-dimensional gated recurrent units (Andermatt et al., 2017), 
recurrent slice-wise attention network (Zhang et al., 2019b), 
gated-attention networks (Hou et al., 2019; Oktay et al., 2018), and 
folded attention network (Zhang et al., 2021b). 

Yet, the accuracy of CNN based automated MS lesion segmentation 
remains limited. We have identified three possible factors to be 
addressed in this study. First, CNN methods have not explicitly inte
grated brain anatomical coordinate information for MS lesion segmen
tation, though prior work (McKinley et al., 2021) has implicitly 
integrated anatomical information by jointly segmenting brain struc
tures and MS lesions. CNNs can extract features well, but struggle to 
perceive the voxel position in the brain (Islam et al., 2019; Kayhan and 
Gemert, 2020; Liu et al., 2018) due to the spatial-invariant convolution. 
Second, prior work utilized voxel-wise loss functions for network 
training which regard all voxels as equally important; the imbalance 
between lesions of different sizes could lead to misdetection of smaller 
lesions. Third, the three publicly available MS lesion datasets (MICCAI 
2008 (Styner et al., 2008), MICCAI 2016 (Commowick et al., 2016), and 
ISBI-2015 (Carass et al., 2017)) are relatively small, and evaluations on 
more extensive datasets are lacking (Danelakis et al., 2018). 

The objective of this study was to integrate Anatomical information 
and Lesion-wise Loss function into neural network (ALL-Net) to over
come the shortcomings of existing CNN algorithms for MS lesion seg
mentation. We proposed an anatomical convolutional module that can 
efficiently encode anatomical structure information and a lesion-wise 
loss function to improve detection on the lesion level. In addition to 
the ISBI-2015 dataset, ALL-Net was compared to state-of-the-art algo
rithms on a larger in-house dataset of 176 MS patients. 

2. Materials and methods 

2.1. MRI image datasets 

The proposed MS lesion segmentation algorithm was evaluated on 
the publicly available ISBI-2015 dataset released as part of the Longi
tudinal White Matter Lesion Segmentation of Multiple Sclerosis Chal
lenge during the 2015 International Symposium on Biomedical Imaging 
(ISBI) (Carass et al., 2017), and also on a larger in-house Cornell MS 
dataset. The ISBI-2015 training dataset consists of whole-brain 3T MR 
images with T1-weighted (T1W), T2-weighted (T2W), proton density- 
weighted (PDW), and T2W fluid attenuated inversion recovery 
(FLAIR) contrast acquired on Philips scanners (Philips Medical Systems, 
Best, the Netherlands), as well as binary lesion masks traced indepen
dently by two expert readers for five patients, four of whom had four 
longitudinal scans, and the remaining patient had five scans. The ISBI- 

2015 testing dataset includes MR images for 14 patients, ten of whom 
had four scans, three had five scans, and one had six scans. The ground- 
truth lesion masks were not provided for the testing dataset. The per
formance evaluation metrics were described in details in (Carass et al., 
2017) and obtained by submitting the predicted binary lesion mask at 
https://smart-stats-tools.org/lesion-challenge. 

The cross-sectional Cornell MS dataset consists of 176 MS patients 
enrolled in an ongoing prospective database for MS research (see Table 1 
for demographics and clinical information). The database was approved 
by the local Institutional Review Board and written informed consent 
was obtained from all patients prior to entry into the database. Imaging 
was performed on 3T Magnetom Skyra scanners (Siemens Medical So
lutions USA, Malvern, PA, USA) using a product twenty-channel head/ 
neck coil. The standardized scanning protocol consisted of sagittal 3D 
T1W MPRAGE sequence (Repetition Time (TR)/Echo Time (TE)/Inver
sion Time (TI) = 2300/2.3/900 ms, flip angle (FA) = 8◦, GRAPPA par
allel imaging factor (R) = 2, voxel size = 1.0 × 1.0 × 1.0 mm3), axial 2D 
T2W turbo spin echo sequence (TR/TE = 5840/93 ms, FA = 90◦, turbo 
factor = 18, R = 2, voxel size = 0.5 × 0.5 × 3 mm3) and sagittal 3D fat- 
saturated T2W FLAIR sequence (TR/TE/TI = 8500/391/2500 ms, FA =
90◦, turbo factor = 278, R = 3, voxel size = 1.0 × 1.0 × 1.0 mm3). T1W 
and T2W images were linearly co-registered to the FLAIR space using the 
FMRIB’s Linear Image Registration Tool (FLIRT) command (Smith et al., 
2004). Ground-truth binary lesion masks were also provided for all 
subjects. These masks were obtained by segmenting the FLAIR image 
using the LST-LPA algorithm in the LST toolbox version 3.0.0 (www.sta 
tisticalmodelling.de/lst.html) (Schmidt, 2017), followed by manual 
editing if necessary, and finalized by the consensus of two expert 
readers. 

2.2. ALL-Net MS lesion segmentation algorithm 

2.2.1. Overall framework 
The proposed ALL-Net framework (Fig. 1) consists of three parts: an 

encoder-decoder structured backbone network, two Anatomical Con
volutional (AnaConv) modules (defined in the section below) and 
associated convolutional layers, and traditional region-based loss as well 
as the Lesion-wise Loss (LesLoss) modules. In the first stage, multi-modal 
images (T1W, T2W, FLAIR) are fed into the backbone network for voxel- 
wise feature extraction. The obtained feature map is then fed into two 
different convolution layers to extract lesion- and sphere-specific fea
tures. Each feature map goes through an AnaConv module, followed by a 
multi-layer perceptron (MLP) (efficiently implemented by 1x1x1 con
volutional kernels) to obtain the final prediction map. 

Table 1 
Demographic and clinical information of the Cornell MS dataset.  

Number of Subjects 176 

Gender (count (%))  
Female 127 (72.16%) 
Male 49 (27.84%) 
Race (count (%))  
White 132 (75.00%) 
Asian 7 (3.98%) 
Black or African American 29 (16.48%) 
Hispanic 1 (0.57%) 
More than one race 2 (1.14%) 
Other 4 (2.27%) 
Unknown or not reported 1 (0.57%) 
Disease subtype (count (%))  
RRMS 163 (92.61%) 
SPMS 5 (2.84%) 
CIS 8 (4.55%) 
Disease duration* (mean ± STD) 10.69 ± 7.37 
Age (mean ± STD) 42.89 ± 10.39 
EDSS (mean ± STD) 1.41 ± 1.65 
Treatment duration (mean ± STD) 8.16 ± 5.84  

* Reported for 173 patients with available data. 
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2.3. Anatomical convolutional (AnaConv) module 

Anatomical Convolution (AnaConv) is a neural network module that 
utilizes the anatomical location of each voxel obtained from the input 
T1W image to guide network training and inference by means of a 
feature fusion convolutional layer (Fig. 1) for MS lesion segmentation. 
MS lesions have a predilection for forming in the periventricular area 
(Filippi et al., 2019), and this unique spatial pattern can provide a useful 
anatomical prior to improve segmentation performance. In this study, 
two spatial coordinates were calculated for each brain voxel: 1) 3D voxel 
coordinates and distance to the origin mapped from the MNI space 
(Grabner et al., 2006) to the patient space, which were obtained by 
linearly aligning the MNI space to the native T1W image using FMRIB’s 
Linear Image Registration Tool (FLIRT) command (Smith et al., 2004); 
2) Distance to the nearest boundary voxel of CSF filled structures such as 
the ventricles and the pial surface, and distance to the nearest boundary 
voxel of the whole brain, calculated by first obtaining brain tissue seg
mentation (GM, WM, and CSF) using FMRIB’s Automated Segmentation 
Tool (FAST) command (Smith et al., 2004), followed by smoothing and 
hole filling of the volumetric tissue masks by means of morphological 
opening and closing operations, and applying distance transformation 
mapping (Danielsson, 1980) to the filtered masks. Both coordinates are 
defined in the individual patient space and not in the MNI space and 
therefore change with the subject’s head size. To integrate the derived 
anatomical location information into network training, we used the 
computationally efficient CoordConv method (Liu et al., 2018) that 

augments the input of a common convolutional layer with extra coor
dinate and distance channels. The implemented AnaConv consists of two 
commonly used operations, a concatenation of a feature tensor and a 
coordinate tensor through the channel dimension and a common con
volutional layer with convolution, batch normalization (Ioffe and 
Szegedy, 2015) and rectified linear unit (ReLU) as the activation func
tion (Fig. 1). 

2.4. Lesion-wise loss (LesLoss) module 

Commonly used voxel-wise loss functions such as binary cross- 
entropy (BCE), Dice loss (Milletari et al., 2016), or Tversky loss 
(Hashemi et al., 2018) assign equal importance to every voxel, which 
implies that the cost of misclassifying a small lesion (missed or false 
positive lesion) is similar to that of correctly detecting but slightly 
under- or over-segmenting a large lesion. In clinical practice, however, 
misdetection of lesions as small as 3 voxels in diameter can have an 
important consequence on MS diagnosis (Thompson et al., 2018; Filippi 
et al., 2016). To improve detection on the lesion level in agreement with 
the clinical need, we proposed a Lesion-wise Loss (LesLoss) module 
which enforces lesion-wise learning, as opposed to voxel-wise learning, 
by modeling all lesions as spheres with a fixed size in the loss function. 
During early testing, the algorithm was found to be insensitive to the 
choice of the sphere diameter throughout the range of 8–20 mm, and 
consequently a 10 mm diameter was chosen in the final implementation. 
The sphere transformation turns individual lesions regardless of their 

Fig. 1. Schematic of the proposed ALL-Net algorithm for MS lesion segmentation. The upper panel shows the overall framework which consists of three parts: an 
encoder-decoder structured backbone CNN network (3D U-Net in our implementation), two Anatomic Convolutional (AnaConv) modules for encoding anatomical 
information such as voxel coordinate and distance from the CSF and brain boundaries, and the traditional region-based loss (Dice loss and BCE loss) as well as the 
proposed lesion-wise loss (LesLoss) modules. The backbone network extracts voxel-wise features from the input multi-modal images (T1W, T2W, and FLAIR in 
Cornell MS dataset), the feature map of which will be used to predict the lesion mask and lesion spheres. The lower panel shows the details of the AnaConv module, 
which maps an input feature tensor X ∈ Rc×h×w×d (c is the number of channels in the feature tensor, and h,w, d denote the size the of the image) to a new feature 
tensor Xo ∈ Rc×h×w×d by concatenating the anatomical coordinates and performing a common convolutional layer on Xm ∈ R(c+6)×h×w×d. 
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size and shape into fixed size spheres, therefore assigning equal weights 
to all lesions during network training. This helps to prevent misdetection 
of lesions with smaller volumes. 

Our approach was based on (Zhang et al., 2021a) which generalizes 
the voxel-wise loss function into a geometric loss function as follows: 

L =

∑
v∈ΩΘ(sv, gv)Ψ(s, g, v,ϕ)

∑
v∈ΩΓ(sv, gv)

, (1) 

Here Ω ∈ N 3 is the spatial domain of an input 3D image, Σv∈Ω is the 
summation notation, v =

(
vx, vy, vz

)
is the spatial position vector, s is the 

output probability map, sv ∈ [0, 1] is the value of s at position v, g is the 
ground-truth binary lesion mask, and gv ∈ {0,1} is the value of g at 
position v. Eq. 1 combines the volumetric (Θ(sv, gv)) and geometric 
(Ψ(s, g, v,ϕ)) correlations in a single formula, and traditional region- 
based and boundary-aware loss functions can be represented using the 
formula by specifying Θ(sv, gv) and Ψ(s, g, v,ϕ) (more details of the in
stantiations can be found in (Zhang et al., 2021a)). In this work, we 
proposed a geometric transformation to reduce lesions to spheres with a 
fixed size to be used as geometric constraints in Eq.1 as follows: 1) Use a 
3x3x3 template filled with ones and the depth-first search method to 
find spatial-connected components; 2) Compute the mass center for each 
of the connected components; 3) Draw spherical masks with a fixed 
radius centered on the computed mass centers. If two spheres overlap, 
the union of their masks will be used (Fig. 2). This transformation in
volves indifferentiable operations, and thus differs from Eq.1 where both 
ground-truth map and predicted probability map can undergo the 
transformation process. Our lesion-wise loss only transforms the ground- 
truth map and uses a deep neural network to predict the probability map 
of spheres directly. Accordingly, Eq.1 was modified as follows: 

L =

∑
v∈ΩΘ

(
sv,ϕ(g)v

)

∑
v∈ΩΓ(sv, gv)

, (2) 

where ϕ : (g)→(h) denotes the lesion-wise sphere transformation. 
Letting the volumetric correlation function be 
Θ(sv, gv) = α(1 − sv)

γlog(sv)gv +(1 − α)sγ
vlog(1 − sv)(1 − gv) and the 

normalization function be 
∑

v∈ΩΓ(sv, gv) = |Ω|, the final lesion-wise loss 
function is as follows: 

L l =
1
|Ω|

∑

v∈Ω
α(1 − sv)

γ log(sv)ϕ(g)v +(1 − α)sγ
vlog(1 − sv)

(
1 − ϕ(g)v

)
, (3) 

Wherelog is the natural logarithm function, α is a factor to balance 
the importance of foreground (sphere) and background (non-sphere) 
voxels, and γ is a focusing factor (Lin et al., 2017) to balance the 
importance of misclassified voxels that are easy or difficult to train 
(difficulty is determined by the probability). We followed previous work 
(Lin et al., 2017) and set α = 0.25 and γ = 2.0. 

2.5. Network implementation and inference details 

For the ISBI-2015 dataset, the backbone network architecture for 
ALL-Net was the same as that of Tiramisu (Zhang et al., 2019a), a top- 
performing algorithm on the leaderboard of the ISBI-2015 challenge. 
ALL-Net was implemented in Python using a PyTorch library (Paszke 
et al., 2019) on a computer equipped with four Nvidia Titan Xp GPUs. 
ALL-Net was trained on 21 scans from 5 subjects and tested on 61 scans 
from 21 subjects. The original multi-modal images were padded to the 
same size of 217x217x217 voxels for all subjects. Elastic deformation, 
random intensity shifting, and random scaling were used for data 
augmentation. The loss function used for network training was selected 
as the sum of LesLoss, BCE loss, and soft Dice loss (Milletari et al., 2016) 
(with equal weight). The Adam algorithm (Kingma and Ba, 2014) with 
an initial learning rate of 0.001 and a multi-step learning rate scheduler 
with milestones at 50%, 70%, and 90% of the total epochs were used to 
train the network weights. A batch size of twenty was used for training, 
and training stopped after 140 epochs. We used five random seeds to 
train five models and the final lesion segmentation mask was determined 
by majority voting. 

The larger Cornell MS dataset, consisting of 176 scans from 176 
subjects, was split into three subsets for model training (119), validation 
(18), and testing (39). For this experiment, the network was imple
mented in a similar fashion as that for the smaller ISBI-2015 dataset, 
with the notable exception that the backbone network was changed 
from 2D convolution as in Tiramisu (Zhang et al., 2019a) to 3D 
convolution as in (Zhang et al., 2021a). To lessen computer memory 
demand, images were randomly cropped to 128 × 128 × 48 voxels for 
training. For testing, the original image size was used. A batch size of 
four was used for training, and training was stopped after 70 epochs. 

When we performed the network inference on the testing dataset, 
T1W images were first used to generate a six-channel 4D tensor (6× W×

H× D, where W,H,D denotes the spatial size of the T1W image) 
including anatomical coordinates described at Section 2.2. For ISBI- 
2015 dataset, intensity-normalized PDW, T1W, T2W, and FLAIR im
ages as well as the coordinate tensor were used as inputs to the network. 
For Cornell dataset, co-registered and intensity-normalized T1W, T2W 
and FLAIR images as well as the coordinate tensor were used as network 
inputs. 

2.6. Data and code availability statement 

The ISBI-2015 dataset is publicly available and can be requested at 
their website http://iacl.ece.jhu.edu/index.php?title=MSChallenge. 
The Cornell MS dataset is a private clinical dataset and cannot be made 
publicly available due to confidentiality. The code is available at 
https://github.com/tinymilky/ALL-Net. 

Fig. 2. Example of spherical lesion transformation for the proposed LesLoss function. The Les loss groups the voxel-wise binary lesion mask (a) into separate lesions 
based on spatial connectivity (b) and then transforms them into spheres with a fixed diameter of 10 mm (c). 
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2.7. Evaluation metrics 

Evaluation metrics were based on those used in the ISBI-2015 chal
lenge (Carass et al., 2017). Dice Similarity Coefficient (DSC), Precision, 
Sensitivity, and Voxel-wise F1 Score (V-F1) were used to measure the 
voxel-wise agreement between the ground-truth and the predicted bi
nary lesion masks: 

DSC =
TP

2TP + FP + FN
(4)  

Precision =
TP

TP + FP
(5)  

Sensitivity =
TP

TP + FN
(6)  

V-F1 = 2⋅
Precision⋅Sensitivity

Precision + Sensitivity
(7)  

where TP, FP, FN denote the number of voxel-wise true positives, false 
positives, and false negatives, respectively. 

Similar metrics were defined on the lesion level including lesion-wise 
true positive rate (LTPR), lesion-wise false positive rate (LFPR), and 
lesion-wise F1 score (L-F1) as follows: 

LTPR =
LTP
GL

, (8)  

LFPR =
LFP
PL

, (9)  

L-F1 = 2⋅
(1 − LFPR)⋅LTPR
(1 − LFPR) + LTPR

. (10) 

where LTP denotes the number of lesion-wise true positives (pre
dicted lesions that overlap with the ground-truth mask), GL is the 
number of lesions in the ground-truth mask, LFP is the number of false 
positive lesions (predicted lesions that do not overlap with the ground- 
truth lesion mask), and PL is the number of lesions in the prediction 
mask. 

In addition, the following aggregate evaluation score originally 
proposed in the ISBI-2015 challenge was used: 

Score =
1

2N

∑2n (
DSC

8
+

PPV
8

+
1 − LFPR

4
+

LTPR
4

+
VC
4

)

(11) 

where n is number of samples, N is a normalization factor consid
ering the inter-rater variation and the number of samples, and VC is the 
Pearson’s correlation coefficient of the lesion volumes between the 
ground-truth and the prediction. The inter-rater variation was excluded 
from the aggregate score calculation (Eq. (12)) for the Cornell dataset. 

2.8. Statistical analysis and ablation study 

For the ISBI-2015 dataset, the proposed ALL-Net algorithm was 
compared with top algorithms on the leaderboard of the ISBI-2015 
challenge including Tiramisu (Zhang et al., 2019a), GEO Loss (Zhang 
et al., 2021a), Low-precision Ensemble (Ma et al., 2021), Asymmetric 
Loss (Hashemi et al., 2018), Multi-Branch Network (Aslani et al., 2019), 
Cascaded Network (Valverde et al., 2017), Multi-view Network (Bire
nbaum and Greenspan, 2016), and Location-aware network (Ghafoorian 
et al., 2017), based on performance metrics reported in the literature or 
posted on the challenge website at https://smart-stats-tools.org/lesion- 
challenge. 

For the Cornell MS dataset, ALL-Net was compared with the LST-LPA 
algorithm (Schmidt, 2017), U-Net (Çiçek et al., 2016), nn-Unet (Isensee 
et al., 2021) and Tiramisu (Huang et al., 2017; Zhang et al., 2019a) using 
evaluation metrics that were calculated based on the provided ground- 

truth lesion masks. Two-tailed paired t-tests were used to compare 
performance metrics of the proposed ALL-Net with other algorithms. 
Receiver operating characteristics (ROC) analysis was used to compare 
diagnostic detection accuracy of the algorithms at the lesion level. 
Precision-recall (PR) curves were used to compare overall performance 
of the algorithms at the voxel-level. We further performed an ablation 
study on this dataset to evaluate the effectiveness of each of the pro
posed modules. All CNN based algorithms used the same three input 
contrasts (T1W, T2W, FLAIR), and these methods were trained and 
validated the same way on the Cornell dataset. LST-LPA, which does not 
require parameter tuning and by design only requires FLAIR input, was 
included in our comparison because it is a popular open-source MS 
lesion segmentation tool. 

To verify the effectiveness of each proposed module, we further 
conducted an ablation study using Cornell MS dataset. The ablation 
study consists of four model variants of the proposed ALL-Net: 1) The 
baseline network without AnaConv and LesLoss; 2) The baseline 
network with AnaConv but without LesLoss; 3) The baseline network 
without AnaConv but with LesLoss; 4) The baseline network with both 
AnaConv and LesLoss. The effectiveness of ALL-Net resolving the first 
and the second issue mentioned in introduction can be observed by 
comparing the performance between 1) and 2), and 1) and 3) 
respectively. 

3. Results 

3.1. ISBI-2015 challenge dataset 

Table 2 summarizes the comparison of the proposed ALL-Net and 
state-of-the-art MS lesion segmentation algorithms on the ISBI-2015 
testing dataset. The ALL-Net and the Tiramisu network achieved the 
best and second-best performance in overall Score respectively, where 
the ALL-Net reduced LFPR by an average of 21.3% (from 0.155 to 0.122) 
compared to the Tiramisu network while maintaining similar LTPR 
(0.533 vs. 0.540). In terms of voxel-wise metrics, nn-Unet achieved the 
best DSC 0.679, surpassing the second-best DSC 0.661 from Low- 
precision Ensemble model by 2.7%, and the Asymmetric Loss model 
achieved the best PPV 0.921, improving the second-best PPV 0.914 from 
the ALL-Net by 0.7%. In terms of lesion-wise metrics, the ALL-Net ach
ieved the best L-F1 score 0.663, improving the second-best L-F1 score 
0.659 from the Tiramisu network by 0.6% and representing the best 
tradeoff between LTPR and LFPR among all other methods. In terms of 
volume correlation, the ALL-Net and other algorithms achieved similar 
VC score around 0.86, while Multi-view model and Location-aware 
model are exceptionally lower. Fig. 3 shows two examples from the 
testing set of the ISBI-2015 dataset, demonstrating the ability of ALL-Net 
to capture small juxtacortical lesions better than LST-LPA and Tiramisu 
algorithms, and avoid over-segmenting WM hyperintensities close to the 
ventricles. 

3.2. Cornell MS dataset 

Table 3 summarizes the comparison of the proposed ALL-Net and 
several existing MS lesion segmentation algorithms on the testing set of 
the Cornell MS dataset (with lesion volume ranging from 26 mm3 to 
26976 mm3). ALL-Net achieved the best overall score with relative 
improvement of 19.4% (from 0.705 to 0.842) over LST-LPA, 5.9% (from 
0.795 to 0.842) over U-Net, 4.7% (from 0.804 to 0.842) over Tiramisu, 
and 4.5% (from 0.804 to 0.842) over nn-Unet. ALL-Net achieved the best 
DSC score of 0.755, improving the second-best DSC score 0.727 from U- 
Net by 3.9%. ALL-Net also achieved the best voxel-wise metrics in terms 
of precision, sensitivity and V-F1 score. In terms of lesion-wise metrics, 
ALL-Net achieved the second best LFPR of 0.301, which is higher than 
the best LFPR of 0.248 by nn-Unet. U-Net achieved the best LTPR of 
0.937, which was slightly better than the second-best LTPR of 0.926 
obtained by the Tiramisu network. More importantly, ALL-Net achieved 
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the best L-F1 score of 0.793, which is slightly higher than the second- 
best L-F1 score of 0.782 by nn-Unet and represents the best trade-off 
between LFPR and LTPR. 

The top panel of Fig. 4 shows an example from the testing set of the 
Cornell MS dataset, demonstrating improved lesion detection of the 
proposed algorithm. In addition, the lower panel of Fig. 4 shows another 

Table 2 
Performance comparison of the proposed ALL-Net and state-of-the-art MS lesion segmentation algorithms on the ISBI-2015 testing dataset (61 scans from 14 patients). 
Bolded and underlined numbers refer to metrics with the best and the second-best performance, respectively.  

Algorithms Score DSC PPV LFPR LTPR VC L-F1 

ALL-Net (proposed)  93.32  0.639  0.914  0.122  0.533  0.860  0.663 
Tiramisu (Zhang et al., 2019a)  93.11  0.641  0.902  0.155  0.540  0.867  0.659 
nn-Unet (Isensee et al., 2021)  92.87  0.679  0.847  0.159  0.523  0.865  0.645 
GEO Loss (Zhang et al., 2021a)  92.73  0.643  0.887  0.132  0.480  0.854  0.618 
Low-precision Ensemble (Ma et al., 2021)  92.55  0.661  0.838  0.151  0.491  0.854  0.622 
Asymmetric Loss (Hashemi et al., 2018)  92.48  0.584  0.921  0.087  0.414  0.858  0.569 
Multi-Branch (Aslani et al., 2019)  92.12  0.611  0.899  0.139  0.410  0.867  0.556 
Recurrent Gated Units (Andermatt et al., 2017)  92.07  0.629  0.845  0.201  0.487  0.862  0.605 
Cascaded Network (Valverde et al., 2017)  91.33  0.630  0.787  0.153  0.367  0.866  0.512 
Multi-View (Birenbaum and Greenspan, 2016)  90.07  0.627  0.789  0.498  0.568  0.822  0.533 
Location-Aware (Ghafoorian et al., 2017)  86.92  0.501  0.549  0.577  0.429  0.791  0.426  

Fig. 3. Comparison of MS lesion segmentation masks obtained with the proposed ALL-Net and previously developed LST-LPA and Tiramisu algorithms from two test 
subjects in the ISBI-2015 dataset. In the first subject (top row), all three algorithms captured periventricular lesions equally well. However, only ALL-Net correctly 
detected small juxtacortical lesions (orange arrows). In the second example (bottom row), LST-LPA tended to over-segment lesions, leading to false positives (yellow 
arrows), while CNN-based ALL-Net and Tiramisu algorithms provided better results with tighter segmentation masks. Note that the ground-truth lesion masks were 
not available in this dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Performance comparison on the Cornell MS testing dataset (39 scans from 39 patients). Bolded and underlined numbers refer to the metrics with the best and the 
second-best performance, respectively.  

Methods Score DSC LFPR LTPR Precision Sensitivity VC L-F1 V-F1 

ALL-Net (proposed)  0.842  0.755  0.301  0.917  0.781  0.748  0.983  0.793  0.764 
LST-LPA (Schmidt et al., 2012)  0.705  0.558  0.527  0.866  0.661  0.526  0.872  0.611  0.586 
U-Net (Çiçek et al., 2016)  0.795  0.727  0.465  0.937  0.736  0.738  0.977  0.681  0.737 
Tiramisu (Zhang et al., 2019a)  0.804  0.723  0.432  0.926  0.752  0.710  0.984  0.704  0.730 
nn-Unet (Isensee et al., 2021)  0.806  0.697  0.248  0.813  0.696  0.719  0.963  0.782  0.707  
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example from the testing set of the Cornell MS dataset, where our ALL- 
Net successfully detected a lesion that was under-segmented by human 
experts (the under-segmented example was shown to another human 
expert with multi-contrast images, and consensus was obtained that the 
under-segmented area should be considered as lesion). 

Figs. 5 and 6 compare the ROC curve and the PR curve, respectively, 
for different algorithms when applied to the testing set of the Cornell MS 
dataset. The proposed ALL-Net provided higher AUC for both lesion- 
wise and voxel-wise detection than existing algorithms, indicating 
improved lesion detection and segmentation performance. Fig. 7 shows 
boxplots for comparison of different methods. The proposed ALL-Net 
surpassed the other methods with statistical significance in both voxel- 
wise (Dice improvement of 3.9% to 35.3% with p-values ranging from 

p < 0.01 to p < 0.0001) and lesion-wise metrics (lesion-wise F1 score 
improvement of 1.4% to 29.8% with all p-values p < 0.0001 except for 
nn-Unet). 

3.3. Ablation study 

Table 4 shows results of the ablation study on the Cornell MS dataset. 
Compared with the base network, adding either the AnaConv or LesLoss 
module improved voxel-wise metrics such as DSC and V-F1 score, and 
provided a better trade-off between LFPR and LTPR. Most importantly, 
the best segmentation performance was attained with the addition of 
both modules to the base network. 

Fig. 4. Comparison of MS lesion segmentation masks obtained with the proposed ALL-Net and previously developed LST-LPA, U-Net, Tiramisu and nn-Unet al
gorithms from two test subjects in the Cornell MS dataset. Lesion masks traced by human experts are shown as ground-truth reference. Orange arrows indicate lesions 
under-segmented by the algorithms, yellow arrows indicate false positives, and the blue arrow indicates a region where humans made a mistake which was confirmed 
in repeated review. Overall, ALL-Net provided better segmentation results than competitive methods. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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4. Discussion 

Our results obtained from the ISBI-2015 dataset and the larger Cor
nell MS dataset demonstrated that the proposed ALL-Net algorithm 
improved overall MS lesion segmentation performance (measured by 
the aggregate evaluation score) when compared to traditional algo
rithms such as LST-LPA (Schmidt et al., 2012) and state-of-the-art CNN 
algorithms including nn-Unet (Isensee et al., 2021) and Tiramisu (Zhang 
et al., 2019a). ALL-Net achieved these advantages through the addition 
of two new modules to integrate voxel position learning for encoding 
anatomical information and lesion-wise learning for better lesion 
localization with the deep convolutional neural network. 

In addition to image contrast, contextual and anatomical information 
play important roles in MS lesion segmentation. As shown in Fig. 4, 
traditional segmentation methods often miss juxtacortical lesions and 
over-segment periventricular hyperintensities due to ambiguous image 
contrast in these regions. As MS lesions tend to occur more frequently in 
the periventricular area, lesion location can also introduce bias into 
network training, leading to suboptimal segmentation. ALL-Net utilizes 
location information including anatomical position mapped from MNI 

space to patient space, voxel distance to the brain boundaries, and voxel 
distance to the boundary of CSF filled structures such as the ventricles 
and the pial surface to overcome this bias and to provide more uniform 
lesion detection over the whole brain. 

In this work, we introduced a lesion-wise loss (LesLoss) function 
which models lesions of various sizes as individual objects of equal 
importance. This shift in focus from voxel-wise to lesion-wise detection 
is important because MS diagnosis is based on the dissemination of new 
lesions in space and time. Recent object detection methods such as 
Corner-Net (Law and Deng, 2018) and Center-Net (Zhou et al., 2019) 
formulated the object detection problem as an image mapping problem, 
where the corners or centers of an object become the prediction targets, 
in replacing the traditional bounding-box prediction. GEO Loss (Zhang 
et al., 2021a) bridged the gap of designing loss functions between 
region-based volume and geometric transformation by introducing the 
GEO Loss function. Inspired by these works, we proposed the LesLoss 
function to enhance segmentation performance. As can be seen in the 
quantitative results, our method can effectively trade-off between LFPR 
and LTPR (with similar LTPR, we achieved better LFPR; with similar 
LFPR, we achieved better LTPR), resulting in a better lesion-wise 
detection accuracy. Examples shown in Figs. 3–5 demonstrate 
improved detection of small lesions without over-segmenting (i.e., 
introducing false positives) using the proposed lesion-wise approach. 

3D convolution tends to provide better network performance than 
2D convolution in MS segmentation task as it aggregates richer 
contextual information for network training. However, as the number of 
network weights greatly increases, this approach requires a much larger 
dataset to prevent overfitting. A key contribution of the present work is 
to demonstrate that a 3D CNN can significantly improve the MS lesion 
segmentation performance when trained on a larger training dataset. 
When using the backbone network from GEO Loss (Zhang et al., 2021a), 
3D convolution-based, the best score we can obtain from the testing set 
of the ISBI-2015 dataset is 92.99. If the backbone network is changed to 
Tiramisu (Zhang et al., 2019a), which is 2D convolution based, the score 
goes up to 93.32. On the contrary, in the larger Cornell MS dataset, we 
also found that 3D models outperform 2D models. While it may be 
beneficial to adapt the original 2D Tiramisu network to a 3D convolution 
model on the Cornell dataset, the resulting densely connected network 
(Huang et al., 2017) consumes 7-times more GPU memory than a U-Net 
with VGG block (Simonyan, 2014) and therefore could not be imple
mented on our GPU. Furthermore, since the core feature of the Tiramisu 
network is the slice stacking technique, which is by nature a 2D network, 
it would be fair to respect the original design in our comparisons. Similar 
performance gain from 2D to 3D models was also observed with nn-Unet 
algorithm (Isensee et al., 2021) that automatically tunes its hyper- 
parameters. 

In this study, when ALL-Net was trained on the Cornell dataset and 
applied to the ISBI-2015 dataset, we found that the overall score of 
88.23 was lower than the top leaderboard score of 93.32 achieved by 
ALL-Net when it was both trained and tested on the ISBI-2015 dataset. 
This result was not unexpected as the deep learning literature has shown 
(e.g., (Valverde et al., 2019)) that the performance of CNNs tend to 
degrade substantially when applied to image data obtained with 
different acquisition parameters such as voxel size, pulse sequence, 
timing parameters, and scanner vendor, among others. Data harmoni
zation approaches such as those reported in (Fortin et al., 2017) and 
(Dewey et al., 2019) might overcome this issue and will be explored in 
our future work. 

One limitation of the study was the potential bias caused by the 
lesion mask annotation process. Because a fully manual segmentation of 
a large dataset like ours would be time-prohibitive, we have adopted a 
semiautomatic approach, in which an initial segmentation mask was 
obtained by the automated LST-LPA algorithm and further reviewed and 
edited, if necessary, by the human experts to obtain the final lesion 
mask. This approach may create unwanted bias in the ground truth 
masks as the readers could be influenced by the initial masks generated 

Fig. 5. Comparison of lesion-wise ROC curves for different MS lesion seg
mentation algorithms on the testing set of the Cornell MS dataset. (LFPR =
lesion-wise false positive rate; LTPR = lesion-wise true positive rate). 

Fig. 6. Comparison of voxel-wise Precision-Recall curve for different MS lesion 
segmentation algorithms on the testing set of the Cornell MS dataset. 
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Fig. 7. Performance comparison of tested models with all metrics evaluated on the testing set of the Cornell MS dataset. Statistical significance test between of our 
method and the other state-of-the-art methods were evaluated using a paired t-test. The threshold of the significance was α = 0.05, and the p-values in the figure are 
annotated as: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, **** for p < 0.0001, and ns for non-significant. 
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by LST-LPA. We should also note that the ground truth lesion masks for 
the Cornell dataset were delineated by two expert readers and are 
therefore subject to intra- and inter-rater reliability and can be less 
stringent than those obtained by the consensus of a much larger number 
of expert readers. Our algorithm was trained to mimic the performance 
of these two readers, and likely can be further improved by aggregating 
input from more readers. A DSC of 0.73 is reported (Carass et al., 2017) 
to assess the agreement between two human experts as a measure of the 
degree of overlap between segmentations; our proposed ALL-Net ach
ieved a DSC of 0.755 on the Cornell MS dataset. This indicates that our 
ALL-Net has the potential to be a useful clinical tool. 

According to the ISBI-2015 challenge (Carass et al., 2017), a score 
over 90 indicates that segmentation accuracy is similar to that of human 
experts. ALL-Net’s score 93.32 on the challenge dataset, in combination 
with its speed of processing a whole brain in less than one second, 
suggest that it can serve as a fully automated tool to aid in routine MS 
lesion segmentation. Although ALL-Net correctly detects 91.7% (see 
LTPR in Table 3) of lesions, about 30% (see LFPR in Table 3) detected 
lesions are false positives. Future work will be focused on further 
reducing the false positive rate to improve clinical translation. 

MS lesions accumulate and may expand over-time leading to the 
development of large confluent lesions. Currently, our method cannot 
separate out the original individual lesions from a large confluence. To 
this end, we will build upon our LesLoss to simultaneously segment and 
separate these confluent lesions. Currently, LesLoss computes lesion 
centers based on spatial-separated connected components, but it is 
possible to extend LesLoss to compute lesion centers for individual le
sions. The probability map of spheres obtained by LesLoss can be used to 
pick up peak points for identifying individual lesions. 

In conclusion, the proposed ALL-Net algorithm with efficient 
encoding of anatomical information and a lesion-wise loss function 
improves MS lesion detection accuracy compared to state-of-the-art 
algorithms. 
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