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The field of molecular epidemiology responded to the SARS-CoV-2 pandemic with an unrivaled amount of whole viral genome 
sequencing. By the time this sentence is published we will have well surpassed 1.5 million whole genomes, more than 4 times the 
number of all microbial whole genomes deposited in GenBank and 35 times the total number of viral genomes. This extraordinary 
dataset that accrued in near real time has also given us an opportunity to chart the global and local evolution of a virus as it moves 
through the world population. The data itself presents challenges that have never been dealt with in molecular epidemiology, and 
tracking a virus that is changing so rapidly means that we are often running to catch up. Here we review what is known about the 
evolution of the virus, and the critical impact that whole genomes have had on our ability to trace back and track forward the spread 
of lineages of SARS-CoV-2. We then review what whole genomes have told us about basic biological properties of the virus such as 
transmissibility, virulence, and immune escape with a special emphasis on pediatric disease. We couch this discussion within the 
framework of systematic biology and phylogenetics, disciplines that have proven their worth again and again for identifying and 
deciphering the spread of epidemics, though they were largely developed in areas far removed from infectious disease and medicine.
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The SARS-CoV-2 virus was first reported as a cluster of pneu-
monia cases in Wuhan, China on December 31, 2019 with the 
first symptomatic case presenting on December 1 [1], although 
there have been unconfirmed reports of cases from November 
[2]. The first case outside China was reported in a traveler from 
Wuhan to Thailand [3], and by the end of January, cases had 
been reported in 19 countries outside of China [4]. While the 
initial cases outside of China were mostly linked to travel, sus-
tained community spread outside of China is thought to have 
begun globally in February [5, 6].

The virus itself was identified in early January as a novel 
betacoronavirus (sarbecovirus) that was sequenced directly 
from respiratory specimens [7, 8], and the first SARS-CoV-2 
whole genome was submitted to GenBank on January 5 (re-
leased January 12). Subsequent sequencing of the virus using 
targeted PCR amplification confirmed the association of this 
virus with the initial cases [8]. The whole genome was critical 
in allowing the early development of PCR-based testing [9] and 
genomic amplification (https://artic.network/), as well as be-
ginning to understand the biology of the virus even before the 

world scientific community had physical access to the virus for 
study [10]. For instance, the similarity of the receptor-binding 
domain (RBD) to the SARS-CoV-1 virus suggested that it 
bound to the ACE2 receptor on human cells [7, 11], which was 
soon after confirmed [8, 12]. It also suggested a close phyloge-
netic relationship with circulating bat coronaviruses [7, 8].

While early phylogenetic analysis tied the viral sequence 
strongly to other known viruses from horseshoe bats (Genus: 
Rhinolophus) [7, 8], the position in the phylogenetic tree dif-
fered based on which genes were used to build the phylogeny 
[7]. In particular, the spike protein gene (S) was highly sim-
ilar to and grouped with the S-gene from SARS-CoV-1 while 
other genes suggested other closest relatives such as the bat 
virus RaTG13 [7]. Other sequence traits, especially in the 
variable loop region of the RBD of the spike protein, are sim-
ilar to coronaviruses isolated from pangolins, leading to the 
hypothesis that there had been recombination between vir-
uses between different hosts [7, 13] and that pangolins might 
be an intermediate or proximate host to the pandemic virus  
[11, 14–18]. Recent structure and binding studies of bat, pan-
golin, and SARS-CoV-2 spike proteins showed high affinity for 
pangolin and human ACE2 proteins and low affinity for bat ACE2  
[19–21], but it may be that the protein differences expand 
binding to multiple different hosts [19]. Another study chal-
lenged the recombination and pangolin host hypothesis, ar-
guing that the RaTG13 may have acquired its variable loop 
region from another sarbecovirus, making the RBD possessed 
by SARS-CoV-2 the ancestral form [22]. At this time, the host 
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source of SARS-CoV-2 is still unclear, however, if the virus has 
been circulating in bat populations for decades as has been pre-
dicted by some analyses [22], comprehensive sampling of bat 
populations may reveal important observations.

Another novel characteristic noted from the whole-genome 
sequences [11, 23] was a polybasic cleavage site at the junction 
of the 2 major spike protein domains, a furin cleavage site, in the 
spike protein that was shown to have a role in SARS-CoV-2 repli-
cation, transmission and pathogenesis [24, 25], although some ev-
idence suggests that increased spike proteolysis is associated with 
reduced viral entry and infectivity [26–28]. However, cleavage of 
the spike protein seems to be an adaptation that enhances viral 
entry, cell-cell fusion, and host range in many viruses such as 
Influenza, MERS, and SARS-CoV-1 [29–33]. Another amino acid 
feature flanking the furin cleavage site is the prediction of sites for 
O-linked glycan modification that has recently been shown to im-
pact viral fusion and entry [28] and has been proposed to provide 
an immunological shield at this site [11, 34, 35].

There has been speculation that the suite of traits that likely 
enhance the virulence, transmissibility, and host range of this 
virus somehow demonstrates that the virus was genetically en-
gineered in a laboratory. There are many arguments against 
this including convincing and careful analyses about the rela-
tionship with viruses from bats [8, 13, 22, 36] and, that despite 
these close relationships, the virus sequence is still substantially 
different, with variable positions distributed throughout its ge-
nome, from any virus known in the literature or used in a lab-
oratory. Overall, it seems extremely unlikely that the virus is 
derived from a laboratory [11, 22, 35, 37, 38].

MODES OF EVOLUTION AND SELECTION

SARS-CoV-2 is an RNA virus and therefore has a relatively fast 
mutation rate. Most estimates of global mutation rates range 
from 5.44E-4 to 1.22E-3, which is approximately 1-2 nucleotide 
changes per month in any given lineage [22, 39–42]. The ge-
nome also undergoes insertions and deletions (indels) at a less 
well-determined rate [43].

This rate, however, is most likely to be the observed rate 
overall in viruses that transmit. In actuality, mutational change 
is likely more frequent, and in any given infection not all viruses 
will be exactly the same. This variation within each infection is 
something that has been studied more deeply in other viruses 
such as HepCV, HepBV, and HIV to name a few, where the di-
versity of mutations in the infecting virus has been shown to 
have a profound impact on viral fitness and evolution [44].

Here, the concept of “quasispecies” is important. 
A  quasispecies is a population of organisms that are all very 
closely related to one another, usually  differing by a small 
number of mutations, that have a collective fitness and can be 
acted on by selection as a unit [44]. That is, it does not matter 
how fit the most fit virus is in the population, but it does matter 

how fit the population is overall. RNA viruses are notorious 
for behaving like quasispecies because they have high muta-
tion rates and short genomes [44], and both SARS-CoV-1 [45] 
and MERS [46] have been documented to exist in quasispecies. 
Therefore it seems likely that quasispecies behavior may be im-
portant for SARS-CoV-2. The number of studies documenting 
quasispecies behavior has been increasing [47–56], but the im-
pact of quasispecies on virulence, immune evasion, and spread 
is not well understood. Current sequencing methods cannot 
easily detect quasispecies since they rely on direct amplification 
of the viral genome from clinical specimens and then consensus 
sequence building. The genome is, therefore, representative of 
the dominant forms of the virus in any given infection, and only 
very deep sequencing can reveal nucleotides that may be there 
as minor variants. Future studies will need to sequence very 
deeply and/or use single genome capture [57, 58] or long read 
strategies [53] to understand quasispecies for SARS-CoV-2.

The role of recombination (where distantly related vir-
uses swap portions of their genomes) is also not clear, though 
it has been proposed as important for the origins of the virus 
[36, 59–62] and has been shown in some circulating lineages 
[63, 64]. Indeed, a naming convention has been proposed for 
them within the Pango system, where the highest level lineage 
is preceded by an X [65]. Recombination is worrisome because 
it provides another way for the virus to gain beneficial muta-
tions without having to rely on the random process of mutation. 
Recombination, of course, relies on 2 unrelated viruses infecting 
the same cell at the same time. Evidence for co-infections of dis-
tinct viruses have been limited so far [63, 66, 67], but it is not clear 
(as mentioned above) that the most common, current sequencing 
techniques could detect infections with different viruses.

One important aspect of SARS-CoV-2 evolution that we 
have witnessed in real time is the recurrent generation of the 
same mutation in different genetic backgrounds [68–71]. This 
could arise from recombination or by the same random event 
happening more than once in different genomes. When this 
type of event happens, and we observe different viruses with 
the same mutation spreading well in community, it is one of the 
best kinds of evidence that a particular mutation has a positive 
impact on viral fitness. True evolutionary convergences or par-
allelisms (or “homoplasies” in systematic biology terminology) 
are therefore goldmines for understanding viral biology and 
identifying variants of concern.

However, detecting truly homoplastic changes can be diffi-
cult. Some mutations may look like they have occurred in dif-
ferent backgrounds just because they have stayed the same as the 
other parts of the viral genome changed. Indeed, this has been 
proposed as the evolutionary pattern that resulted in the diver-
sity in the variable loop region [22]. In systematic biology, this 
would be called a “symplesiomorphy,” a mutation that viruses 
share because their ancestors had it as well. Symplesiomorphies 
provide much weaker evidence for variant fitness, although their 
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conservation over time may signal some benefit. The best way to 
distinguish between convergence and symplesiomorphy is to un-
derstand how viruses are related to each other on a phylogenetic 
tree, therefore phylogeny is not only important for taxonomy but 
can be critical for identifying functional mutations.

LINEAGES, VARIANTS, AND NOMENCLATURE

As viral lineages have spread around the globe they have 
changed enough that they can be distinguished from one an-
other and traced geographically. In this publication, we use 
the term “variant” to refer to viral genomes that can be distin-
guished based on one or more specific genomic changes. It is 
worthwhile noting that variants belonging to the same group 
may not be closest relatives. We use the term “lineage” to refer 
to a group of viruses thought to be related to each other by de-
scent from a common ancestor. A “clade” is the group of organ-
isms that includes all of the descendants of a common ancestor, 
whereas a lineage may only include some descendants. It is also 
important to note that variants, lineages, and clades are desig-
nated here only by their genotype without implying any func-
tional or phenotypic changes.

Nomenclature Systems and Classification Tools

The rapidly evolving genomic forms of the virus required quick 
elaboration of nomenclature systems, and a strong case was 
made from the beginning that these systems should be phyloge-
netically based [72]. Borrowing from previous propositions to 
tie nomenclature closely to phylogeny (eg, http://phylonames.
org/code/), Rambaut and colleagues [72] put forward the use of 
a string of numbers and letters separated by periods, in which 
each lineage contains a nested list of its ancestral lineages in 
its name. Thus, B.1.1.7 suggests that this lineage is the seventh 
lineage derived from a lineage B.1.1, which itself is the first 
lineage derived from a lineage called B.1. This Pango nomencla-
ture system, which is implemented in the program (Pangolin) 
(https://github.com/cov-lineages/pangolin) is intuitive and in-
formative, such that we know that B.1.1.7 is more closely related 
to B.1.1.6 than it is to B.2.1.7 without having to look it up on a 
phylogenetic tree. One downside to this kind of nomenclature 
is that each new lineage must be defined by manual curation of 
the sequences, requiring a central authority that controls and 
certifies new lineages. While the Pango system has been widely 
adopted, some other nomenclature systems have also been used 
such as Nextstrain and GISAID [73, 74], all of which require 
manual curation to define which clades on the phylogenetic tree 
should be named. We recently proposed an automated system 
of nomenclature based on whole-genome multilocus sequence 
typing (wgMLST) that defines groups based on clear-cut prop-
erties of genomes on a minimum spanning phylogenetic tree. 
This technique, called GNUVID [75], provides an adjunctive 
technique that can help add granularity to the Pango system.

Because it is costly to re-calculate the entire phylogenetic tree 
for every new sequence that is obtained several techniques have 
been developed to assign new sequences to lineages based on 
how closely they match other sequences in the database. Early 
techniques used alignment and measurements of similarity to 
viruses already included in a specific group or lineage [73, 76, 
77]. More recent techniques have used machine learning, which 
can also provide estimates of confidence in the taxonomic as-
signment [72, 75].

Phylogeny and Phylodynamics

As a natural way to explain variation, heredity, relatedness, 
and change over time, phylogenies form the backbone of ev-
olutionary biology. From a practical standpoint, phylogenies 
not only offer the ability to classify genomes into lineages but 
can also identify transmission and importation events and re-
construct general patterns of spread. Phylogenetic network and 
tree-based approaches have been used extensively in tracing the 
emergence of SARSA-CoV-2. Phylogenies can also be used to 
infer rates of evolution and identify specific sequence changes 
associated with biological properties of the virus (eg, increased 
transmissibility or virulence). Phylodynamic approaches [78] 
add population genetic models and epidemiologic data to the 
phylogenetic framework and can be used to estimate param-
eters such as rates of spread, transmissibility, and effective 
population size. Geospatial data can also be incorporated to es-
timate the spread of lineages in space.

Without active surveillance and phylodynamic modeling of 
viral lineages, it would have been very difficult, if not impos-
sible, to identify certain viral lineages as more transmissible. 
These types of analyses strongly suggested that the B.1.1.7 lin-
eage was 50% more transmissible than other circulating clones 
[79], and helped inform policy decisions around containment 
of that lineage, unfortunately too late to stop the global spread 
of that lineage.

As practiced by evolutionary biologists, phylogenetics has 
mostly been built on events that happened in the distant past. 
A problematic by-product of building phylogenies and taxo-
nomical schemes in real time, as a virus evolves, is that it is 
almost inescapable that some groupings will not represent all 
the descendants of a single ancestral virus. In other words, as 
new groups arise from older groups, the older groups will not 
necessarily remain “monophyletic.” Taxonomic monophyly 
is strongly preferred because it is not arbitrary, whereas a 
paraphyly (a group that has a common ancestor and only some 
of its descendants) depends upon drawing an arbitrary line 
in the sand, including only some descendants and excluding 
others. For instance, the moment that B.1.1 was named and 
recognized as its own clade, the B.1 clade became paraphy-
letic. This means that there are likely some members of B.1 
that are more closely related to B.1.1 than others. Because of 
this B.1.1 and B.1 are not really comparable units, a taxonomic 
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issue that needs to be kept in mind when comparing named 
lineages.

TRACING THE ORIGINS OF LINEAGES AND TRACKING 
THE SPREAD OF THE VIRUS

Global Patterns

The pandemic might be divided into a few critical mutational 
events that have defined the spread of the virus around the 
world. After its initial emergence in Wuhan, the first event was 
a mutation at the D614G position in the spike protein that led 
to a lineage of viruses with higher transmission rates [27]. The 
biological basis of increased transmission seems to be an in-
creased affinity and cell entry [80–83] and potentially increased 
surface spike protein density such that the virus has more pos-
sible ligands for targeting the ACE2 receptor expressed on host 
cells [84]. Given the available data, this mutation likely arose in 
Asia (it was first sequenced in China) and then spread to Europe 
and around the world. While the very earliest global cases of 
COVID-19 did not have the D614G variant, viruses with this 
mutation very soon came to dominate the early phase of the pan-
demic in many countries. The earliest outbreaks in Italy, Spain 
and the United Kingdom all were dominated by this mutation 
[27]. In addition, the lineage that dominated the early New York 
spike in March and April of 2020 also had D614G [85].

The next major phase started with the introduction of the 
B.1.1.7, which was recognized by an unusual suite of 17 changes 
(Table 1). This lineage was remarkable for 2 major reasons. First, it 
seemed to be spreading much faster than other viruses, a conclu-
sion that could only be reached because of a concerted effort to se-
quence viruses in the United Kingdom [79, 86] and phylodynamic 
integration with community testing data that showed PCR S-gene 
target failures, or “S-drop,” even when other parts of the viral ge-
nome were detected. S-drop is due to a deletion mutation in the 
S-gene (del69-70) [86]. Regions of the United Kingdom where 
there were faster increases in cases were identified to have higher 
rates of B.1.1.7, and S-drop cases seemed to increase faster than 
non-S-drop cases in the same locations in England [86]. In addi-
tion, measurements of infection of contacts by index cases were 
higher for B.1.1.7 compared to other circulating strains [87].

The second unusual feature of B.1.1.7 was a high number of 
putatively adaptive mutations, leading to the hypothesis that the 
origin of B.1.1.7 may have been in a prolonged infection in a 
single host [89–93]. The del69-70 mutation in the spike protein 
has been implicated in increased spread [94, 95]. Likewise, a 
N501Y mutation in the spike protein has also been shown by 
modeling and in vitro to more avidly bind the ACE2 receptor 
[70, 96–98]. The mutation, P681H that is immediately adjacent 
to the furin cleavage site has also been suggested to increase 
transmission rates [25, 26].

The origin of the B.1.1.7 lineage is unclear, but the earliest 
B.1.1.7 genome was reported from the United Kingdom on 

September 2020 and was the  dominant strain in the United 
Kingdom by December 2020 [86]. It very quickly went on to 
become dominant in several other European countries and in 
Israel [99]. More recently starting in March 2021, B.1.1.7 has 
become the predominant lineage in the United States, with an 
extremely rapid increase across the country, coinciding with a 
major vaccination effort.

The N501Y mutation is likely convergent across several 
lineages, and 2 other important lineages with this mutation, 
B.1.351 and P.1, also emerged around the same time as B.1.1.7 
in South Africa and Brazil respectively. These 2 lineages also 
had a worrisome mutation, E484K, that has been shown to en-
hance the escape of neutralizing antibodies in vitro [100–102] 
and may be linked to lower efficacy for vaccines [103–106]. 
Interestingly, the B.1.351 lineage appears to have greater reduc-
tions in neutralizing antibodies than the P.1 lineage [107]. This 
same mutation has also surfaced in several B.1.1.7 isolates from 
around the world [108] though only a small number of studies 
have evaluated the impact on neutralizing antibody escape for 
this variant.

Currently, the B.1.617 lineage and its sublineages (B.1.617.1, 
B.1.617.2, and B.1.617.3) are circulating in a massive spike of 
cases in India, and this lineage is already spreading globally. The 
critical mutations in this lineage appear to be L452R and E484Q, 
although B.1.617.2 lacks the latter and instead has T478K. 
E484Q, like E484K, is thought to reduce antibody efficacy and 
neutralizing antibodies. L452R variants in the B.1.427/429 lin-
eage have recently been reported to be more transmissible and 
infective as well as less susceptible to neutralizing antibodies 
[109]. Less is known about the T478K but it has been noted to 
be increasing dramatically since January 2021 in Mexico and 
North America [110]. Interestingly, B.1.617.2 appeared to be ex-
panded rapidly in the United Kingdom in April and May [111].

Local Patterns

One important aspect of whole-genome sequencing and clas-
sification has been the ability to detect new variants as they 
arise or are  imported to a new place. Early in the pandemic, 
whole genomes allowed researchers to estimate the numbers 
and sources of introductions of the virus [112–114]. Since these 
initial observations, a striking realization has been the huge 
number of predicted importations and exportations between 
countries and across continents, even with significant restric-
tions on travel. A close look at any part of the SARS-CoV-2 phy-
logeny shows multiple exportations and importations. Reliable 
quantification of the flux across borders is highly dependent on 
the density and breadth of sampling.  A detailed analysis was 
possible only in the UK, where there has been a strong commit-
ments to sampling and sequencing genomes [113]. In this study, 
greater than 1000 viral introductions were detected prior to the 
lockdown in March 2020 and then  dropped significantly, but 
were not completely controlled with the lockdown [113]. The 
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number of introductions in the early pandemic into countries 
with much less genomic sampling, like the United States, will 
likely never be known, but new sampling efforts may increase 
our knowledge of importations and allow for rational ap-
proaches to curbing spread.

The diversity of viruses in any given location is determined 
by the rate at which new viruses arise by mutation (or possibly 
recombination), the number of introductions, and the extinc-
tion of lineages if they fail to transmit. Each of these factors de-
pends on the ability of the virus to transmit and persist in the 
community, and therefore viral diversity is reflective of overall 
viral fitness. Measurements of circulating diversity might be 
useful tools for monitoring spread and gauging the impact of 
interventions. Measuring diversity is also highly dependent on 
sampling, and in areas with high levels of genomic sequencing 
groups have used measurements such as the Shannon Index 
[113]. Higher-order measurements that weigh the major cir-
culating lineages (eg, Simpson Index) may be less prone to 
bias from under-sampling. We have recently argued that 
measurements of effective circulating diversity (Hill numbers 
[115–117]) may be more reliable, and less biased, especially in 
under-sampled locations [75].

One other way that whole-genome sequencing has been 
helpful at the very local level is in contact tracing and con-
firming outbreaks. In this regard, whole-genome sequences can 
either rule in or rule out transmission events. In some reported 
instances, transmitted viruses are either completely identical 
at the nucleotide level or 1-3 SNP differences apart [118, 119]. 
To conclusively demonstrate transmission, it is necessary to 
compare the genomes in a putative cluster to other circulating 
genomes in the community and also establish epidemiolog-
ical links. Studies that have looked at clusters in this way have 
generally been able to separate true transmission events from 
instances that may have an epidemiological link but different 
genomes.

BIOLOGICAL DIFFERENCES BETWEEN GENOMIC 
VARIANTS

Differences in Transmission

While the most clear biological difference between genomic 
variants is in transmission, even this property is unclear and 
riddled with problems of bias. Of the variants that have been 
proposed to have an increased rate of transmission, the D614G 
mutation in the spike protein has the most evidence behind it 
from epidemiological studies, phylodynamic modeling, struc-
tural analyses, and in vivo and in vitro comparative analyses  
[27, 120–122]. Other variants have been less well studied, with 
the N501Y mutation garnering, perhaps, the second-best sup-
port [79, 96, 123–125]. Both the B.1.1.7 and the B.1.351 variants, 
which have the N501Y mutation in their RBDs, have recently 
been shown to have enhanced affinity for the ACE2 protein 

[98]. It is also important to distinguish here between a holistic 
view of the viral lineage (genomic background) in general and 
the specific mutational variants at specific positions. For in-
stance, it could be that N501Y in one genomic context signifi-
cantly increases transmission whereas in another context it has 
little impact.

In addition, an important quality of SARS-CoV-2 trans-
mission appears to be its variable (over-dispersed) infectivity 
rate and its tendency to occur in super spreader events [126]. 
It is unclear whether the propensity to sometimes have a much 
higher R0 is primarily based on the virus, the host, behavior, or 
environment; it is likely a complex combination of these factors.

Disease Severity

Hypotheses that some variants cause worse disease have been 
proposed at various times during the pandemic [127], but at-
tempts to understand outcomes have been limited by available 
sequencing data, biased sampling, and changing epidemiology. 
Most notably, after initial reports suggested that B.1.1.7 lineage 
was no more virulent than other strains [100, 128–130], subse-
quent reports suggested that it may, indeed, be associated with 
worse outcomes [131–135] although increased severity has not 
been shown in some recent studies [79, 125]. One study linked 
higher viral load to increased morbidity [136], and B.1.1.7 has 
been consistently noted to have higher titers in clinical samples 
[125, 137]. Recently, there have been recent reports that B.1.351 
and P.2 may also be associated with poorer outcomes [138, 139]. 
All of these studies suffer from the enormous problems of bi-
ased sampling and will need well-designed and controlled clin-
ical studies combined with whole-genome sequencing to make 
more definitive statements.

In general, pediatric cases of COVID-19 are less se-
vere [140, 141], and as such there have been only a few re-
ported genome studies of sequences from patients under 21  
[142–145]. One study found an association between genotype 
and severity [142].

Another presentation of SARS-CoV-2–related disease in the 
pediatric population has been the multisystem inflammatory 
syndrome in children (MIS-C), which is sometimes referred 
to as PIMS (pediatric inflammatory multisystem syndrome) 
[146–148]. This syndrome usually presents 4-6 weeks after in-
fection with body-wide inflammatory signs and symptoms and, 
often, a cardiovascular component requiring hemodynamic 
support and treatment with steroids and intravenous immuno-
globulin. Because MIS-C is a late presentation, the virus is often 
not present or found at very low levels in respiratory secretions. 
Therefore, whole-genome analysis has been difficult in this con-
dition, and only a few reported sequences are available [149, 150].  
Although the pathogenesis of MIS-C is not well understood, 
it has been suggested that components of the virus may act 
as superantigens to provoke a polyclonal T-cell expansion  
[151, 152] making it conceivable that viral variants may be more 
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or less likely to cause disease. The available sequences suggest 
that MIS-C associated viruses might be drawn from several dis-
tinct lineages that are representative of circulating virus without 
any genetic similarities that tie them together [150]. However, 
it is notable that the original experience with the virus in China 
did not detect any MIS-C, raising the possibility that this is 
presentation is linked to later forms of the virus. Much more 
viral sequencing will be required to test the hypothesis that 
some viral variants may be more likely to cause disease.

Vaccine Escape

In vitro studies of neutralizing antibodies from patients natu-
rally infected with SARS-CoV-2 or immunized with different 
vaccines have clearly shown reductions in neutralizing antibody 
efficacy associated with specific variants. Most notable of these 
are mutations at the E484 position [130, 153, 154]. Mutations 
in naturally occurring variants at this position (E484K, E484Q) 
have been found in the B.1.351 (South African), P.1 and P.2 
(Brazilian), and B.1.617 (Indian) lineages, with a small number 
of reported B.1.1.7 isolates bearing a mutation at this site [108]. 
Several studies have looked at neutralizing antibodies in each of 
these variants, and several have shown decreased neutralizing 
response compared to wild type [106, 155–157], however, the 
B.1.351 appears to have the largest decrease [102, 103]. Data like 
this suggest that specific variant positions may have distinct im-
pacts in distinct lineages.

Despite significant reductions in neutralizing antibodies, 
many of the vaccines have been found to be effective, most en-
couragingly for severe disease, in places dominated by worrisome 
“vaccine escape” mutants [158–169]. The biggest drops in efficacy 
have been associated with the B.1.351 lineage but only  in mild 
to moderate disease [167]. This protective effect is likely because 
of very good initial vaccine efficacy as well as retention of mul-
tiple other epitope targets, and potentially other immunological 
factors such as the T-cell response. Going forward we will need 
to develop quick assays for assessing correlates of protection that 
can be applied to emerging variants [170].

WHAT DO WE NEED TO DO GOING FORWARD?

Most evolutionary biology to date has been done in retrospect, 
and therefore the techniques are focused on deriving the max-
imum amount of data from things that have already happened. 
Likewise, epidemiological techniques are often centered around 
known diversity, and a pathogen that may not be changing its 
ability to spread or cause disease. In this instance, we need to 
reboot our toolbox and scale up our understanding of pathogen 
diversity. It will be absolutely critical moving forward to have, 
in place, systematic strategies for sampling, quickly analyzing, 
new data. It is instructive that patterns can change very rapidly. 
For instance, in Philadelphia between February and March our 
surveillance data saw a more than 400% increase in B.1.1.7. Our 

sequencing and analytical strategies need to be able to react in 
real time before the speeding train passes us by.
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