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Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising
ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion.
However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration
algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication
online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is em-
ployed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution
of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.

Copyright © 2007 Xiaolei Song et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. INTRODUCTION

With the discovery of biocompatible, specific fluorescent
probes and the development of imaging technologies, the po-
tential of fluorescence tomography as a means for molecu-
larly based noninvasive imaging of biological tissues has re-
ceived in recent years increased attention [1–3]. Fluorescent
beacons emitting in the near-infrared (NIR) bandwidth are
always preferred, since hemoglobin and water absorb mini-
mally in this spectral window so as to allow photons to pen-
etrate for several centimeters in tissues [4].

Using preferentially accumulated fluorescent probes as
indicators or contrast agents, fluorescence optical diffusion
tomography (FODT) is performed by launching light at the
probes’ excitation wavelength into the tissue. The fluores-
cent beacon absorbs the incident light, and emits light at a
longer wavelength when it drops to the ground state. Then
the emission is measured by an array of detection devices
at the surface of the body. However, as the strong diffusion
of NIR in biological tissues, reconstruction of very large un-
known inside characteristics from the limited detected data
at the boundary is one of the main difficulties in FODT.
Many reconstructive approaches utilize iterative methods for
data inversion, such as the algebraic reconstruction tech-
nique (ART) [5], Newton’s or Newton-type optimization

methods [6, 7], and Bayesian nonlinear least-square method
[8, 9]. They are always time-consuming and far from meeting
the real-time imaging demands.

In this study, a fast algorithm based on the preiteration is
applied to the inversion process of fluorescence tomography.
For simulating the photon’s propagation in tissues with fluo-
rescent beacons inside, a previously reported DPDW model
based on Born approximation is simply introduced at the be-
ginning. Then, the preiteration fast algorithms are presented
in detail, emphasizing the second-order method. After that,
the simulation using the second-order form is investigated
and the results are shown. Finally, we analyze the computa-
tion burden and convergence property of the second-order
iteration form and give the conclusion.

2. DPDW MODEL

Often a couple of diffusion equations in frequency-domain
is employed to describe the propagation of both excited light
and fluorescent light in diffusive medium, that is [6, 7, 10]

∇[Dx(r)∇Φx(r,ω)
]−

[
μax (r) +

jω

c

]
Φx(r,w)

= −δ(r− rsk
)
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where Φx,m is the photon density for excitation (subscript
x) or fluorescent light (subscript m), Dx,m(r) is the diffusion
coefficient, and μax,m(r) is the absorption coefficient. Based
on this model, the fluorescence lifetime τ(r) and the yield
η(r) can be estimated through the boundary measurements.
Equation (1) can be solved by analytical or numerical meth-
ods. In this paper, we use an analytical model of Born ap-
proximation for specific medium geometry to demonstrate
the inversion algorithm. In fact, the fast algorithm could also
be applied to arbitrary geometries, where the model is dis-
cretized by numerical methods [7, 10] or the Kirchhoff ap-
proximation [5].

In the frequency-domain model, an amplitude-modu-
lated incident point source of photons into a diffusive
medium produces a diffuse photon density wave (DPDW)
[11–13]. Let an intensity-modulated point source of ampli-
tude Θ0 be located at rs in a homogeneous infinite medium.
Then the spatial part of the originating DPDW at position r

is [11] U0(rs− r, k) = Θ0 exp[ik(rs−⇀r )]/[4πD(rs− r)], with
the wave number k = [(−νμa + iω)/D]1/2, and D = ν/3μ′s
is the diffusion coefficient with the reduced scattering coeffi-
cient μ′s and the speed of light in the medium ν. Here, ω is the
angular modulation frequency of the source. Treating fluo-
rescent beacons as two-level quantum systems and assuming
that there are no saturation or photon quenching effects, the
fluorescent photon density δu f l, measured at a detector posi-
tion rdi due to a localized probe with volume d3rk embedded
within the medium, is [11]

δu f l
(

rk, rs j , rdi
)

= U0
(

rs j − rk, kλ1
) η

(
rk
)

1− iωτ
(

rk
)
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Dλ2
G
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rdi − rk, kλ2
)
d

3
rk,

(2)

with the excited source at rs j . Here, λ1 and λ2 represent
the excited light wavelength and the fluorescent wavelength
in the near-infrared section, respectively. G(rd − r, kλ2 ) =
exp(ikλ2|rd − r|)/4π|rd − r| is Green’s function solution to
the diffusion equation and represents the variance of fluo-
rescent DPDW from fluorescent probe to the detector.

For a weakly absorbing spatial distribution of fluores-
cent probes, the detected fluorescent DPDW at rdi can be
found by integrating overall fluorescent sources [11, 12].
In the reconstruction, for the measurement at positions rdi
(i = 1, 2, . . . ,Mi), the integral can be digitized as

Uf l
(

rs j , rdi
) =

N∑

l=1

δu f l
(

rl, rs j , rdi
)
d3rl (3)

due to the sources rs j ( j = 1, 2, . . . ,Mj). As only one of
the sources is working at a time, the total number of mea-
surements is M = Mi × Mj . In fluorescence tomography,

continuous-wave (CW) mode is always chosen, that is, ω =
0, and only η is reconstructed. Then substituting (2) in (3)
will lead to the following matrix equation:

U = AX , (4)

where U represents an M × 1 column vector of the detected
data, X is a column vector of unknown values of fluorescent
yield η at N reconstructed points, and matrix A indicates the
obtained M ×N weighted coefficients.

3. PREITERATION INVERSE ALGORITHM

As in FODT, the inside reconstructed points number N is al-
ways much bigger than M, the measurement number at the
boundary, the equation series (4) is always ill-posed and in-
definite. In this case, the direct inverse matrix of A does not
exist. However, its generalized inverse can be employed to
solve (4).

3.1. Preiteration algorithm based on
generalized inverse

If the Moore-Penrose inverse of A exists and is known as A+,
the unique solution of (4) which has the minimum norm
and the least square can be obtained simply by [14]

X = A+U. (5)

There are several direct methods to calculate the generalized
inverse A+, for example, regularized SVD method. However,
the iterative method is always preferred in computerized cal-
culation, especially for large datasets, as it is easy to be pro-
gramed and occupies much less ram than direct methods.

Supposing the residual error series R̂k = I − AŜk (I is the
unit matrix of M ×M), series

Ŝk+1 = Ŝk + S0
(
I − AŜk

)
(6)

will be convergent to A+ when k → ∞ [14]. Here S0 can be
chosen as αAT [15], with α = 1/λmax. And λmax is the maxi-
mum eigenvalue of A·AT , where AT is the transposed matrix
of A.

From the analysis above, a two-step reconstructed algo-
rithm can be formed.

(1) Offline preiterative step: the approximation of gener-
alized inverse A+ is calculated by several iterative steps
of (6).

(2) Online reconstruction: when the weighted matrix A
keeps unchanged or the variation can be ignored, for
updated detection U the unknown character X can be
reconstructed simply through (5).

This preiteration method has already been applied to the
image reconstruction in electrical impedance tomography
(EIT) [15] which also belongs to the so-called “soft field”
imaging as FODT, and it is proved that Landweber iteration
method, which can produce higher quality reconstructed im-
age than other direct regularized methods, is in fact a mod-
ification of the above preiteration algorithm [16]. However,
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compared with Landweber method, the preiteration method
remarkably improves the reconstructing speed by perform-
ing the time-consuming iterative process offline.

3.2. Second-order iteration form

However, the first-order preiteration algorithm with form
equation (6) needs the same iteration steps as the Landweber
method to produce the same quality images [15]. So just like
the slow convergence of Landweber, for larger-sized dataset
in FODT, iteration form of (6) is also very time-consuming
even in the preiteration process. In order to speed up the it-
eration process, the second-order iterative format

Sk+1 = Sk
(
2I − ASk

)
(7)

is used in our work.
To prove the convergence of the second-order form equa-

tion (7), we examined the convergence of Sk and the residual
error Rk as follows.

First, by including (7), the iterative formula of Rk can be
obtained as

Rk+1 = I − ASk+1 = I − ASk
(
2I − ASk

)

= (I − ASk
)2 = R2

k.
(8)

Then it can be inferred that

Rk = R2
k−1 = R4

k−2 = · · · = R2k
0 . (9)

According to (7) and (9), Sk+1 can be written as a function
of R0 and S0 in the formula

Sk+1 = Sk
(
I + Rk

) = Sk−1
(
I + Rk−1

)(
I + R2k

0

)

= S0
(
I + R0

)(
I + R2

0

) · · · (I + R2k−1

0

)(
I + R2k

0

)

= S0
(
I − R0

)−1(
I − R2k+1

0

)
,

(10)

if ρ(R0) < 1, let k →∞, it yields

S∞ = lim
k→∞

Sk = S0
(
I − R0

)−1
, (11)

where S∞ can be proved as the generalized inverse matrix of
A [14].

However, with the first-order iteration form equation
(6), residual error R̂k = I − AŜk for k times iteration can
be expressed as

R̂k = I − A
(
Ŝk−1 + S0R̂k−1

) = R̂0 R̂k−1. (12)

Then it can be inferred that

R̂k = R̂2
0 R̂k−2 = · · · = R̂k+1

0 . (13)

By comparing (9) and (13), the difference between the
convergence speed of the two iteration forms can be found. If
the same value of S0 is selected, Sk can be directly obtained in
the kth step via the second-order form as (7) while it requires
(2k − 1)-step first-order iteration of (6).

Reconstructed
area

Source
Detector

Figure 1: An illustration of system geometry. The excited sources
and detectors are posed alternately around the circle of 50 mm di-
ameter with equal intervals between each other. The power of the
incident sources is 3 mw each.The reconstructed area is the central
square slab of 0.1 cm thickness with each side of 32 mm. The solid
lines represent the positions of the excited sources and the dotted
lines represent the detectors.

4. SIMULATION AND RESULTS

The simulation in this paper is performed in CW mode (i.e.,
ω = 0) and under the assumption of homogenous and ap-
proximately infinite medium. The algorithm can also be ap-
plied to arbitrary geometries linearized by analytical approx-
imation or finite element method.

The measurement geometry for simulations is illustrated
in Figure 1. The optical properties of the media are μ′s =
10 cm−1 and μa = 0.03 cm−1 everywhere for both the ex-
citation and emission wavelengths. The original fluorescent
yield η is 0.05 cm−1 in the presence of the fluorescent probes.
All the simulations were done in Matlab environment (ver-
sion 7.0.1) on a 2.79 GHz Intel Pentium IV personal com-
puter. The simulated measurement vector U is computer-
generalized by the product of coefficient matrix A and the
original distribution of X .

In the offline preiteration step, the approximation of A+

is obtained by the iteration of (7) with proper iterative num-
ber K . However, in the simulation the iterative method is
found to have the semiconvergence property. This is prob-
ably due to the accumulated round-off error in the computa-
tion. So the optimal iteration number should be determined
according to experience or prior information about the sys-
tem. In our simulation, a pretest with a known distribution
of fluorescence yield X is performed to choose K for the par-
ticular imaging system. And the mean squared error (MSE)
between the original X and the reconstructed X̂ is used as a
criterion of the reconstructed quality. We investigated how
the MSE changed against iteration times for several imaging
systems with different sizes (M measurements and N vox-
els). Figure 2 shows that there is a relative flat segment where
MSE changes very slowly before the iterative number begins
to rise significantly. So the proper iteration number can be
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Figure 2: Number of iterations versus MSE (mean squared error) between the original and the reconstructed. (a) shows the MSE for datasets
of 256∗ 1024 and 1024∗ 4096. Although the size is different, the iterative number where the MSE increases is the same, since they have the
same value of n/m. Two datasets in (b) have the same number of measurements 1024, however, the MSE with 10000 voxels increases much
later than the one with 1024 measurements.

chosen in this iteration number range. Figure 2 is obtained
in a noise-free environment. However, it is also found that
when noise exists, the MSE rises earlier than in a noise-free
system. For different levers of noise, the iteration numbers
where MSE rises are different.

With the iterative result Sk and the simulated detection
U , the distribution of fluorescent yield can be well recon-
structed simply by Xk = SkU . In our simulation, Xk is then
modified by including a nonlinear function f to constrain
the reconstructed values to [0, 0.05], that is

f
(
Xk
) =

⎧
⎪⎪⎨

⎪⎪⎩

0, Xk ≤ 0,

Xk, otherwise,

0.05, Xk > 0.05.

(14)

In the simulation, occasions of single-probe as well as multi-
probe are reconstructed for several different dataset sizes. It
is proved that the distribution of the fluorescent yield η can
be well estimated by the fast algorithm (Figure 3). It can be
seen that the algorithm works well when the measurement
number is much less then the reconstructed number.

For different imaging subjects, the weighted matrix A
may need to be updated, so it would be desirable to know
how the inversion time of the preiteration changes with
different-sized datasets. According to the results of conver-
gence of the iteration in Figure 2, 60-time iterations are cho-
sen for all of the following datasets in order to compare the
reconstructed timescales. The results are shown in Table 1. It
can be inferred that for the same number of measurements
M, the computing time is approximately proportional to the

number of reconstructed voxels N . However, if N remains
constant, when M rises to l ·M, the computing time will in-
crease to nearly l2 times of the original.

5. DISCUSSION AND CONCLUSIONS

With the preiteration method, we have demonstrated recon-
struction of fluorescence concentration by using simulation
data based on the analytical model with first-order Born ap-
proximation. Although in this paper, the fast algorithm is
simply demonstrated with the analytical solution for specific
medium geometry, it could also be applied to arbitrary ge-
ometries, where the model in (1) is discretized by numerical
methods [7, 10] or the Kirchhoff approximation [5].

In the simulation, a pretest should be done to deter-
mine the proper iteration number. A relationship between
the convergence property and the dataset size is also ob-
tained through the investigations and it can be found from
Figure 2 that in noise-free environment, the number of itera-
tions when the MSE begins to rise mainly depends on the ra-
tio of the voxels number N and the number of measurements
M, but not on the absolute value of them. This result will be
helpful for the determination of the proper iteration num-
ber. For example, the convergence property of large dataset
can be predicted from a smaller one with the same N/M. For
a system with fixed measurement size, the larger the recon-
structed mesh number is, the later will the MSE curve begin
to rise.

The computation burden of the second-order iteration
is further investigated in our work. It can be inferred from
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Figure 3: The original images and the reconstructions for single and multiprobe configurations with different datasets. (a) is the original
distribution of the fluorescent yield η with 32∗ 32 voxels. (b) and (c) separately show the reconstruction of (a) with 256 measurements and
1024 measurements. (d) is the original η with image size of 100∗ 100 voxels. (e) and (f) show the reconstructions with 1024 measurements
and 2048 measurements, respectively. For all of (b), (c), (e), (f), the iteration time in the preiteration step is 60.

Table 1: Computation time for 60 iterations.

m
n

1024 4096 10000

256 4.2321 s 16.4102 s 39.2953 s

512 16.0307 s 61.5063 s 147.5493 s

1024 61.6572 s 238.5744 s 565.6728 s

(7) that one iteration needs 2M2 · N times multiplication.
So the computation burden is proportional to the number of
reconstructed points N when measurement number M stays
unchanged and to M2 when N is constant. This result is well
proved in the simulation by the listed computing time for dif-
ferent numbers of measurements and voxels in Table 1.This
feature should be very suitable for imaging systems where
the number of voxels is always much larger than measure-
ment number such as FODT. The results of both conver-
gence property and computation burden indicate that the
algorithm is very suitable for imaging systems in which the
boundary measurement number is much less than the inside
reconstructed voxels. In addition, the reconstructed images
in Figure 3 showed that the algorithm works well for these
kinds of system.

The most promising feature of the algorithm is the rapid
reconstruction speed. It significantly accelerates the recon-
struction process in the following two aspects. First, when

the weighted matrix stays constant or the variance can be
ignored, by allowing the time-consuming iteration to be
performed offline, it provides great computational facility,
which is just a unique matrix vector multiplication. Second,
in the preiteration step, it is the second-order iteration form
of (7) that exponentially improves the speed of the iterative
process, which makes the algorithm feasible in practice and
can be finally applied to FODT with datasets of large size. For
example, to reconstruct the same quality images with 60 iter-
ations of (7) (the reconstructed images are shown in Figure 3
and the computing time is shown in Table 1), it will cost
about 260 iterative steps using Landweber method or the first-
order iterative form, requiring days for the reconstruction. So
the first-order form is not practical for FODT of large-sized
datasets even in the preiteration step. Therefore, the results
demonstrate that the time efficiency of both the preiteration
process and the online reconstruction is the most important
advantage of the algorithm. It will be helpful to promote the
development of real-time image reconstruction systems and
dynamic monitoring of molecular activity.
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